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Diabetes is one of the main diseases posing a threat to healthcare systems. One of the complications 
of diabetes is diabetic retinopathy, which, if left untreated, can lead to serious consequences such 
as blindness. Early detection of this disease is critical to prevent disability and stop the process of 
vision loss. In our research, we aimed to develop and validate a machine learning model enabling 
early diagnosis of retinopathy disease. We were the first to conduct research using as many as eight 
public databases and one private database collected during the project implemented by the Ministry 
of Digital Affairs and the Ministry of Health of Poland. We analyzed 14,402 fundus photographs from 
patients, leveraging this large dataset to enhance the trustworthiness and validity of our findings. Such 
a large number of photos emphasizes the credibility and reliability of the results obtained. A significant 
innovation in our approach includes employing forty-six unique methods for feature selection and 
extraction, utilizing techniques such as CLAHE, B-CosFire, and Hough transform. We chose XgBoost 
and Random Forest algorithms for classification, with parameter tuning performed via the Optuna 
library. Our most successful model, employing the Random Forest algorithm combined with LBP and 
GLCM for feature extraction, reached a classification accuracy of 80.41%, F1-Score of 74.41%, and AUC 
of 0.80. The machine learning model we developed proved highly effective in the early detection of 
diabetic retinopathy. Further refinement is recommended to make this model a viable tool in clinical 
settings.
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Diabetes is one of the greatest and most important challenges faced by healthcare systems. It is one of the 
leading causes of death and disability worldwide. It affects people regardless of their country of residence, age 
or gender. It is a severe, chronic disease characterized by elevated blood glucose levels. According to estimates 
from the Global Burden of Diseases, Injuries and Risk Factors Study (GBD), diabetes is the eighth leading cause 
of death and disability in the world, with almost 460 million people in every country and age group living with 
the disease (as of 2019). This has been estimated to result in global healthcare spending of $966 billion and is 
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projected to reach over $1,054 billion by 2045. The results of the research that was conducted are alarming. 
In 2021, approximately 529 million people suffered from diabetes, which, out of an estimated population of 8 
billion, shows that 6% of the population is sick. The dominant type of diabetes is type 2 diabetes, accounting 
for approximately 96% of all cases. According to research, approximately 50% of diabetes cases are caused by an 
increased BMI (body mass index). It can even be said with certainty that the leading causes of the disease are 
overweight, which turns into obesity, as well as a sedentary lifestyle and limited movement. It is expected that in 
2050 the number of people with diabetes will be approximately 1.3 billion people. The development of diabetes 
can be significantly prevented, and in some situations, if detected early enough, it may be reversible. However, 
all evidence indicates that the incidence of diabetes is and will continue to increase worldwide and that this 
disease will represent one of the main challenges facing healthcare systems1. Diabetes is also a major risk factor 
for ischemic heart disease and stroke, lower limb amputation, kidney failure, and diabetic retinopathy. Diabetic 
retinopathy is one of the most common complications of diabetes and is one of the leading causes of preventable 
blindness in the adult working population. The global incidence of blindness due to diabetic retinopathy 
increased by 14.9% to 18.5% between 1990 and 2020. With a rapidly aging global population, increasing lifespan 
of people with diabetes and lifestyle changes are expected to lead to an increased risk of diabetes, an increased 
burden of the disease and the need for eye care and treatment2. Globally, the incidence of diabetic retinopathy 
among diabetic patients is estimated at 27.0%, which causes blindness in 0.4 million people worldwide - as 
confirmed by research conducted in 2015-20183. It is believed that approximately 80% of people with type 2 
diabetes develop retinopathy4.

With the increasing prevalence of diabetes and the high incidence of diabetic retinopathy among patients, 
combined with a limited number of ophthalmologists and rapid advancements in machine learning technologies, 
the use of artificial intelligence (AI) methods to enhance the diagnosis of this disease has become both achievable 
and essential. By 2050, the growing number of diabetes cases–and, consequently, diabetic retinopathy–
underscores the critical role that AI, particularly machine learning, will play in addressing this healthcare 
challenge. Diabetic retinopathy is a severe condition that can lead to vision loss, profoundly impacting a patient’s 
quality of life. Vision is a vital sense that enables individuals to perceive and interact with the world, and its loss 
is often associated with social isolation, difficulty securing employment, and mental health challenges such as 
depression. Currently, specialists’ manual analysis of retinal images is prone to errors, especially in detecting early-
stage disease, where timely intervention could prevent irreversible vision loss. Computer vision-based methods 
offer the potential to develop automated systems capable of identifying diabetic retinopathy in its early stages. 
Such systems not only improve patient outcomes by enabling earlier treatment but also alleviate the workload on 
healthcare professionals, who are often tasked with analyzing vast quantities of medical images. Furthermore, 
early detection reduces the financial burden associated with managing advanced stages of the disease, offering 
significant cost savings for healthcare systems5. For this purpose, classic machine learning methods are used, 
such as Random Forest or Support Vector Machine, along with advanced image processing methods, as well 
as deep neural networks - in particular convolutional networks, which have found a number of applications in 
medical diagnostics based on various types of medical data. Advanced machine learning methods have so far 
seen many applications in medicine, such as survival analysis of patients with hepatocellular carcinoma6, breast 
cancer prediction7, assessment of thyroid tumor malignancy8, classification of cardiac arrhythmias based on the 
ECG signal9, diagnosis of schizophrenia based on EEG10, or diagnosis of Covid-19 based on chest X-ray11 or CT 
scan12. Advanced machine learning models are also widely applied in other domains, such as biometrics13, which 
is particularly relevant today given its critical role in addressing cybersecurity challenges. Additionally, training 
physicians in the fundamentals of artificial intelligence and machine learning will be necessary to ensure they 
have at least a basic understanding of the tools they use and can trust the results.

