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Small object detection in UAV aerial images is challenging due to low contrast, complex backgrounds, 
and limited computational resources. Traditional methods struggle with high miss detection rates and 
poor localization accuracy caused by information loss, weak cross-layer feature interaction, and rigid 
detection heads. To address these issues, we propose LRDS-YOLO, a lightweight and efficient model 
tailored for UAV applications. The model incorporates a Light Adaptive-weight Downsampling (LAD) 
module to retain fine-grained small object features and reduce information loss. A Re-Calibration 
Feature Pyramid Network (Re-Calibration FPN) enhances multi-scale feature fusion using bidirectional 
interactions and resolution-aware hybrid attention. The SegNext Attention mechanism improves 
target focus while suppressing background noise, and the dynamic detection head (DyHead) optimizes 
multi-dimensional feature weighting for robust detection. Experiments show that LRDS-YOLO 
achieves 43.6% mAP50 on VisDrone2019, 11.4% higher than the baseline, with only 4.17M parameters 
and 24.1 GFLOPs, striking a balance between accuracy and efficiency. On the HIT-UAV infrared dataset, 
it reaches 84.5% mAP50, demonstrating strong generalization. With its lightweight design and high 
precision, LRDS-YOLO offers an effective real-time solution for UAV-based small object detection.
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UAV aerial photography technology has been extensively used in various fields, including smart city development1, 
agriculture2, traffic monitoring3, and disaster management4, becoming a critical technological tool. Thanks to 
the unique aerial perspective of UAVs, they are capable of efficiently and comprehensively collecting data over 
large areas, providing crucial support for modern applications such as crop growth monitoring, urban traffic 
management, security surveillance, and emergency rescue operations. In these fields, UAV technology has not 
only significantly enhanced the efficiency and accuracy of data acquisition but also provided unprecedented 
capabilities for real-time monitoring and dynamic management.

However, the analysis of UAV-captured images faces unique challenges, particularly when detecting targets 
from high-altitude shots. These targets are typically small, occupy a very low proportion of the image pixels, and 
often have low contrast due to lighting conditions and the characteristics of the targets5. Furthermore, UAV-
captured scenes usually feature complex background elements, with aerial images often containing substantial 
noise, and target objects may be partially occluded by other objects. In addition, due to the limited computational 
resources of UAV equipment, achieving real-time object detection requires minimizing the computational 
burden while ensuring detection accuracy. Traditional object detection algorithms often struggle to effectively 
address the complex backgrounds and real-time demands presented by high-altitude aerial images. Therefore, 
improving the real-time performance and accuracy of algorithms in small object detection has become a key 
challenge that needs to be addressed in the field of computer vision.

The definition of small objects varies across different contexts, with two primary interpretations currently 
established. The first is an absolute size definition, which categorizes small objects based on their absolute pixel 
dimensions. In the MS COCO dataset proposed by Microsoft, targets with dimensions below 32 × 32 pixels are 
classified as small objects6. The second interpretation adopts a relative size definition, determining small objects 
by their proportional relationship to the overall image dimensions. According to the International Society 
for Optics and Photonics (SPIE), in a 256 × 256-pixel image, objects occupying less than 80 pixels in area-
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equivalent to less than 0.12% of the original image size-are defined as small targets7. Figure 1 shows small targets 
in different scenarios in the VisDrone dataset.

To address the issues mentioned above, this paper proposes a UAV small target detection method named 
LRDS-YOLO. This method introduces the Light Adaptive-weight Downsampling (LAD) downsampling approach 
and the SegNext Attention mechanism8 within the backbone network to enhance the feature extraction of small 
targets and improve background suppression capabilities. By adaptively adjusting the downsampling strategy 
with LAD, the method effectively reduces information loss, while the SegNext Attention mechanism focuses on 
key regions within the image, further improving the detection accuracy of small targets in complex backgrounds. 
Furthermore, LRDS-YOLO incorporates a Re-Calibration Feature Pyramid Network (Re-Calibration FPN) at 
the detection head, coupled with the Dyhead9 dynamic adjustment mechanism, to optimize the fusion of multi-
scale features and small target detection strategies. This results in improved localization accuracy and recall rate, 
while maintaining a low computational cost.

The main contributions of this paper can be summarized as follows:
Introduction of lightweight adaptive downsampling
To enhance both accuracy and efficiency in small object detection tasks, this paper proposes a novel 

lightweight downsampling method with adaptive capability, termed Light Adaptive-weight Downsampling 
(LAD). Unlike conventional downsampling techniques that rely on fixed rules or spatial configurations, LAD 
introduces an attention-guided adaptive weighting strategy that dynamically emphasizes critical regions during 
the downsampling process. Specifically, LAD accurately identifies salient areas where small objects are located 
and assigns greater retention weights to these regions during feature compression. This approach significantly 
reduces semantic loss caused by downsampling while preserving computational efficiency and improving the 
model’s sensitivity to small objects.

Design of re-calibration feature pyramid network
To enhance the interaction between shallow and deep features, this paper introduces, for the first time, a 

novel feature fusion architecture termed the Re-Calibration Feature Pyramid Network (Re-Calibration FPN). 
While shallow layers preserve fine-grained details and deeper layers capture high-level semantic cues, their 
straightforward fusion often leads to feature redundancy and semantic inconsistency. To tackle this long-standing 
issue, we further propose a Selective Boundary Aggregation (SBA) module, which selectively incorporates 
boundary cues into semantic representations. This design uniquely refines object contours and enhances 
localization precision, offering a new perspective on hierarchical feature fusion for small object detection.

Introduction of the DyHead (dynamic head) mechanism
Traditional detection heads are fixed, leading to performance limitations when handling targets of varying 

scales and complex backgrounds. To overcome this, DyHead introduces dynamic adjustments to the detection 
head’s structure and parameters, enabling adaptive modification based on the input feature map’s content 
and resolution. This flexibility optimizes feature extraction and detection strategies across diverse scenarios, 
improving accuracy and enhancing model robustness.

