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Anti-windup control of discrete
time switched delay systems with
actuator saturation and failures

Mengxiang Li & Xinquan Zhang™*

The problem of L,-gain analysis and anti-windup (AW) fault-tolerant controller design of a class of
time-varying delay discrete-time switched systems with actuator saturation and external disturbances
is investigated by using the multiple Lyapunov functionals method. Firstly, for each subsystem, we
construct an AW fault-tolerant controller consisting of a dynamic state feedback (DSF) controller and
an AW compensator, such that the closed-loop system with actuator faults can meet the disturbance
attenuation performance index and ensure that the state trajectories of the closed-loop system are
bounded under the action of external disturbances. Then, the problem of estimating the allowable
interference capacity is transformed into a constrained optimization problem. Next, a sufficient
condition on the existence of the restricted L,-gain is established, and the minimum upper bound of
the restricted L,-gain is obtained by solving the constrained optimization problem. Finally, the DSF
controller gain and AW compensator gain of the AW fault-tolerant controller are obtained by solving
the above two optimization problems which have been further handled. A numerical example is given
to show the effectiveness and feasibility of the proposed method.

Keywords Multiple lyapunov functionals, Time-varying delay, Switched systems, Anti-windup fault-tolerant
controllers, L,-gain

Switched systems are a very important class of hybrid systems that consist of a finite number of subsystems and
a switching signal for autonomously selecting a particular subsystem at different moments!~3. Due to the wide
application of switched system in practical engineering, in recent years, it has attracted extensive attention from
scholars*-. The main analysis tools for studying switched systems are multiple Lyapunov functions method’, the
switched Lyapunov function method?®, and the average dwell time scheme®. The multiple Lyapunov functions
method was used to study the fault estimation problem of non-uniformly sampled systems with actuator faults
and bounded disturbances in’. By utilizing switched Lyapunov function method®, considered the control
problem of dynamically disturbed partially unknown nonlinear switched systems. By using the slow state
feedback control method, the persistent dwell time (PDT) switching law was first proposed for a class of discrete-
time singularly perturbed switched systems in’. Specifically, the multiple Lyapunov functions method has been
demonstrated as a more powerful and effective tool for identifying a class of useful switching laws.

What's more, switched systems will inevitably encounter various external disturbances in practice, so L,-
gain analysis and design of switched systems have become a very meaningful research topic'®. Ref'!. considered
the multiple Lyapunov functions method to study the stability and L,-gain analysis of a class of switched linear
systems. The multiple Lyapunov functions method was used to study the finite-time analysis of stability and L,-
gain for mode unstable switched systems in'2. Meanwhile, it is well known that actuator saturation is unavoidable
for practical control systems, because the device as the actuator is subjected to a certain physical limit or the
output amplitude of the actuator reaches the limit, which affects the performance of the system and even leads
to the instability of the closed-loop system!3-16. In recent years, with the deep research of the switched systems,
it is necessary to consider actuator saturation in the L,-gain analysis and control design of the switched systems.
Therefore, more and more scholars pay attention to the L,-gain problem of switched system with actuator
saturation'”', Ref"”. investigated the L,-gain analysis and synthesis problem for a class of uncertain switched
systems with actuator saturation, by using the switched Lyapunov function approach?. investigated the problem
of L,-gain analysis and anti-windup control for a class of switched systems with actuator saturation by using the
single Lyapunov function method.

On the other hand, the effect of actuator failure on system stability is huge, or even brings disastrous
consequences. Thus, the fault-tolerant control of switched systems has received extensive attention and

School of Information and Control Engineering, Liaoning Petrochemical University, Fushun 113001, People’s
Republic of China. *Yemail: zxq_19800126@163.com

Scientific Reports|  (2025) 15:21483 | https://doi.org/10.1038/s41598-025-07143-x nature portfolio


http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-07143-x&domain=pdf&date_stamp=2025-6-21

www.nature.com/scientificreports/

the fault-tolerant control strategy is proposed from many scholars in recent years?!~2%. In? a fault tolerant

control strategy for uncertain switched systems that can be used in the case of additive actuator faults was
proposed by using the multiple Lyapunov functions method?. considered fault-tolerant control of a class of
uncertain switched nonlinear systems against partial actuator failures by using the common Lyapunov function
technique”’. used convex combination technology and linear matrix inequality to design the reliable controller
and the corresponding switched strategy. In?®, an average dwell time method for fault-tolerant control of a
class of uncertain switched linear time-delay systems was proposed, and the proposed control strategy ensures
exponential stabilization of this type of time-delay systems with actuator faults.