The main goal of our research was to develop new machine learning models for early diagnosis of diabetic 
retinopathy based on fundus photographs. For this purpose, we used advanced image processing methods and 
classification algorithms. Additionally, our research utilized eight publicly available datasets along with our own 
data collected in Poland, comprising a total of 14,402 fundus images. This makes our study one of the largest 
of its kind reported in the literature. The substantial volume of data enhances the stability of our model and 
significantly improves its generalization capabilities. A key innovation of our study is the implementation of 
forty-six distinct scenarios for preprocess, feature selection, and extraction. Investigating such a broad range 
of options enabled us to develop highly effective classification algorithms. We anticipate that the models 
developed in this research will eventually find applications in clinical practice. Previous approaches presented 
in the literature have mainly focused on single methods of preprocessing, selection and feature extraction. The 
literature lacked a comprehensive experiment, which could indicate to researchers the most promising paths of 
fundus image processing for diabetic retinopathy diagnostics. Our research fills this gap by using a very broad 
experiment using a very large number of techniques such as GLCM, GLRM, PCA, LBP, as well as less known 
ones such as B-COSFIRE Filters. We tested not only these single methods, but also fusions of these approaches 
- designing advanced mechanisms for feature engineering. Initially, they could serve as digital assistants to 
support physicians in their diagnostic processes. In the future, these systems have the potential to evolve into 
fully autonomous diagnostic tools, and, considering the advancements in large language models (LLMs), may 
even interact directly with patients. Implementing such models will require robust hardware infrastructure, 
the development of software integrating the proposed algorithms, and a responsible approach to addressing 
cybersecurity concerns and ensuring the protection of personal data.

Related works
In recent years, there has been a growing interest among scientists in the use of machine learning methods in 
medical diagnostics. Many studies have been based on the use of fundus photography in the diagnosis of diabetic 
retinopathy. The growing interest may result from the increase in the incidence of diabetes and, consequently, 
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diabetic retinopathy14, as well as the increasing shortage of qualified medical personnel15. Seud et al.16 proposed 
the use of random forest in the diagnosis of diabetic retinopathy. Working on the basis of approximately 1,200 
fundus photos, scientists extracted thirty-five features that served as input for the classification. The experiment 
was conducted using LOO validation. The proposed model achieved a classification accuracy of 74.1%. In17 
Pratt et al. proposed the use of convolutional convolutional networks, which are the dominant model in image 
recognition tasks. They conducted their research on a publicly available set on Kaggle, and they achieved a high 
sensitivity of 95% and classification accuracy of 75% on a test set consisting of 5,000 samples. Acharya et al. 
in their article18 proposed using a support vector machine for disease diagnosis. Their research was based on 
photos of 331 patients. The obtained results are a sensitivity of 82% and a specificity of 86%. The work19 used 
various feature selection techniques such as LDA, PCA, and spatial invariant feature transform (SIFT) with 
the AlexNet deep neural network. The obtained classification accuracy of the model was 97.93%, 95.26%, and 
94.40%, respectively. The research shows how key an element is to select features in designing effective machine 
learning models. Li et al.20 used deep neural networks to diagnose diabetic retinopathy using the Inception-v3 
network. They conducted their research on a dataset consisting of almost 20,000 images. Experiments were 
conducted using 10-fold cross-validation. The photos were resized to 299 by 299 pixels. Contrast-limited adaptive 
histogram equalization (CLAHE) was also used as a preprocessing method. The proposed model achieved an 
accuracy of 93.49% and a specificity of 93.45%. The Inception-ResNet-v2 network and methods related to transfer 
learning were used in the work21. The accuracy results were around 70-80% for the public Aptos and Messidor 
datasets. Nahiduzzama et al.22 used a parallel convolutional neural network in their research to perform feature 
extraction (120 features) and extreme machine learning in the classification task. The proposed models achieved 
an accuracy of 91.78% on the Kaggle DR 2015 dataset and 97.27% on the Aptos dataset. Many convolutional 
models were used in research by Kassani et al.23 Xception, InceptionV3, MobileNet, ResNet50 and a new variant 
of Xception were used, which obtained the best results - accuracy of 83.09%, sensitivity of 88.24% and specificity 
of 87.00%. The models were trained on 2,657 images and tested on 343. The article24 presents the use of the You 
Only Look Once (Yolo) V7 feature extraction algorithm together with the tailored quantum marine predator 
algorithm (QMPA) used in feature selection. The MobileNet V3 network was used as a classifier. CLAHE and 
Wiener filter techniques were used for preprocessing. The F1-score was approximately 93% on selected public 
datasets. The work25 presents a combination of the concepts of deep features obtained from deep networks 
such as EfficientNet and DenseNet along with biologically inspired algorithms: Binary Bat Algorithm (BBA), 
Equilibrium Optimizer (EO), Gravity Search Algorithm (GSA), and Gray Wolf Optimizer (GWO) and classic 
machine learning methods such as SVM. The best of the designed models achieved a classification accuracy 
of 96.32%. The article26 also uses several convolutional models to classify diabetic retinopathy. Resnet50, 
Inceptionv3, Xception, Dense121, and Dense169 were used. The authors decided to balance the dataset using 
data augmentation techniques. As part of this research, these networks were combined into an ensemble model 
that obtained an f1-score of 53.74% and an accuracy of 80.8%. Modi and Kumar27 proposed a novel combination 
of deep forest and bat optimization algorithms. As part of the simulation, they compared the following models: 
KNN, ANN, SVM, VGG16, VGG19, InceptionV3 and Deep Forest. BA-DeepForest achieved a classification 
accuracy of 92.94%, a sensitivity of 95.67% and a specificity of 94.95%. To reduce the effect of model overfitting, 
the authors used 10-fold cross-validation. The work28 proposes the use of several feature extraction algorithms: 
Maximum a Posteriori (MAP) algorithm, Principal Component Analysis (PCA), and Gray level co-occurrence 
matrix (GLCM) to build new classification models for diabetic retinopathy. The proposed model using a support 
vector machine achieved an accuracy of 77.3%, a sensitivity of 90.2% and a specificity of 74.1%. Machine 
learning algorithms have also been successfully applied to detect glaucoma. In the study29, several deep learning 
models were proposed to identify this disease automatically. The best performance was achieved by a novel 
convolutional model developed by the authors. Its primary advantage was its relatively small number of layers, 
which significantly reduced training time. The model achieved a classification accuracy exceeding 80%, a result 
that can be considered highly satisfactory. In contrast, another study30 proposed an alternative approach to early 
glaucoma detection, utilizing the Fast Fuzzy C-means clustering technique. This method enabled the design of 
a system with a remarkable prediction accuracy of 97.75%. These experiments were conducted using publicly 
available datasets containing fundus images. Additionally, the research presented in31 introduced an innovative 
hybrid approach by combining differential evolution with the K-Nearest Neighbors (KNN) algorithm for 
glaucoma detection. This hybrid model achieved a classification accuracy of 90%. Similarly, the study32 explored 
the application of biologically inspired algorithms, specifically the Grey Wolf Optimizer (GWO) and the Whale 
Optimization Algorithm (WOA). This approach facilitated the development of classification models with an 
impressive accuracy of 96.8%. These advanced models demonstrate significant potential for clinical application, 
offering reliable tools to assist ophthalmologists in the diagnosis and management of glaucoma.