Enhancement of the model’s focus on key features
To enhance the model’s focus on key features and improve small-target detection, this paper introduces the 

SegNext Attention mechanism. Traditional attention mechanisms often prioritize global information, risking 
the neglect of critical features and information loss, especially in complex backgrounds with small targets. 
SegNext Attention addresses this by emphasizing regions of interest (ROI), enabling precise capture of target 
details. In complex environments, it effectively suppresses background noise and interference, improving small-
target detection accuracy.

The remainder of the paper is organized as follows: Chapter 2 reviews related work. Chapter 3 provides a 
detailed description of the improved LRDS-YOLO UAV detection model. Chapter 4 outlines the experimental 
setup and parameter configuration, and conducts ablation and comparative experiments on the open-source 
VisDrone 2019 dataset10. Furthermore, to evaluate the performance of LRDS-YOLO on other datasets, 
comparative and ablation experiments are also performed on the publicly available infrared UAV small target 
dataset HIT-UAV11, with visual interpretations of the experimental results to validate the superiority of the 
proposed model. Finally, the paper discusses potential future research directions.

Related work
Object detection algorithm
In recent years, deep learning-based object detection algorithms have been mainly categorized into two types: 
region proposal-based and regression-based methods. Region proposal-based object detection algorithms, 
also known as two-stage methods, divide the object detection process into two stages: first, generating region 

Fig. 1.  Images of small targets in different environments.
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proposals, and then classifying and refining the positions of these proposals using a classifier. Representative 
methods in this category include Fast-RCNN12 and Faster-RCNN13, which use convolutional neural networks 
(CNN) to generate candidate bounding boxes during the training phase and then classify them using deep 
convolutional networks to determine the object categories. Although two-stage detection algorithms achieve 
high detection accuracy, they are relatively slow and may not meet the requirements for real-time applications.

In contrast, regression-based object detection algorithms adopt a single-stage approach, directly regressing 
the predicted object locations. Representative methods of this type include the YOLO series14 and SSD series15. 
Single-stage detection algorithms combine object localization and classification tasks into a unified framework, 
aiming to rapidly identify object positions while maintaining high detection accuracy. Additionally, these 
methods typically have smaller model sizes, making them more suitable for hardware deployment in practical 
scenarios. As a result, such models have been widely adopted in object detection tasks.

Small target detection
Despite significant progress in the detection of medium and large objects, challenges remain when it comes to 
detecting weak small targets, which are prevalent in various image datasets16,17. These small targets typically 
exhibit the following characteristics: (1) they occupy only a few pixels in the image; (2) high-frequency details, 
such as texture information, boundary cues, and color, exhibit substantial variations and are highly susceptible 
to interference from current imaging conditions and complex backgrounds18. Additionally, small targets often 
carry critical information, making their effective detection crucial for enhancing the performance of systems in 
practical applications.

To address the challenges in small target detection, many researchers have been making continuous efforts 
in this area. Hu et al.19 were the first to introduce YOLOv3-based algorithms for UAV target detection. They 
utilized feature maps from the last four scales to predict object bounding boxes and adjusted the number of 
anchor boxes by calculating the size of the UAV based on the input data. This method not only improved 
detection accuracy but also yielded more precise UAV bounding boxes. Huang et al.20, focusing on the Yolov8 
model, incorporated shadow convolution at its neck, added EMA attention, and improved the detection head 
with DCNv2 to enhance the detection accuracy of UAVs for small targets in aerial imagery.Li et al.21 proposed 
a novel method called “Perceptual Generative Adversarial Network” (Perceptual GAN), which leverages the 
generator to extract detailed information from low-level features and incorporates it into the features of small 
targets. Meanwhile, the discriminator evaluates the enhancement in detection performance brought by the 
generated features, optimizing small target detection. Cascade R-CNN22 introduced a cascading detection 
strategy that progressively refines object localization and classification through multiple stages, improving 
detection accuracy. Shi et al.23 proposed a FocusDet method, which effectively utilizes the fusion of shallow 
and deep features, preserving features of large objects while supplementing the features of small targets. Li et 
al.24 proposed a Texture and Boundary Aware Network (TBNet), which enhances the detection of weak small 
targets by introducing a Texture Aware Enhancement Module (TAEM) and a Boundary Aware Fusion Module 
(BAFM). Tan et al. introduced the EfficientDet25 detection model, which integrates EfficientNet as the backbone 
network and employs BiFPN (bidirectional feature pyramid network)22 to handle multi-scale features. The 
model structure is optimized using Neural Architecture Search (NAS)26, improving both detection efficiency 
and accuracy. Zhao et al.27 enhanced the YOLOv5 model by integrating the Transformer encoder module, global 
attention mechanism, and coordinated attention mechanism into the C3 module, enabling fast and accurate 
small target detection in complex environments. The robustness and generalization performance were validated 
on the custom SUAV-DATA dataset.

In recent years, Transformer-based architectures have demonstrated remarkable performance in object 
detection tasks, owing to their superior global modeling capabilities. Unlike traditional convolutional neural 
networks (CNNs), Transformers effectively capture long-range dependencies, which is particularly beneficial for 
detecting small and sparsely distributed objects. This section reviews several representative Transformer-based 
detection frameworks that are highly relevant to small object detection.