In addition, time delay occurs frequently in practical engineering systems, and it is often a major factor
causing system instability and performance decay. In%, static anti-windup compensators for a class of saturated
constrained nonlinear systems with both state and input time-varying delays were designed, by using the
augmented Lyapunov-Krasovskii and sector conditions>. was concerned with the anti-windup design problem
for linear time-delay systems with actuator saturation by utilizing the information of the time delay sufficiently
and the generalized delay-dependent sector conditions. Meanwhile, the control problem of time-delay switched
systems has attracted the attention of scholars and some beneficial research results are obtained. For instance’!,
This article is concerned with the stability and stabilization of switched time-delay systems with exponential
uncertainty based on an improved state-dependent switching strategy2. studied the problem of fault estimation
for a class of discrete-time switched nonlinear systems with mixed time delay by using the multiple Lyapunov-
Krasovskii functionals and the average dwell time methods. In*, stability analysis and stabilization control of
discrete-time impulsive switched time-delay systems with all unstable subsystems are discussed by the mode-
dependent interval dwell-time switching rule.

To sum up, many control problems have been studied for switched systems by scholars. At present, there
is less research on the problem of L,-gain analysis and anti-windup fault-tolerant control of discrete switched
systems with time-varying delay and actuator saturation. However, the performance analysis and design
of switched systems have become more complicated when switching signal, actuator failure, time delay and
actuator saturation interact, which poses a great challenge to analysis and controller design. Switching signals
can amplify the effects of actuator faults and saturation, particularly in the presence of time delays. Actuator
faults, such as partial or complete loss of effectiveness, reduce the available control authority, while saturation
limits the control input, leading to compounded performance degradation and potential instability. Time delays
further exacerbate these issues by introducing additional dynamics that may destabilize the system or obscure
fault symptoms. These interactions create a complex, nonlinear, and time-varying control environment, making
it challenging to ensure stability and performance.

Thereby, we will study the L,-gain analysis and anti-windup fault-tolerant control of a class of discrete-
time switched systems with time-varying and actuator saturation by using the multiple Lyapunov functionals
approach. Firstly, the AW fault-tolerant controller consisting of a DSF controller and an AW compensator
is constructed for each subsystem, and then a sufficient condition for the system state to be bounded with
actuator faults and external disturbances is derived by using the multiple Lyapunov functionals method, and the
maximum allowable level of disturbances is obtained by solving the constrained optimization problem. Then on
this basis, the constrained L,-gain is analyzed for the closed-loop system. Next, the DSF controller and the anti-
windup compensator are designed to ensure the maximization of the system tolerant interference capability and
the minimization of the upper bound of the restricted L2-gain. Finally, a numerical example is given to show the
effectiveness and feasibility of the proposed method.

Problem formulation and preliminaries
Consider a class of discrete-time time-varying delay switched systems with actuator saturation and external
disturbances as follows

z(k+1) = Asx(k) + Agox(k — d(k)) + Biosat(u(k)) + Hicw(k)
z(k) = Cox(k) (1)
x(G) = ()0(0)» 0= _d27 da + 17 70

where (8) is the vector-valued initial function, d(k) is a time-varying delay satisfying 0 < d; < d(k) < da.
As, Ado, Bio, His and Cy, are constant matrices with appropriate dimensions, z(k) € R"™ is the system state
vector,u(k) € R is the control input vector,w(k) € R" is the external disturbance input vector and z(k) € R?
denotes the controlled output vector. o : [0, c0) — Iny = {1, ---, N} denotes switching signal and it is a
piecewise right continuous constant, and o = 7 means that the ¢ - th subsystem is activated.