One can notice the great interest of scientists in this topic. The analyzed works used both deep models and 
traditional classification techniques with advanced feature extraction methods. However, these models still 
require further research to support doctors and increase access to medical services in the future.

Materials and methods
Datasets
As part of our experiments, we used eight publicly available datasets and one new dataset obtained as part of 
a project aimed at screening patients with diabetes in Poland - for the purpose of early diagnosis. All of these 
datasets contain fundus images. Table 1 shows statistics for each dataset.

Employing a large number of datasets represents a significant shift from the traditional approach in this field, 
where researchers typically relied on just one or two datasets. This expanded data use allows for the development 
of models that are not only stronger but also more reliable. With more datasets, a broader information, base 
which enhances the model’s ability to predict outcomes accurately. This approach significantly improves the 
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stability and accuracy of the models, offering a substantial improvement over previous methods which may 
have suffered from limited data diversity and potential biases. Modern machine learning models possess strong 
generalization capabilities. However, for these models to be suitable for clinical practice, they cannot be trained 
on a single dataset, acquired from a specific country or device. Such a limitation would make the model prone 
to overfitting, undermining its applicability in real-world clinical settings. Our research demonstrates that 
combining multiple datasets–despite originating from different sources–is feasible by appropriately converting 
and scaling the images. By leveraging a large, diverse dataset, the models we developed can more accurately 
reflect their real-world performance, ensuring they are capable of robust, reliable disease prediction in clinical 
environments.

Telediagnostics in ophthalmological examinations41 is a joint initiative of the Ministry of Health, the Minister 
of Digitization, the Medical University of Lublin and the Institute of Telecommunications - National Research 
Institute. One of the elements of the project is EyeBus, a specialized vehicle for telediagnostics equipped with 
medical devices enabling the acquisition of data by performing advanced eye tests in the field, as well as IT 
and telecommunications devices used to transmit the data obtained, in order to create an artificial intelligence 
algorithm and remote patient diagnoses. The project will accelerate diagnosis and provide access to tests for 
residents of areas with difficult access to advanced ophthalmological diagnostics. Pilot studies have been carried 
out in the Lubelskie Voivodeship, involving 5,000 participants. These studies took place from February to 
December 2023 across the whole region. Due to the particular characteristics of eye diseases, ophthalmologists 
evaluated patients ranging from 18 to 80 years old. Although this project was initially pilot in nature, plans 
are to expand it to cover the whole country in the future. This study was approved by the ethics committee of 
Medical University of Lublin (Commission resolution no.: KE-254/124/05/2022 of 26 May 2022). All methods 
were carried out in accordance with relevant guidelines and regulations. Informed consent was obtained from 
all subjects and/or their legal guardian(s).

Figure 1 shows an example photo for a sick and a healthy patient.

Data preprocessing and feature extraction
Appropriate data preprocessing is one of the essential tasks that must be performed to build effective machine 
learning models. A number of different approaches to preprocessing fundus images can be found in the literature. 
It is challenging to clearly determine which data transformation path is the best - so we decided to conduct 
a various experiments based on methods such as Clahe42, B-COSFIRE Filters43 or Hough Transform44. The 
CLAHE (Contrast Limited Adaptive Histogram Equalization) algorithm was employed to enhance the contrast 

Fig. 1.  Example of fundus photo for patients.