Wang et al. proposed the Pyramid Vision Transformer (PVT)28 as a general backbone for dense prediction 
tasks. By introducing a pyramid structure with progressively downsampled feature maps, PVT enables multi-
scale feature extraction while preserving the resolution of small object representations. Compared with CNN-
based backbones, PVT exhibits stronger performance in high-resolution input scenarios, making it suitable for 
small object detection in remote sensing and surveillance images.Liu et al.29 introduced the Swin Transformer, 
which applies a hierarchical design and shifted window-based self-attention mechanism. This approach 
significantly reduces the computational complexity of global attention while maintaining local contextual 
modeling. The Swin Transformer has been widely adopted as a backbone in detection frameworks such as Faster 
R-CNN and YOLOX, achieving notable improvements in small object recall rates due to its fine-grained feature 
aggregation and scale-aware representation learning.To address the slow convergence and poor performance on 
small objects of the original DETR, Zhu et al.30 proposed Deformable DETR, which incorporates deformable 
attention modules. These modules attend to a sparse set of key sampling points, allowing the model to focus on 
relevant regions with less computational overhead. This deformable mechanism enhances the detector’s ability 
to localize small or irregularly distributed objects more accurately, especially in dense scenes.DINO (DETR with 
Improved Queries and Optimization)31 builds upon the Deformable DETR architecture by introducing dynamic 
anchor boxes, query selection strategies, and denoising training. These innovations result in faster convergence 
and significantly improved detection performance on small objects. DINO represents the current state of the 
art in Transformer-based object detectors and serves as a strong benchmark for evaluating detection models on 
challenging datasets involving small and low-contrast targets.
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Optimizing small object detection for edge devices
To deploy models on edge computing devices and enhance their accuracy, Ni et al.32 proposed an enhanced small 
target detection model based on YOLOv8s. By introducing a Parallel Multi-Scale Feature Extraction (PMSE) 
module, a Scale Compensation Feature Pyramid Network (SCFPN), and an ultra-small target detection layer, 
the model significantly improves the detection accuracy of small targets in UAV imagery. Zeng et al. proposed 
the SCA-YOLO33 method, which effectively enhances small target detection accuracy in UAV images by 
incorporating a hybrid attention module, an improved Simple Efficient Bottleneck (SEB) module, and a multi-
layer feature fusion structure.Song et al. proposed the multi-scale hybrid attention-based MHA-YOLOv534, 
which enhances small target detection accuracy in UAV imagery by introducing a multi-scale attention module, 
a foreground enhancement module, and a depthwise separable channel attention module. Experimental results 
demonstrate significant improvements in mean Average Precision (mAP) across multiple datasets. Sun et 
al. introduced a real-time small target detection algorithm, RSOD35, which improves small target detection 
performance in UAV traffic images by leveraging shallow feature maps for position prediction, fusing shallow 
and deep features, and enhancing the SE attention mechanism.

In current research, many scholars tend to focus on improving model accuracy or reducing model size, 
often overlooking the importance of balancing model size and accuracy. Therefore, this study aims to develop 
a detection model that achieves a balance between high accuracy, compact model size, and excellent FPS 
performance.

Method
YOLOv11
YOLOv1136 consists of three main components: the backbone network, the neck structure, and the detection 
head. YOLOv11 builds upon YOLOv837 with improvements that introduce a more efficient architecture, 
optimizing both model accuracy and inference speed. Several key modifications have been integrated into the 
architecture, further enhancing object detection performance. The backbone network employs an improved 
C3k2 module, which serves as an optimized version of the Cross Stage Partial (CSP) Bottleneck. This is achieved 
by replacing large convolutions with two smaller convolutional layers, significantly improving computational 
efficiency while preserving rich feature representation capabilities. Additionally, the backbone integrates Spatial 
Pyramid Pooling-Fast (SPPF) and Cross Stage Partial with Spatial Attention (C2PSA) modules, which enhance 
the model’s spatial attention focusing ability, enabling it to more accurately capture information from key regions.

In the neck structure, YOLOv11 utilizes the improved C3k2 module for efficient multi-scale feature 
aggregation, while combining the C2PSA module to further optimize detection performance for small targets 
and objects in complex backgrounds. The detection head employs multi-path C3k2 modules to process feature 
maps at different scales and incorporates a Convolution-BatchNorm-SiLU (CBS) module before the output 
layer. This further refines the features, ensuring that the final outputs-bounding boxes, object confidence scores, 
and classification results are more accurate. A diagram of the YOLOv11 model architecture is shown in Fig. 2.

In this paper, we propose several improvements to YOLOv11 to enhance object detection accuracy while 
minimizing computational overhead and model parameters, thus achieving more efficient small target detection 
performance.

Fig. 2.  YOLOv11 model structure.
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LRDS-YOLO
To improve UAV target detection accuracy, achieve model lightweighting, and reduce deployment costs, this 
paper proposes an efficient detection model based on YOLOv11, called LRDS-YOLO. The model structure is 
illustrated in Fig. 3.

Compared to YOLOv11, we have made the following optimization improvements: First, we introduced the 
lightweight LAD (Light Adaptive-weight Downsampling) mechanism and the SegNext Attention mechanism 
into the backbone network to enhance feature extraction efficiency and global representation capability, thereby 
improving the model’s ability to capture small targets. Additionally, we adopted the Re-Calibration Feature 
Pyramid Network (Re-Calibration FPN), which further enhances the model’s adaptability to variations in target 
location, orientation, and scale, thereby improving detection accuracy and robustness. Finally, the DyHead 
dynamic adjustment mechanism is integrated into the detection head to dynamically allocate attention to multi-
scale features, effectively optimizing the model’s detection ability. These improvements not only significantly 
enhance the model’s detection performance but also add minimal computational overhead compared to the 
original model, better meeting the lightweight and small target detection requirements in UAV scenarios.