It is well known that the L,-gain can be used to analyze the disturbance attenuation ability of systems.
However, for systems with actuator saturation, the large external perturbations will result in unbounded states
and thus we make the following assumption

Wg:: w : R.F—>Rh7 ZwT(k)w(k)Sﬁ ) (2)
k=0

where (3 is a positive number which indicates the allowable interference capability of the system. sat : R? — R?
is the standard vector-valued saturation function. The definition is as follows
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sat(u) = [sat(ul), RN sat(uq)}T,
sat(u’) = sign(u’) min {1, ’uj ‘} , €)
Vje‘/q:{l, aq}‘

Obviously, without loss of generality, we assume unit saturation limits, since non-standard saturation functions
can always be obtained by altering the matrix by employing appropriate transformations, and for simplicity, and
in accordance with the notation prevalent in the literature, we adopt the notation sat(e) to denote both scalar
and vector saturation functions.

Considering actuator failures, we introduce a fault matrix ), in which

M; = diag {mi1, mi2,..miq } , 0 < mgj < miyyj < miju, < 1,5 €V, (4)

where m;; and my;, are given constants, m;; = 0 means that the j — th actuator is completely disabled, and
m;; = 1 indicates that the j — th actuator is normal. Further 0 < m;ju < mi; < my; < 1 represents the
j — th actuator partial failure. N

Let MOi = diag {moﬂ, mo;2, ...m0¢q} , Moij = w,

Li = diag {li, Lia, ..lLig} , lyj = 4 —0i

moij
Then, the resulting matrix M; can be written as

M; = Mo; (I + Li), | Li| < I, (5)

where ‘Lz‘ = dzag{ |li1‘ ; |l12| RPN |llq|}

From the above Eq. (5), it can be seen that for the subsystem ;, the matrix Mo; is a constant matrix and the
uncertainty of fault matrix M; is only related to the matrix L;, then the closed-loop system containing actuator
faults is

z(k+1) = Aix(k) + Agsz(k — d(k)) + BiiM;sat(u(k)) + Hi,w(k),
{z k)= Cix ©

( (k).
From?*, we construct the following AW fault-tolerant controller containing DSF controller and AW compensator
u(k+ 1) = Fiz + Giu + Eq M, (sat(u(k)) — u(k)), (7)
where u(k) is the controller state, E.; € R?*? is the AW compensator gain, and matrices F; € R?*" and

G; € R are the DSF controller gain.
From (6) and (7) the above closed-loop system can be rewritten as the following form

z(k+1) = Aiz(k) + Agix(k — d(k)) + BiiM;sat(u(k)) + Hiw(k),
z(k) = Cix(k), (8)
u(k + 1) = Fiz + Giu + E¢ M;(sat(u) — u).

Then, we define some new variables and matrices as follows

Tu in g 0 0 ~ [0 i [0 0
S[x)ene [y 8] 8=[A]) (8 L]

The resulting closed-loop system can be rewritten as
Ck+1) = (Ai + InK; + BiMo:LiI1,)C(k) + AaiC(k — d(k))
+2(Bi + IREci)MOiGiZD(U) + guw(k),

2(k) = Ci((k),
¢(0) =¢(0), 0 = —day, —da+1,---,0,

)

where ¥(v) = (sat(v) — v), v = Ni¢ = u(k), and the vector-valued initial function #(6) is magnitude and
difference bounded or say that the initial function ¢(6) belongs to the following domain.
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b= {30 mas [60)]" < mis ma 60+1) = 60)]" <

—d2,0

The following definitions and mathematical notation will be used for system (9):

Definition 1 Ref?>*.: Given y > 0. The system (9) is said to have a restricted L,-gain less than +, if there exists
a switching law o, the following condition is satisfied under the zero initial condition,

o]

2 (R)z(k) < 4* ) w” (k)w(k), (10)

k=0
for all non-zero w(k) € W§
Definition 2 Ref*’.: Let P € R(97™)X(@+™) represent the positive definite matrix and define the ellipsoid:

QP p) = {CER"™: ("PC<p, p> 0} (11)

Definition 3 Ref*”.: For the matrix N;, H; € R4+ we define the following symmetric polyhedron.