 

Name Size

APTOS33 3662

Aria34 120

Drive35 40

E_optha36 442

Eye_diseases_classification_kaggle37 2172

HRF38 30

IDRiD39 516

ODIR40 4868

Topcon 4724

Total 14024

Table 1.  Datasets used in the research.
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of fundus images. This technique enables improved visualization of retinal vessels and is among the most 
commonly used algorithms in the preprocessing of fundus images. Conversely, the B-CosFire filter algorithm is 
utilized for the extraction of retinal vessels–a challenging task due to the potential for vessels to be misidentified 
as noise, arising from imperfections in the processed images. In the final stage of this algorithm’s application, 
binary thresholding is performed to generate a retinal vessel map45.

For common classification algorithms such as Random Forest or XgBoost, we decided to perform four 
preprocessing scenarios:

•	 Variant 1 - called “pure” In this variant, the images were cropped, and resized, the background outside the 
eyeball circle was cut out, and the contrast was improved using the CLAHE method.

•	 Variant 2 - called “no_vessels” In this variant in addition to the previous one the veins were cut out based on 
the B-CosFire algorithm.

•	 Variant 3 - called “no_vessels_no_optic_disk” In this variant, the optical disc was additionally found and cut 
out using the Hough method.

•	 Variant 4 - called “no_optic_disk” In this variant in addition to the first variant, the optical disc was found and 
cut out using the Hough method.

For each of these four variants, global histogram equalization was also tested (variant name with “eq”). An 
average histogram of all images within each dataset was calculated, and all images were adjusted to the average 
histogram in each dataset respectively.

In the experiments conducted, a number of feature extraction methods were also used to select key features, 
reduce the size of the feature space and highlight important ones. The following algorithms were used:

•	 Principal Component Analysis (PCA)46

•	 Local binary patterns (LBP)47

•	 Gray-Level Co-Occurrence Matrix (GLCM)48

•	 Gray-Level Run-Length Matrix (GLRLM)49

•	 Histogram50

GLCM and GLRLM feature extraction methods were conducted within smaller windows. Each image was 
divided into three windows for GLCM and twelve for GLRLM.

During this research, we carried out forty-six experiments involving diverse configurations of preprocessing, 
feature selection, and extraction. The goal was to develop classification models that achieved the highest possible 
accuracy. These varied experiments allowed exploring multiple approaches to refine our methods and enhance 
the performance of our models.

Table 2 illustrates the appearance of the photos after applying different preprocessing variants. It is evident 
that the methods employed vary significantly from each other, highlighting their value for inclusion in the 
research.

Experiments
The experiments utilized traditional classification techniques, including XgBoost and RandomForest. Random 
Forests are among the learning methods used in classification and regression problems, which function by 
creating many decision trees in the training phase, the result of which is the average results of all trees. They 
belong to the group of bagging-based classifiers51. The XgBoost (Extreme Gradient Boosting) algorithm was 
also used, achieving excellent results in many issues. It is a gradient boosting model belonging to the group of 
ensemble classifiers52. Both the XgBoost and Random Forest algorithms belong to the group of very advanced 
and effective machine learning models that are useful in many fields, including the classification of medical data. 
The random forest achieved an efficiency of as much as 91.87% in the problem of predicting the recurrence of 
pancreatic cancer53, 80.43% classification accuracy in diagnosing glaucoma54 or early diagnosis of depression55. 
The XgBoost algorithm has demonstrated high efficacy in breast cancer prediction - in a group of 500 patients, 
this efficacy was as high as 97%56. Equally promising results for this algorithm were obtained in the problem 
of stroke prediction - this time, XgBoost combined with PCA achieved a classification accuracy of 95%57. 
The OPTUNA library was used to optimize the parameters of these two classifiers58 and the metric used for 
optimization was f1-score. The data was split into training and test sets in a 0.7 to 0.3 ratio keeping the original 
distribution between classes. The training dataset was used during parameter tuning with Optuna with 10-split 
cross-validation. The final hyperparameters set received after tuning was used to train the final model using the 
same training dataset, where tests were performed using the test set not used before. The results discussed in this 
paper were specifically obtained from the test set, which was not involved in the optimization or training stages.

In order to build the most effective machine learning algorithm for diagnosing diabetic retinopathy, a number 
of experiments were carried out related to various preprocessing methods, feature selection and extraction, and 
various classification models. Classification accuracy and the f1-score measures were used as the basic metrics 
for model evaluation.

	
Accuracy = T P + T N

T P + T N + F P + F N
� (1)

	
F 1 =2 ∗ P recision ∗ Recall

P recision + Recall
= 2 ∗ T P

2 ∗ T P + F P + F N
� (2)

The following measures were also used helpfully:
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P recision = T P

T P + F P
� (3)

	
Recall = T P

T P + F N
� (4)

	
Sensitivity =Recall = T P

T P + F N
� (5)

	
Specificity = T N

F P + T N
� (6)

where:

•	 TP: is the number of True Positives
•	 TN: is the number of True Negatives
•	 FP: is the number of False Positives
•	 FN: is the number of False Negatives

Additionally, ROC curves were drawn for the best models and the AUC value was calculated
The source code of the designed models was written in Python. The following libraries were used:

•	 Scikit-learn59

•	 XgBoost60

•	 Optuna61

•	 Scikit-image62

Table 2.  Comparison of different preprocessing methods.
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•	 PyFeats63

•	 Scipy64

•	 OpenCV65

The calculations were conducted on a machine having following the specifications:

•	 Processor: Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30 Ghz 2.30 Ghz (two processors)
•	 RAM: 512 GB
•	 Operating system: Windows Server 2019 (64-bits)

Figure 2 shows a simplified diagram of our experiment.
The experiment can be divided into main stages such as data acquisition and their initial preprocessing, 

feature engineering, optimization and training of machine learning models and their evaluation.