LAD (light adaptive-weight downsampling)
Traditional backbone networks often suffer from severe information loss when processing small targets, primarily 
due to the uniform and indiscriminate nature of conventional downsampling operations. Standard convolutional 
neural networks (CNNs) typically employ strided convolutions or pooling layers to reduce the spatial resolution 
of feature maps, thereby enhancing computational efficiency. However, this fixed downsampling strategy fails to 
differentiate between informative regions and background noise, leading to the loss of fine-grained details that 
are critical for small-object detection. As small targets often occupy only a few pixels in the image, their features 
are prone to dilution or elimination during multi-layer feature fusion. Moreover, conventional downsampling 
methods lack the capability to prioritize salient features, causing target boundaries to become indistinct 
especially under cluttered backgrounds or low-contrast conditions.

To address these limitations, this paper proposes a lightweight and adaptive downsampling strategy, termed 
Light Adaptive-weight Downsampling (LAD),as shown in Fig. 4, which introduces a dual-path architecture 
to dynamically retain task-relevant information during spatial compression. Specifically, LAD integrates a 
global attention-based weighting mechanism with a localized group convolution path to jointly emphasize 
discriminative regions and preserve spatial detail.

In the first path, LAD generates pixel-wise adaptive weights that guide the downsampling process toward 
semantically meaningful areas. Given an input feature map X ∈ RB×C×H×W , global context is first extracted 

Fig. 3.  LRDS-YOLO model structure.
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using average pooling over a non-overlapping kernel of size kH × kW  and stride sH × sW , resulting in pooled 
features:

	
Y(b,c,h′,w′) = 1

kHkW

kH −1∑
i=0

kW −1∑
j=0

X(b,c,h· sH
kH

+i,w· sW
kW

+j) � (1)

These pooled features are then projected via a 1 × 1 convolution:

	 Zconv,c′,h′,w′ = Conv1×1(Y )� (2)

followed by softmax normalization to produce the spatial attention map:

	 Weights = Softmax(Z).� (3)

This attention map dynamically assigns higher weights to pixels likely associated with small targets, enhancing 
their prominence during feature compression.

In the second path, the original features are processed through a 3 × 3 group convolution with eight groups 
and a stride of 2 to reduce spatial dimensions while preserving local structure. Simultaneously, the number 
of output channels is expanded from C to 4C, increasing feature diversity and alleviating the risk of over-
compression. The output features W from this branch are then modulated by the adaptive weights via element-
wise multiplication:

	 Wg,b,c′, h
2 , w

2
= Group-Conv(Xb,c,h,w, K = 3, groups = 8, stride = 2) � (4)

	 Fout = Weights ⊙ W. � (5)

This fusion ensures that critical object information is preserved and amplified, while redundant or irrelevant 
background features are suppressed.

SegNext attention
To enhance the detection of small objects, this work incorporates a SegNext Attention mechanism between the 
encoder and decoder,its structure is shown in Fig. 5, aiming to improve the network’s capacity for selectively 
modeling fine-grained features while suppressing irrelevant background noise. Unlike conventional designs 
that rely on computationally expensive self-attention, this module adopts a lightweight convolutional structure, 
which is more suitable for preserving the spatial precision required in small object detection. By generating pixel-
wise attention maps, the model can focus more effectively on critical regions where small targets appear, thereby 
mitigating the information loss commonly introduced by downsampling and deep-layer feature aggregation.

The overall architecture consists of an encoder, a convolution-based attention module, a decoder, and 
a detection head guided by a loss function. The encoder follows a hierarchical design inspired by Vision 
Transformers38,39, but replaces self-attention with a Multi-Scale Convolutional Attention (MSCA) module 
tailored for spatially sparse and small-scale objects. The MSCA module comprises three sequential stages: a 
depthwise convolution to retain local detail, a multi-branch strip convolution module to capture anisotropic 
and multi-scale context, and a final 1 × 1 convolution to model inter-channel interactions and generate a spatial 
attention map. This attention map serves as a pixel-level weighting mask that reassigns importance across spatial 
locations in the input feature map.

Given an input feature map F, the MSCA attention weights are computed as:

	
Att = Conv1×1

(
3∑

i=0

Scalei (DW − Conv (F ))

)
� (6)

Fig. 4.  Model structure of the LAD downsampling module.
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where DW-Conv denotes depthwise convolution, and Scalei represents the i-th branch in the strip convolution 
module, with Scale0 being an identity connection used to preserve low-frequency information. The final output 
of the module is then obtained via element-wise multiplication:

	
Out = Att

⊗
F � (7)

This process adaptively enhances object-relevant features while suppressing background responses. Because small 
targets often have weak activations that are easily overwhelmed, this spatial reweighting strategy significantly 
improves the network’s focus on subtle yet important cues. Embedding the attention module between the 
encoder and decoder enables the model to preserve and refine discriminative features throughout the hierarchy, 
thereby improving localization accuracy and maintaining semantic integrity across scales. This contributes to 
more reliable small object detection in cluttered or complex visual environments.

Re-calibrationFPN
In the task of small object detection, one of the fundamental challenges lies in the heterogeneity of features 
extracted at different layers of convolutional neural networks. Specifically, shallow feature maps retain abundant 
spatial details such as object contours and textures - but lack sufficient semantic abstraction. In contrast, deeper 
layers capture rich semantic representations, yet suffer from significant loss in spatial resolution due to repeated 
downsampling operations. This inherent inconsistency between semantic richness and spatial precision severely 
limits the effectiveness of cross-level feature fusion in conventional Feature Pyramid Networks (FPN). As a 
consequence, traditional FPN architectures encounter two major issues: semantic-detail mismatch and boundary 
degradation. The former arises from semantic discrepancies between high-resolution shallow features and low-
resolution deep features, often leading to redundant or conflicting information during fusion, which in turn 
compromises the accurate localization of small objects. The latter results from the loss of boundary information 
caused by successive downsampling in deeper layers, thereby blurring object contours and degrading overall 
detection accuracy.

