Table 3 Comparative experiment results for different models.

From: LRDS-YOLO enhances small object detection in UAV aerial images with a lightweight and efficient design

Model

Precision (%)

Recall (%)

F1 (%)

mAP50 (%)

mAP50:95 (%)

Parameters(M)

GFlops

FPS

Yolov3-tiny

39.1

24.3

22.5

23.6

13.2

9.52

14.3

17

Yolov5n

44.5

33.2

38.0

32.9

19.1

2.18

5.8

23

Yolov5s

51.1

38.1

43.7

39.3

23.4

7.81

18.8

26

Yolov5m

47.7

36.8

37.0

39.4

23

20.88

48

14

Yolov5l

50.7

38.6

43.9

41.4

24.6

46.15

107.8

8

Yolov5x

52.1

40.4

41

43

26

20.39

86.23

5

Yolov6s

40.3

30.5

30.2

30.2

17.7

4.15

11.5

-

Yolov7tiny

47.6

37.3

41.8

35.8

18.8

6.04

13.3

32

Yolov8n

45

33

33.1

38.1

19.2

2.68

6.8

25

Yolov8s

50.7

37.9

43.3

39.1

23.4

9.83

23.4

18

Yolov8m

53.3

41.1

46.4

42.5

26

23.2

67.5

8

Yolov9s

52

38

39.4

43.9

23.8

61.9

22.1

22

Yolov10n

45.0

34.5

39.1

34.5

19.9

2.26

6.5

36

Yolov10s

52.7

38

44.0

39.8

23.8

7.22

21.4

32

Yolov10m

55.1

42.1

47.4

44.2

26.9

15.31

58.9

30

Yolov11n

42.7

32.7

37.3

32.2

18.6

2.61

6.5

35

Yolov11s

49.9

38.7

43.5

39.4

23.6

9.41

21.3

34

Yolov11m

55.7

42.5

48.2

44.1

27.2

20.03

67.7

28

Yolov11L

55.5

43

48.3

44.4

27.5

25.28

86.6

20

rtdetr-r18

57.2

40

47.1

41.4

25.1

20

57

60

EL-YOLO40

48.8

40.3

43

42.9

24.8

6.7

1.08

35

YOLOv8-QSD41

44.2

38.6

34.2

34.6

16.8

-

-

-

Drone-YOLO5

-

-

40

41.4

25.1

-

5.35

-

CPDD-YOLOv842

51.7

41.7

46.1

41.0

23.5

206

141.9

22

LRDS-YOLO

53.3

41.6

46.0

43.6

26.6

4.17

24.1

31