Results
During the research, forty-six feature engineering scenarios were implemented. The XgBoost and Random 
Forest algorithms were employed as the primary classifiers. Hyperparameters of both classifiers were optimized 
using Optuna to find the best fitting values. Optimization ranges are presented in Table 3.

Table 4 shows the complete results achieved using Random Forest. The best result was achieved for the “pure” 
scenario using a combination of two feature extraction methods: Local binary patterns (LBP) and Gray-Level 
Co-Occurrence Matrix (GLCM). This model achieved a classification accuracy of 80.41% and an f1-score of 
0.744. Table 5 shows the hyperparameters used in the final model.

Figure 3 shows the confusion matrix for this model and Figure 4 shows the ROC curve.
It can be seen in the confusion matrix that the model performs well in recognizing cases from both classes. 

The AUC area under the ROC curve is equal to 0.80.
Similar experiments were conducted using the XgBoost algorithm, which is recognized as one of the most 

effective and widely used classifiers in current machine learning research. The results for this model are displayed 
in Table 6.

The best results were achieved by the model in the “no_vessels_eq” preprocessing scenario using the Gray-
Level Run-Length Matrix feature extraction method. The designed model had a classification accuracy of 0.816 
and an f1-score of 0.729. The high performance achieved with the XGBoost algorithm resulted from several 
factors. First, a large dataset was collected, comprising both public data and data from the implemented project. 
Second, we employed forty-six preprocessing scenarios to identify the optimal configuration. Lastly, the use of 
the Optuna framework was crucial in selecting the appropriate parameters for the XGBoost algorithm. Given 
the complexity of XGBoost and the large number of parameters it requires, configuring it without advanced tools 
like Optuna would have been challenging. Complete hyperparameter values can be found in Table 7.

Figures 5 and 6 show the confusion matrix and ROC curve of this model.

Fig. 2.  Experimental scheme.
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Analyzing these results, it can be observed that those are similar to the results of the Random Forest 
algorithm. Similarly, the model correctly handles the classification of cases from both classes. The area under the 
ROC curve is 0.78.

Discussion
This article explored various strategies for constructing classification models to diagnose diabetic retinopathy 
using fundus images. Our research included well-known and commonly used classifiers such as XgBoost and 
Random Forest combined with sophisticated preprocessing methods such as CLAHE and B-CosFire filter 
and advanced feature selection and extraction techniques like PCA, LBP, GLCM, and GLRM. Our goal was to 
check the effectiveness of these methods in the early diagnosis of diabetic retinopathy. We conducted advanced 
experiments involving forty-six different preprocessing and feature engineering variants to develop highly 
effective diagnostic models. Many tested scenarios were designed to identify the most promising techniques 
for predicting diabetic retinopathy from fundus images and the ones that should be disregarded. For instance, 
the “pure and histogram” scenario using the Random Forest algorithm resulted in a classification model with 
an accuracy of only 55%, while the “pure + lbp_glcm” scenario yielded an accuracy of over 80%. This highlights 
the significant potential of certain algorithms, particularly those based on texture analysis, such as GLCM and 
GLRM, in addressing the problem at hand. Table 8 presents the top five algorithms, ranked by their F1-score.

The Random Forest models generally outperformed those using the XGBoost algorithm, although the 
performance differences were relatively small. The best configuration of the XGBoost algorithm achieved a 
classification accuracy of 0.816 and an F1-score of 0.729. In comparison, the Random Forest algorithm achieved 
a similar classification accuracy of 0.804, but slightly outperformed XGBoost with a higher F1-score of 0.744. 
The minor differences in the results highlight the similarity in the underlying principles of these models, as 
both are ensemble methods with a single decision tree serving as their foundational element. Several stages of 
the project contributed to these strong results, including acquiring a large dataset, initial preprocessing, feature 
selection and extraction, and optimizing model parameters using the Optuna framework.

Our research represents one of the first experiments to utilize such a diverse array of datasets, leading to reduced 
model overfitting and increased reliability. While some scientific studies report higher model performance, 
these results are often achieved by training on a single dataset, which tends to produce overfitted models with 
limited generalization capabilities. In contrast, our approach surpasses most existing efforts by employing a 
significantly broader range of preprocessing and feature extraction methods–forty-six in total. Unfortunately, 
machine learning models trained on a single dataset from a single population, often even on sets obtained from 
a single device for performing fundus examination, are susceptible to overfitting. Such models in the literature 
often achieve accuracy above 90%, which unfortunately does not translate into real performance. Often, models 
tested on other fundus sets (still in the problem of predicting diabetic retinopathy) are characterized by much 
lower efficiency. Such studies on many datasets have often not been shown before - due to the lack of availability 
of such data. In this work, we have shown the availability of a number of different datasets containing data 
from patients with fundus images in the problem of detecting diabetic retinopathy - so today conducting such 
extensive research is possible and we can look again at certain approaches to the classification of this disease 
and extend the research with new data - which will constitute an additional validation of these algorithms. 