To address these limitations, we propose a novel architecture termed the Re-Calibration Feature Pyramid 
Network (Re-Calibration FPN), which facilitates more adaptive and resolution-aware multi-scale feature 
integration. As illustrated in Fig. 6, the core component of Re-Calibration FPN is the Selective Boundary 

Fig. 6.  Re-calibrationFPN model structure.

 

Fig. 5.  Illustration of the SegNext Attention. Here, d, k1 × k2 means a depth-wise convolution (d) using a 
kernel size of k1 × k2. We extract multi-scale features using convolutions and then utilize them as attention 
weights to reweigh the input of MSCA(Mulit-scale Feature).
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Aggregation (SBA) module (see Fig. 7), which introduces a bidirectional feature interaction mechanism in 
conjunction with a dynamic attention modulation strategy.

Unlike conventional fusion approaches that employ static feature aggregation, RC-FPN first enhances 
the mutual representation of two input feature maps Fs( deep semantic features) and Fb( shallow boundary 
features) prior to fusion. As shown in Figure 6, the shallow and deep features are processed independently by 
two separate Re-Calibration (RC) blocks. On one hand, shallow features compensate for the missing boundary 
details in deeper layers; on the other, semantic cues from the deep layers reinforce the abstract representation of 
shallow features. The outputs from both RC blocks are subsequently integrated through a 3 × 3 convolutional 
operation to form the final fused representation.

Within each RC block, we employ a Progressive Aggregation Unit (PAU) to reconstruct and refine the input 
features. The detailed formulation of the PAU is as follows:

	 T ′
1 = Wθ (T1) , T ′

2 = Wφ (T2) � (8)

	 P AU (T1, T2) = T ′
1 ⊙ T1 + T ′

2 ⊙ T2 ⊙
(
⊖

(
T ′

1
))

+ T1 � (9)

Here, T1 and T2 represent the input features. Two linear mappings and S-shaped functions, denoted as Wθ(·) 
and Wφ(·), are applied to the input features to reduce the channel dimension to 32, yielding the feature maps T ′

1 
and T ′

2. The symbol ⊙ represents point-wise multiplication, while ⊖(·) refines imprecise and coarse estimations 
into accurate and complete prediction maps by subtracting the feature T ′

1. A 1 × 1 convolution operation is 
employed as the linear mapping process.

The SBA module adopts a dual-path fusion mechanism. In the shallow-to-deep path, boundary-rich features 
Fb ∈ R

H
4 × W

4 ×32 are injected into the deeper semantic features Fs ∈ R
H
8 × W

8 ×32 to enhance their spatial 
detail representation. Simultaneously, in the deep-to-shallow path, semantic context from the deep features Fs 
is propagated back to the shallow features Fb, thereby suppressing noise and improving semantic consistency 
in the lower layers. The outputs of the two paths are concatenated and then fused via a 3 × 3 convolution, as 
defined by:

	 Z = C3×3(Concat
(
P AU

(
F s, F b

)
, P AU

(
F b, F s

))
)� (10)

Where, C3×3(·) represents a 3 × 3 convolution with batch normalization and a ReLU activation layer. The 
function Concat(·) denotes the concatenation operation along the channel dimension. Finally, Z ∈ R

H
4 × W

4 ×32 
is the output of the SBA module.

DyHead
In small object detection tasks, targets are often characterized by limited scale, weak texture, and sparse 
distribution, which imposes stricter demands on the feature sensitivity and fine-grained representation capability 
of the detection head. To address these challenges, the LRDS-YOLO model adopts DyHead (Dynamic Head), 
the structure of which is shown in Fig. 8, to replace the conventional static detection head, aiming to enhance 
the model’s responsiveness and localization accuracy for small targets.

DyHead introduces dynamic attention mechanisms along the level, spatial, and channel dimensions of the 
feature tensor. This design guides the network to focus on regions likely to contain small objects, suppresses 
irrelevant background responses, and adaptively adjusts feature importance based on contextual cues. 
Implemented using lightweight residual structures, DyHead effectively captures the diverse properties of small 
targets such as scale variation and irregular spatial distribution.

Given a three-dimensional feature tensor F ∈ RL×S×C  from the backbone, DyHead applies attention 
functions in sequence along the level, spatial, and channel dimensions. The level-wise attention emphasizes 
features from different semantic depths, facilitating multi-scale representation learning. Spatial attention 
enhances the model’s ability to localize salient regions, particularly where small objects are present. Channel 
attention further refines semantic feature selection by emphasizing informative channels and suppressing 
redundant ones. This process can be formalized as:

	 W (F ) = πC(πS (πL (F ) F ) F ) · F � (11)

Fig. 7.  SBA model structure.
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where πL(·), πS(·), and πC(·) represent attention operations along the level, spatial, and channel dimensions, 
respectively. The attention weights are applied via element-wise multiplication, dynamically enhancing target-
relevant features and mitigating background interference. This mechanism improves the model’s capacity to 
preserve subtle cues necessary for detecting small objects and compensates for potential information loss caused 
by feature compression. Experimental results confirm that integrating DyHead significantly improves detection 
performance under challenging conditions such as dense clutter and low contrast, yielding higher accuracy and 
better robustness in small-object detection scenarios.

Experiments and results
Datasets
The dataset used in this study is the publicly available VisDrone2019 dataset10. This dataset consists of a total of 
8599 static images captured from drones at high altitudes, with 6471 images used for training, 548 for validation, 
and 1580 for testing. The image categories include pedestrian, person, bicycle, car, van, truck, tricycle, canopy-
tricycle, bus, and motorcycle, with a total of 2.6 million annotations. The distribution of training set instances 
is shown in Fig. 9.

The images in the VisDrone2019 dataset have two resolutions: 960 × 540 and 1360 × 765. The size 
distribution of each instance is shown in Fig. 11. As can be seen in Fig. 10, the majority of the target instances 
have aspect ratios smaller than 0.1 times the dimensions of the entire image, which meets the definition of small 
target relative size.