L(Ni,H:) = {¢ € R”™: [(N] —H})(| <1, i€In,jEV,}, (12)
where N JH 7, denote the j — th row of the matrices N; and Hi, respectively.

Lemma 1 Ref*%.: For the symmetric matrix.

_ [ Si1 Si2
S_|:521 522}’

where S11 € R™*™, S12 = S3; € R™*%, S5 € R7%9, the following three conditions are equivalent
(1)s<o
(2) S11 < 0, Sao — 51253512 < 0
(3) S22 < 0, S11 — 81255, S5 <0

Lemma 2 Ref*.: Consider the function v (v) defined above, if ¢ € L(Ni, H;), then the relation.
Y(NiQ)Ji(W(Ni¢) — Hi¢) < 0,Vi € Ly,
holds for any matrix .JJ; € R?*? diagonal and positive definite.

Lemma 3 Ref'’.: Let y, U and V, be given matrices of appropriate dimensions, then for any matrix I" satisfying
r‘rr<r,

Y 4+ UTV +VITTUT <o,
if and only if there exists a constant A > 0 such that

Y + 20U £ A7V <. (13)

Disturbance tolerance

In this section, by using the multiple Lyapunov functionals approach, a sufficient condition for the state trajectory
of the closed-loop system (9) to be bounded is given under the assumption that the AW fault-tolerant controller
gains are known. How to design the AW fault-tolerant controller problem will be given in section"Control
synthesis solution".

Theorem 1: Consider the closed -loop switched system (9). For a given positive scalar p1, if there exist positive
definite matrices P;, Q1, Q2, @3, Z1, Za, positive definite diagonal matrices J;, and a set of scalars 3;» > 0,
such that.
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A Aiie 0 0 Aiis Aite

* Ai2a 0 0 Aios  Aize

* * —Q1 0 0 0

* * * —Q2 0 0 <0,

* * * * Aiss  Aise (14)

* * * * * Aiss

i€ In,

and

Q(P;, pr+B)N®; C L(Ny, Hy), i € I, (15)
where

A; = A + InK; + B;Mo; Li T},
Vii = 2(B;i + IrEei) Mo G,
I =dsZi + (d2 — di1) Z2,
N
Ain = ATPA =P+ Qi Qo+ (do —di + 1) Qs + (A = 1) T (A; — 1) + Y i (P = P,
r=1,r#i
Nirz = A PiAg; + (A~z - [)T A4,
Ains = ATPVi + (A = 1) Vi + HT T,
Aie = AT P Hy; + (/L - I)THFIU,
Nizo = A PiAg; — Qs + ALTIAy,
Nios = AL PVi; + ALTIVA,
Niog = AgiPiI:Ih' + A;Hﬁli,
Aiss = Vis PiVai + Vi Ve, — 2J;
Aise = Vi PiHY; + Vi IIHT;,
Nige = H{;PiHyi + HITUHy; — 1,
®;, ={Ce R : ("(P.—P)(>0,Vrely, r#i},
and the initial conditions are satisfied

p1 > K11 [M +dida +dads + 0.5 (d2 — di + 1) (d2 + di) Aé]

16
“+ K22 [0.5d2 (d2 + 1) A2+ 0.5 (dz — dl) (dz +di + 1) )\3] s (16)

where \,, ¢ =1, 2, 36, are positive scalars satisfying

MI 2> Py Mol > Zhy A3l > Za, Ml > Q1, AsT > Q2, A6l > Q3, Vi € In,

then any trajectory of the system (9) starting from the region U, (Q(P;, p1) N ®;) will remain inside the
region UL, (Q(P;, p1 + B) N ®;) for every Vw € W}, under the sate-dependent switching law

o =argmin{¢"P(, i € In}. (17)

H;), therefore in

Proof: By condition (15), if V¢ € Q(P;, p1+B)N®;, then ¢ C L(N;,
= (sat(v) —v) satisfies

view of Lemma 2, for V(€ Q(P, p1+p8)N®; it follows that (v)
PY(N: Q) Ji(W(N:C) — Hi) <0,Vi € In.