Classifier Parameter Values

XgBoost

tree_method ‘exact’, ’auto’

booster ’gbtree’, ’gblinear’, “dart”

lambda 1e-8 - 10

alpha 1e-8 - 10

subsample 0.2 - 10

colsample_bytree 0.2 - 10

max_depth 1 - 15

min_child_weight 1 - 10

eta 1e-8 - 1

gamma 1e-8 - 1

grow_policy ’depthwise’, ’lossguide’

sample_type ’uniform’, ’weighted’

rate_drop 1e-8 - 1

skip_drop 1e-8 - 1

Random Forest

max_depth 1-50

max_features 2-50

min_samples_split 1-50

n_estimators 10-1000

bootstrap True, False

criterion ’gini’, ’entropy’

Table 3.  Hyperparameters ranges used during optimization.
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Additionally, we used eight publicly available datasets alongside one private dataset, each containing fundus 
images that were used to predict whether individuals were healthy or exhibited signs of diabetic retinopathy. As 
part of the experiment, these datasets were combined and then split into a 70% training set and a 30% test set. 
For the training set, we applied 10-fold cross-validation, which ensured robust evaluation and helped mitigate 
overfitting. This comprehensive approach not only reduced overfitting but also provided a realistic assessment of 
the classification capabilities of the designed algorithms.

Index f1 image_type preprocessing_type Recall Precision Accuracy

0 0.722 pure lbp_histogram 0.701 0.744 0.798

1 0.744 pure lbp_glcm 0.761 0.728 0.804

2 0.508 pure histogram 0.613 0.433 0.555

3 0.726 pure glcm 0.745 0.708 0.790

4 0.735 pure glrlm 0.748 0.723 0.798

5 0.743 pure lbp_glrlm 0.769 0.718 0.800

6 0.629 pure pca 0.630 0.629 0.722

7 0.687 pure lbp_pca 0.689 0.686 0.765

8 0.687 pure_eq lbp_histogram 0.642 0.738 0.781

9 0.726 pure_eq lbp_glcm 0.696 0.758 0.803

10 0.529 pure_eq histogram 0.677 0.434 0.549

11 0.716 pure_eq glcm 0.703 0.730 0.792

12 0.724 pure_eq glrlm 0.709 0.739 0.797

13 0.729 pure_eq lbp_glrlm 0.723 0.735 0.799

14 0.565 pure_eq pca 0.556 0.574 0.679

15 0.670 pure_eq lbp_pca 0.690 0.651 0.746

16 0.703 no_vessels lbp_histogram 0.727 0.680 0.770

17 0.723 no_vessels lbp_glcm 0.723 0.724 0.793

18 0.647 no_vessels histogram 0.670 0.626 0.726

19 0.704 no_vessels glcm 0.695 0.714 0.782

20 0.723 no_vessels glrlm 0.739 0.708 0.788

21 0.734 no_vessels lbp_glrlm 0.734 0.734 0.801

22 0.674 no_vessels pca 0.664 0.685 0.760

23 0.665 no_vessels lbp_pca 0.647 0.683 0.755

24 0.706 no_vessels_eq lbp_histogram 0.743 0.673 0.768

25 0.731 no_vessels_eq lbp_glcm 0.762 0.702 0.790

26 0.649 no_vessels_eq histogram 0.685 0.617 0.723

27 0.711 no_vessels_eq glcm 0.704 0.718 0.785

28 0.734 no_vessels_eq glrlm 0.707 0.762 0.808

29 0.731 no_vessels_eq lbp_glrlm 0.733 0.730 0.798

30 0.664 no_vessels_eq pca 0.656 0.673 0.752

31 0.664 no_vessels_eq lbp_pca 0.610 0.727 0.768

32 0.693 no_vessels_no_optic_disk lbp_histogram 0.703 0.683 0.767

33 0.723 no_vessels_no_optic_disk lbp_glcm 0.706 0.740 0.797

34 0.641 no_vessels_no_optic_disk histogram 0.673 0.612 0.718

35 0.709 no_vessels_no_optic_disk glcm 0.695 0.724 0.787

36 0.728 no_vessels_no_optic_disk glrlm 0.759 0.700 0.788

37 0.737 no_vessels_no_optic_disk lbp_glrlm 0.756 0.718 0.797

38 0.654 no_vessels_no_optic_disk pca 0.635 0.675 0.749

39 0.644 no_vessels_no_optic_disk lbp_pca 0.588 0.712 0.757

40 0.669 no_vessels_no_optic_disk_eq lbp_histogram 0.648 0.691 0.760

41 0.705 no_vessels_no_optic_disk_eq lbp_glcm 0.685 0.727 0.786

42 0.608 no_vessels_no_optic_disk_eq histogram 0.592 0.624 0.714

43 0.701 no_vessels_no_optic_disk_eq glcm 0.673 0.732 0.785

44 0.714 no_vessels_no_optic_disk_eq glrlm 0.693 0.736 0.792

45 0.719 no_vessels_no_optic_disk_eq lbp_glrlm 0.681 0.762 0.801

46 0.624 no_vessels_no_optic_disk_eq pca 0.638 0.611 0.725

47 0.656 no_vessels_no_optic_disk_eq lbp_pca 0.613 0.705 0.759

Table 4.  Results obtained for Random Forest.
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It should be emphasized that the literature includes studies employing techniques such as GLCM, GLRM, or 
PCA for the automatic diagnosis of diabetic retinopathy. For instance, in the work66, the GLCM algorithm was 
used to extract features from fundus images. However, this research was conducted using a dataset containing 
only 280 images. In our study, the dataset consisted of 14,402 images. Similar studies are found in67, where 
feature extraction methods such as LBP, LTP, DSIFT, and HOG were utilized. The authors worked with a dataset 
comprising 1,384 fundus images. In another work68, models were built using features derived from algorithms 
such as histograms, GLCM, GLRM, and wavelet features, based on a dataset of 2,500 images. The study69 

Fig. 4.  ROC for pure and lbp_glcm with Random Forest.