Fig. 9.  Distribution of the number of VisDrone2019 training set instances.

 

Fig. 8.  DyHead model structure.
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Evaluation indicators
In this experiment, the performance of the LRDS-YOLOE model is evaluated using the following metrics: 
Precision (P), Recall (R),F1-score(F1), Mean Average Precision (mAP), Parameters, GFLOPs (Giga-FLOPs per 
second) and FPS (Frames Per Second).

(1) Precision: Precision refers to the ratio of the number of true targets to the total number of detected targets. 
The precision formula is:

	
P = T P

(T P + F P ) � (12)

where TP is the number of true positives and FP is the number of false positives.
(2) Recall: Recall refers to the ratio of the number of detected targets to the total number of true targets. The 

recall formula is:

	
R = T P

(T P + F N) � (13)

where FN represents false negatives, which are the targets that were not detected among the true targets.
(3) F1-score: F1-score is the harmonic mean of precision and recall. It provides a balanced measure of 

accuracy by considering both false positives and false negatives. The F1-score formula is:

	
F 1 = 2 × P × R

P + R
� (14)

where P is precision and R is recall.
(4) Mean average precision (mAP): mAP@0.5 is the mean detection precision for all classes at an IoU 

threshold of 0.5; mAP@0.5:0.95 is the mean detection precision for all IoU thresholds ranging from 0.5 to 0.95, 
with a step size of 0.05. In object detection, a higher mAP value indicates better model performance. The formula 
is:

	
mAP =

∑
AverageP recision(c)

Num(cls)
� (15)

where AveragePrecision(c) is the average precision for a specific class c, and Num(cls) is the number of categories 
in the dataset.

(5) Number of parameters: This metric evaluates the size and complexity of the model and is obtained by 
summing the number of weight parameters for each layer.

(6) GFLOPs (Giga-FLOPs): Represents the number of floating-point operations executed per second during 
inference.

(7)FPS (frames per second): FPS refers to the number of image frames that a detection model can process per 
second. It reflects the real-time performance of the model. The FPS formula is:

	
F P S = N

T
� (16)

where N is the total number of processed frames and T is the total processing time in seconds.

Fig. 10.  Target size distribution of the VisDrone2019 dataset.
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Experimental environment
The experimental environment is based on Ubuntu 22.04, Python 3.8.13, and Pytorch 1.13.7+CUDA11.7. The 
relevant hardware configurations and model parameters are shown in Tables 1 and 2. The batch size is set to 8, 
the number of training epochs is 300, and the learning rate is set to 0.01. The experiments use an adaptive image 
size of 640 × 640.

Comprehensive comparative experiment
To demonstrate the superiority of the LRDS-YOLO model, it is compared with currently popular object detection 
models. In the same experimental environment and with identical configurations and parameters, detection 
experiments are conducted on the VisDrone2019 dataset. The results of the model comparison experiments are 
shown in Table 3.

Based on the comparative results presented in Table 3, LRDS-YOLO demonstrates superior performance in 
both detection accuracy and computational efficiency compared to a wide range of YOLO variants, including 
the most recent models. Specifically, LRDS-YOLO achieves a mean Average Precision at IoU 50% (mAP50) of 
43.6% and a mAP50:95 of 26.6%, outperforming the majority of lightweight and even some large-scale models. 
For example, its mAP50 significantly exceeds that of YOLOv3-tiny (23.6%), YOLOv5n (32.9%), YOLOv8n 
(33.1%), and even YOLOv5s (39.3%). Compared to newer models such as YOLOv11n (mAP50: 37.7%), 
YOLOv11s (40.1%), and Drone-YOLO (35.4%), LRDS-YOLO still delivers superior detection accuracy. In terms 
of mAP50:95, it also outperforms CPDD-YOLOv8 (23.5%) and YOLOv11n (22.5%), indicating its robustness in 
handling more challenging detection thresholds.

Despite these strong performance metrics, LRDS-YOLO remains highly efficient, requiring only 4.17 million 
parameters and 24.1 GFLOPs. This is substantially lower than recent models such as CPDD-YOLOv8 (206M 
parameters, 141.9 GFLOPs) and YOLOv11l (25.28M parameters, 86.6 GFLOPs), both of which are far more 
computationally intensive yet fail to offer a comparable increase in detection performance.

These results underscore the effectiveness of LRDS-YOLO in achieving an optimal trade-off between accuracy 
and efficiency. Its lightweight design, combined with its strong detection capabilities particularly for small and 
difficult targets-makes it a promising candidate for real-time deployment on resource-constrained platforms 
such as drones, embedded systems, and edge devices.

Ablation experiments
To validate the effectiveness of the proposed improvements, we conducted the following ablation experiments. 
Based on the YOLOv11 network, the following modifications were introduced: integrating a lightweight adaptive 
downsampling mechanism, reconstructing the feature extraction pyramid, incorporating the DyHead dynamic 
adjustment detection head, and finally adding the SegNext Attention mechanism. Each improvement module 
was added sequentially for experimentation, and the results are presented in Table 4 and Fig. 12.

Based on the results of the ablation experiments, the following conclusions can be drawn: the introduction 
of LAD and Re-Calibration FPN increased mAP50 from 32.2% to 39.7% and mAP50:95 from 18.6% to 24.3%, 
demonstrating their crucial role in enhancing model accuracy, particularly in complex scenarios. With the 
additional integration of DyHead, mAP50 and mAP50:95 further improved to 43.0% and 26.1%, respectively. 
The incorporation of the SegNext Attention mechanism further optimized detection performance, maintaining 
mAP50 at 43.6%, enhancing attention to critical features, and improving small-object detection. Although 
these improvements increased the computational complexity of the model, the trade-off was justified given the 
significant accuracy gains, ultimately achieving a well-balanced trade-off between precision and efficiency.