 

Fig. 3.  Confusion matrix for pure and lbp_glcm with Random Forest.

 

Parameter Value

max_depth 50

max_features 26

min_samples_split 22

min_samples_leaf 16

n_estimators 862

bootstrap True

criterion entropy

Table 5.  Hyperparameters used in the final model of Random Forest.
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combined deep learning with the PCA algorithm, conducting experiments on a dataset of 1,445 fundus images. 
Furthermore, previous scientific studies rarely explore the fusion of these methods. Instead, most works focus on 
comparative analyses70, examining features obtained using the GLCM and GLRM methods.

Table 9 presents a comparison with selected works in the literature. One can observe a number of 
classification methods used in the literature, such as basic SVM type prediction algorithms, ensemble learning 
and convolutional networks. Moreover, most of the experiments were conducted on a single dataset - which 

Index f1 image_type preprocessing_type Recall Precision Accuracy

0 0.718 pure lbp_histogram 0.654 0.797 0.808

1 0.727 pure lbp_glcm 0.650 0.826 0.818

2 0.390 pure histogram 0.372 0.411 0.566

3 0.714 pure glcm 0.662 0.775 0.801

4 0.722 pure glrlm 0.658 0.801 0.811

5 0.714 pure lbp_glrlm 0.631 0.821 0.811

6 0.623 pure pca 0.556 0.709 0.748

7 0.663 pure lbp_pca 0.593 0.753 0.775

8 0.690 pure_eq lbp_histogram 0.599 0.813 0.798

9 0.722 pure_eq lbp_glcm 0.645 0.821 0.814

10 0.421 pure_eq histogram 0.422 0.420 0.566

11 0.693 pure_eq glcm 0.612 0.799 0.797

12 0.698 pure_eq glrlm 0.632 0.780 0.795

13 0.715 pure_eq lbp_glrlm 0.627 0.831 0.813

14 0.555 pure_eq pca 0.478 0.663 0.714

15 0.640 pure_eq lbp_pca 0.560 0.745 0.764

16 0.690 no_vessels lbp_histogram 0.623 0.773 0.790

17 0.720 no_vessels lbp_glcm 0.658 0.795 0.808

18 0.613 no_vessels histogram 0.550 0.692 0.740

19 0.684 no_vessels glcm 0.607 0.783 0.790

20 0.708 no_vessels glrlm 0.650 0.777 0.799

21 0.725 no_vessels lbp_glrlm 0.664 0.797 0.811

22 0.650 no_vessels pca 0.570 0.755 0.770

23 0.644 no_vessels lbp_pca 0.552 0.771 0.771

24 0.697 no_vessels_eq lbp_histogram 0.634 0.775 0.794

25 0.712 no_vessels_eq lbp_glcm 0.651 0.785 0.803

26 0.622 no_vessels_eq histogram 0.555 0.706 0.747

27 0.681 no_vessels_eq glcm 0.613 0.767 0.785

28 0.729 no_vessels_eq glrlm 0.660 0.813 0.816

29 0.721 no_vessels_eq lbp_glrlm 0.644 0.819 0.813

30 0.640 no_vessels_eq pca 0.559 0.749 0.765

31 0.641 no_vessels_eq lbp_pca 0.550 0.767 0.769

32 0.678 no_vessels_no_optic_disk lbp_histogram 0.616 0.755 0.781

33 0.716 no_vessels_no_optic_disk lbp_glcm 0.650 0.798 0.807

34 0.619 no_vessels_no_optic_disk histogram 0.557 0.696 0.743

35 0.696 no_vessels_no_optic_disk glcm 0.617 0.798 0.798

36 0.714 no_vessels_no_optic_disk glrlm 0.653 0.788 0.804

37 0.703 no_vessels_no_optic_disk lbp_glrlm 0.622 0.809 0.804

38 0.625 no_vessels_no_optic_disk pca 0.542 0.738 0.756

39 0.628 no_vessels_no_optic_disk lbp_pca 0.531 0.769 0.765

40 0.672 no_vessels_no_optic_disk_eq lbp_histogram 0.596 0.771 0.782

41 0.701 no_vessels_no_optic_disk_eq lbp_glcm 0.625 0.797 0.800

42 0.570 no_vessels_no_optic_disk_eq histogram 0.487 0.689 0.725

43 0.694 no_vessels_no_optic_disk_eq glcm 0.634 0.767 0.791

44 0.713 no_vessels_no_optic_disk_eq glrlm 0.632 0.816 0.809

45 0.706 no_vessels_no_optic_disk_eq lbp_glrlm 0.627 0.807 0.804

46 0.600 no_vessels_no_optic_disk_eq pca 0.516 0.716 0.754

47 0.633 no_vessels_no_optic_disk_eq lbp_pca 0.543 0.759 0.764

Table 6.  Results obtained for XgBoost.
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is what distinguishes our research - as many as 9 datasets used. The primary objective of our research was to 
conduct these experiments on a large dataset sourced from various origins to assess the actual effectiveness of 
these techniques objectively. This is crucial because small datasets can lead to overstated performance due to 
overfitting, rather than reflecting true model accuracy. Modern machine learning models must demonstrate 

Fig. 6.  ROC for pure and lbp_glcm with XgBoost.