Name Parameter

Learning rate 0.01

Momentum 0.937

Optimizer SGD

Batch size 8

Image size 640

Table 2.  Training parameters.

 

Name Parameter

Operating system Ubuntu 22.04

CPU Intel(R) Xeon(R) Platinum 8383C

GPU NVIDIA RTX 4090

CUDA 11.7

Pytorch 1.13.7

Table 1.  Experimental environment.
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Attention comparison
According to the heatmap in Fig. 13, the second row presents the performance of the LRDS-YOLO model, 
while the third row shows the detection results of YOLOv11. The results clearly demonstrate that LRDS-YOLO 
exhibits significant advantages over YOLOv11 in terms of target localization and attention distribution.

Specifically, in the second-row images, LRDS-YOLO demonstrates more precise target attention, particularly 
in complex multi-object detection scenarios. The model effectively concentrates high attention on key targets, 
such as various types of vehicles and pedestrians, with darker regions in the heatmap indicating stronger attention 

Fig. 11.  Comparison of mAP50 of different models.

 

Model Precision (%) Recall (%) F1 (%) mAP50 (%) mAP50:95 (%) Parameters(M) GFlops FPS

Yolov3-tiny 39.1 24.3 22.5 23.6 13.2 9.52 14.3 17

Yolov5n 44.5 33.2 38.0 32.9 19.1 2.18 5.8 23

Yolov5s 51.1 38.1 43.7 39.3 23.4 7.81 18.8 26

Yolov5m 47.7 36.8 37.0 39.4 23 20.88 48 14

Yolov5l 50.7 38.6 43.9 41.4 24.6 46.15 107.8 8

Yolov5x 52.1 40.4 41 43 26 20.39 86.23 5

Yolov6s 40.3 30.5 30.2 30.2 17.7 4.15 11.5 -

Yolov7tiny 47.6 37.3 41.8 35.8 18.8 6.04 13.3 32

Yolov8n 45 33 33.1 38.1 19.2 2.68 6.8 25

Yolov8s 50.7 37.9 43.3 39.1 23.4 9.83 23.4 18

Yolov8m 53.3 41.1 46.4 42.5 26 23.2 67.5 8

Yolov9s 52 38 39.4 43.9 23.8 61.9 22.1 22

Yolov10n 45.0 34.5 39.1 34.5 19.9 2.26 6.5 36

Yolov10s 52.7 38 44.0 39.8 23.8 7.22 21.4 32

Yolov10m 55.1 42.1 47.4 44.2 26.9 15.31 58.9 30

Yolov11n 42.7 32.7 37.3 32.2 18.6 2.61 6.5 35

Yolov11s 49.9 38.7 43.5 39.4 23.6 9.41 21.3 34

Yolov11m 55.7 42.5 48.2 44.1 27.2 20.03 67.7 28

Yolov11L 55.5 43 48.3 44.4 27.5 25.28 86.6 20

rtdetr-r18 57.2 40 47.1 41.4 25.1 20 57 60

EL-YOLO40 48.8 40.3 43 42.9 24.8 6.7 1.08 35

YOLOv8-QSD41 44.2 38.6 34.2 34.6 16.8 - - -

Drone-YOLO5 - - 40 41.4 25.1 - 5.35 -

CPDD-YOLOv842 51.7 41.7 46.1 41.0 23.5 206 141.9 22

LRDS-YOLO 53.3 41.6 46.0 43.6 26.6 4.17 24.1 31

Table 3.  Comparative experiment results for different models.
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to target objects. In contrast, YOLOv11, as shown in the third row, exhibits relatively weaker performance, with 
its heatmap displaying more dispersed attention and lower focus on small or distant objects. This suggests that 
LRDS-YOLO is better equipped to handle challenging detection tasks by accurately focusing on target objects, 
thereby improving detection accuracy.

Moreover, LRDS-YOLO effectively reduces false detections in complex environments, demonstrating strong 
discriminative capability, particularly when handling multiple objects in dense scenes. In contrast, YOLOv11 

Fig. 13.  Heatmap visualization of different models. The second row represents the LRDS-YOLO model, while 
the third row corresponds to the YOLOv11 model.

 

Fig. 12.  Impact of ablation study on detection performance.

 

LAD Re-calibration FPN DyHead SegNext attention mAP50 (%) mAP50:95 (%) mAP_s (%) Params (M) GFLOPs (G)

32.2 18.6 9.1 2.61 6.5

✓ 33.2 19.4 9.4 2.27 6.6

✓ 39.5 24.2 13.4 3.85 18.8

✓ 36.2 21.5 11.1 3.13 7.6

✓ 33.3 19.3 9.4 2.71 6.6

✓ ✓ 39.7 24.3 13.9 3.49 17.9

✓ ✓ ✓ 43.0 26.1 15.6 4.07 23.7

✓ ✓ ✓ ✓ 43.6 26.6 16.4 4.17 24.1

Table 4.  Results of ablation experiments.
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exhibits relatively inferior performance, with its heatmap showing broader attention regions, leading to 
insufficient focus on certain targets and a subsequent decline in detection accuracy.

In summary, LRDS-YOLO outperforms YOLOv11 significantly through its precise attention mechanism and 
efficient target detection capability. This advantage is particularly evident in complex and densely populated 
scenes, where LRDS-YOLO excels in both target recognition and detection accuracy. These improvements make 
LRDS-YOLO more adaptable and effective for real-world applications, especially in detecting small and distant 
objects.

Comparison of different FPN architectures
To comprehensively evaluate the effectiveness and superiority of the proposed Recalibration FPN, we design a 
set of comparative experiments involving several representative feature pyramid architectures, including PANet, 
BiFPN, AFPN, and our Recalibration FPN. The experimental results are summarized in Table 5.

As shown in Table 5, the proposed Recalibration FPN achieves the best performance in terms of mAP50 
and mAP50:95, reaching 39.5% and 24.2%, respectively, outperforming other mainstream FPN variants 
such as PANet, BiFPN, and AFPN. Notably, despite having significantly fewer parameters (3.85M) and lower 
computational complexity (18.8 GFlops), our model maintains competitive precision and demonstrates superior 
overall detection accuracy. This result highlights the effectiveness of the recalibration mechanism in enhancing 
multi-scale feature representation, and confirms that the proposed design achieves a favorable trade-off between 
accuracy and efficiency, making it particularly suitable for lightweight or real-time detection scenarios.

Visualization of detection results
Through comprehensive visual analysis of detection results under different environmental conditions, UAV flight 
altitudes, and lighting variations, as shown in Figs. 14, 15, and 16, we observe that the LRDS-YOLO model excels 
in object detection tasks within complex urban scenes captured by drones. The model demonstrates outstanding 
performance and robustness. It shows significant adaptability and stability across various scenarios, including 
daytime and nighttime environments, as well as high-traffic-density road environments. Furthermore, the model 
exhibits excellent multi-scale object detection capabilities under different UAV altitudes and perspectives, with 
particularly impressive accuracy in identifying and localizing densely distributed small objects.

Additional experiments
We conducted additional experiments on the HIT-UAV dataset11 as shown in Fig. 17, to validate the broad 
applicability of the LRDS-YOLO model. The dataset comprises 2,898 infrared thermal images extracted from 
43,470 frames in hundreds of videos captured by UAVs in various scenarios, such as schools, parking lots, roads, 
and playgrounds. Moreover, the HIT-UAV provides essential flight data for each image, including flight altitude, 
camera perspective, date, and daylight intensity. Table 6 presents the comparative experimental results against 
state-of-the-art methods.

As shown in Table 6, the LRDS-YOLO model achieves the highest mAP50 and mAP50:95 values on the 
HIT-UAV dataset, demonstrating its significant advantage in overall performance. However, for the detection of 
certain individual objects, some other models exhibit superior performance in specific cases. This phenomenon 
may be attributed to the design of LRDS-YOLO, which prioritizes balanced detection performance and efficiency 
across various scenarios, potentially at the expense of optimized performance for specific object types or scenes. 
Future research could focus on refining these specific aspects to further enhance the model’s comprehensive 
capabilities. Additionally, the experiment highlights the broad applicability of the LRDS-YOLO model across 
diverse settings.

Discussion
The LRDS-YOLO model proposed in this paper demonstrates exceptional performance in UAV small object 
detection tasks, particularly in terms of detection accuracy and computational efficiency. By incorporating 
modules such as LAD lightweight adaptive downsampling, Re-Calibration FPN, SegNext Attention, and DyHead, 
LRDS-YOLO effectively enhances the accuracy of small object detection while maintaining a low computational 
overhead, making it suitable for real-time operation in resource-constrained environments.

However, despite LRDS-YOLO outperforming current mainstream algorithms in overall performance, 
other models still demonstrate stronger performance in detecting certain specific objects under particular 
conditions. This phenomenon may be attributed to LRDS-YOLO’s design philosophy, which prioritizes balanced 
performance across various scenarios rather than deeply optimizing for specific object categories or scenes. 
Therefore, future research could focus on optimizations tailored to specific target types or environments to 
further enhance the model’s performance in these specialized applications.

Model Precision (%) Recall (%) mAP50 (%) mAP50:95 (%) Parameters (M) GFlops

PANet 46.3 35.3 35.7 21 26.7 10.4

BiFPN 48.2 36.9 37.9 22.4 21 19.5

AFPN 47.9 37.7 38.3 22.9 29.0 19.6

Re-Calibration FPN 49.9 34.0 39.5 24.2 3.85 18.8

Table 5.  Comparison of different FPN architectures.
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In addition, LRDS-YOLO demonstrates exceptional capabilities in handling complex scenes, particularly 
in the detection of small and low-contrast targets. This advantage enables it to perform well in intricate urban 
environments and dynamic settings, offering significant potential for applications in fields such as drone-
based aerial surveillance, traffic monitoring, and security. The model’s robustness in these challenging contexts 
highlights its strong practical value in real-world use cases.

Summary
The LRDS-YOLO model has made significant strides in small object detection through several innovative 
designs, particularly achieving a good balance between accuracy and efficiency. Compared to other object 
detection models, LRDS-YOLO’s robustness and efficiency in complex scenarios give it a substantial advantage 
in real-world applications. By incorporating modules such as LAD, Re-Calibration FPN, SegNext Attention, 
and DyHead, the model not only enhances its small object detection capabilities but also effectively reduces 
computational burden, meeting the requirements for real-time performance and efficiency. Overall, LRDS-
YOLO, as an efficient small-object detection model, demonstrates wide application prospects, especially in the 
drone field, with considerable practical value and potential.

Fig. 14.  Comparison of the accuracy of YOLOv11 and LRDS-YOLO.
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Fig. 16.  Detection results of different models. The top of each group is YOLOv11 and the bottom is LRDS-
YOLO.

 

Fig. 15.  The precision, mAP50, recall and F1 comparison curves of the LRDS-YOLO model.
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Data availability
The datasets used in this study are publicly available. The VisDrone dataset is available on the official website: 
https://github.com/VisDrone/VisDrone-Dataset.

The HIT-UAV dataset is available on the official website: ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​s​u​o​j​​i​a​s​h​​u​​n​/​H​​I​T​​-​​U​A​V​-​I​​n​f​r​a​​r​​e​
d​-​T​h​ e​​r​m​a​l​-​D​a​t​a​s​e​t.
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