 

Fig. 5.  Confusion matrix for pure and lbp_glcm with XgBoost.

 

Parameter value

tree_method auto

booster gbtree

lambda 1.092

alpha 4.31

subsample 0.72

colsample_bytree 0.84

max_depth 14

min_child_weight 3

eta 0.13

gamma 0.021

grow_policy depthwise

Table 7.  Hyperparameters used in the final model of XgBoost.
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high generalization capabilities. It is unacceptable for a model to perform well on one set of fundus images 
while failing completely on another set addressing the same problem, such as diabetic retinopathy. Moreover, 
our research introduces several novel methods, such as combining LBP with GLRM or GLCM, and innovative 
preprocessing approaches, including the removal of the eyeball or retinal vessels. These contributions underscore 
the necessity and value of our research. We hope the results and proposed models presented here will guide and 
inspire future research in this field.

Key innovations of our research include:

•	 An experiment containing many different preprocessing and feature engineering techniques
•	 Integration of seven publicly available datasets
•	 The use of effective classifiers such as XgBoost and Random Forest

However, our study also has limitations:

•	 Lack of use of biologically inspired methods in parameter optimization and feature selection
•	 Limited number of classification methods
•	 No experiment related to deep features

Future research on this field will focus on advancing optimization methods, especially the use of those inspired 
by biology, such as genetic algorithms or PSO. Biologically inspired metaheuristics have been effectively applied 
to a wide range of advanced optimization problems, including the selection of machine learning parameters 
and feature selection. In this context, techniques such as the genetic algorithm71, bee algorithm72, and whale 
algorithm73 have been utilized. These approaches leverage the principles of wrapper-based feature selection, 
allowing the development of classification models that often outperform those constructed using traditional 
filter-based methods. Plans also include expanding the range of classifiers tested, including logistic regression 
and support vector machines, and incorporating deep convolutional methods for enhanced feature extraction 
and classification tasks. In particular, the authors plan to focus on pre-trained convolutional models, such as 
VGG16, VGG19, ResNet, ResNet-152, GoogleNet, and various variants of the EfficientNet architecture. In 
particular, the authors plan to focus on pre-trained modern models, such as Vision Transformers (ViT)74, Swin 
Transformer75, ConvNeXt76 but also various variants of the EfficientNet architecture such as EfficientNetV277. 
We also plan further experiments related to XgBoost and Random Forest classifiers - in order to develop these 
methods through advanced parameter selection, as well as designing ensemble models using weighted voting 
or the concept of model contamination - where XgBoost and Random Forest algorithms will be used as key 
components of the ensemble model. The primary objective of further work on these models will be to enhance 
their accuracy, with a particular focus on minimizing type I errors. This approach aims to ensure that the models 
are reliable and suitable for deployment in clinical practice. Further research will also focus on analyzing the 
explainability of models based on extracted features.

Conclusions
Early diagnosis of diabetic retinopathy is necessary to prevent the progression of the disease and prevent the 
development of blindness. Artificial intelligence algorithms can support these activities through early diagnosis 
of the disease. Both simple classification methods and deep methods allow the introduction of machine 
learning algorithms in clinical practice. However, it is necessary to conduct further research to build even more 
effective models. Additionally, further research should consider the explainability of models to make them more 

Reference Method Number of datasets Results
17 Convolutional neural networks 1 Acc: 75%
18 SVM 1 Acc: 85.9%
21 Inception-ResNet-v2 2 Acc: 72.33% and 82.18%
26 Ensemble learning + CNN 1 F1-score: 80.8%
23 Modified Xception Architecture 1 Acc: 83.09

This study Random Forest + advanced feature engineering 9 Acc: 80.4

Table 9.  Comparison with state-of-the-art algorithms.

 

Classifier f1-score image_type Preprocesing_type Recall Precision Accuracy

Random Forest 0.744 pure lbp_glcm 0.761 0.728 0.804

Random Forest 0.743 pure lbp_glrlm 0.769 0.718 0.800

Random Forest 0.737 no_vessels_no_optic_disk lbp_glrlm 0.756 0.718 0.797

Random Forest 0.735 pure glrlm 0.748 0.723 0.798

Random Forest 0.734 no_vessels lbp_glrlm 0.734 0.734 0.801

Table 8.  Summary of the best results achieved.

 

Scientific Reports |        (2025) 15:34486 13| https://doi.org/10.1038/s41598-025-06973-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


understandable to doctors and gain their trust. According to the authors, in the coming years, models that 
support the diagnosis of diabetic retinopathy will become an integral part of the healthcare system, leading to 
faster diagnoses, shorter waiting times for doctors, and an improved quality of life for patients.

Data availability
Research data for eight publicly available datasets are presented in Section 3.1. Datasets. Data obtained as part 
of the Telediagnostics in ophthalmological examinations project cannot be made available for privacy reasons. 
They are available upon reasonable request from the corresponding author (P.P.).
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