In view of the switching law (17), for ¢ € Q(P;, p1 + ) N ®; C L(Ni, H;), the i — th subsystem is active.
Choose the Lyapunov-Krasovskii functionals of the closed-loop system (9) as

V(C(R)) = Vo = V1o (C(K)) + Va(((K)) + Va(C(R)) + Va(C(k)) (18)

where
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Via (C(k)) = ¢ (k) PoC (k) ,

Va(¢ Zg (k+1) QiC (k+1) + Zg (k+1) Q2 (k+1),

I=—d; I=—dy

—di+1 -1

S TR+,

O0=—do+11=60—1

—dy

Z Zy k+D)Ziy(k+D+ > Zy (k + 1) Zay (k + 1),

0=—dy+11=0—1 0=—dy+11=0—1
y(k)=C(k+1)—C(k).
Case Lio(k + 1) = o (k) = i,for V¢ (k) € Q(P;, p1 + ) N ®; C L(N;, H;). It follows that

AV (C(k)) = Vai (Ck + 1)) = Vii (C(k)) =T (k+ 1) Pi¢(k+1) — ¢ (k) PiC (),
AVa (C(k)) = Va (C(k + 1)) — Va (C(k))
=¢" (k) (@14 Q2) ¢ (k) — ¢" (k— d1) Q¢ (k — d1) — ¢T (k — da) Qo€ (k — da),

_dl

AV; (C(k)) = Vs (C(k + 1)) = V3 (C(R)) = (d2 — i + 1) ¢ (B) QsC (k) = > ¢" (k+0) QsC (k +0)
0=—d2
< (dz2 —di+1)¢" (k) QsC (k) = ¢ (k — d (k) Qs (k — d (k)

AVy (C(k) = Va (C(k +1)) = Va (C(k) =y () Ty (k) = > y" (k+0) Zay (k+96)

0=—d(k)
—d;—1 —d(k)—1
= Y Y kO Zyk+0)— >y (k+0)(Zi+ Zo)y(k+0),
6=—d(k) =—ds

AV(C(k)) =AV1i (C(k)) + AVz (C(k)) + AVs (((k)) + AVa (¢(k))
< ?El?ch (k) [A?Pi& P+ QA Qe (da—di +1) Qs+ (A — 1) T (A - I)} ¢ (k)
+ QCT (k) {A?PiAdi + (Az — I)T HAdi:| C(k—d(k))
+2¢T (k) {A?Pivh- +(Ai-1)" Hvu} ¥ (k)
+ ¢ (k—d (k) [AGPAg + AGTTAy — Qs] ¢ (k — d (k)
+2¢T (k —d(k)) [/ldTiPiVu + A;HVM] ¥ (k)
+2¢" (k — d (k) [A% P Hys + AGILH | w (k)
+ wT (k) [%%;Pivu + VEHVh} (k)
+ 297 (k) [Vi§ Py + Vi TIH G w (k)
+w" (k) [HY;PiHyi + HLTUH | w (k)
+ ¢ (k= di) (=Q1) ¢ (k—dr) + ¢ (k — da) (—Q2) ¢ (k — da)

1 —d1—1

= > Y kO Ziy(k+0)— Yy (k+0) Zey (k+0)
=—d(k) 0=—d(k)
—d(k)—1
— > Y (k+0) (Zi+ Zo)y (k+0) — 20T (N (k) s [W(NiC(k)) — Hi( (k)]

Then, combining with Lemma 2 and condition (15), we have
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AV(¢(k)) =AV1i (C(k)) + AVz (C(k)) + AVs (((k)) + AVa (¢(k))
< g?ng (k) {AZTPZAZ P+ Q1+ Q2+ (d2—di +1)Qz + (Az - I)TH (A~7, - 1)} ¢ (k)
+2¢T (k) {A?Pifadi + (Ai - I)T HAdi:l C(k—d(k))
+2¢7 (k) {A?Pivu +(Ai-1)" HVH] ¥ (v)
+ ¢ (k- d (k) [AgiPiAdi + ALTIAy — QB] C(k—d(k))
+2¢T (k — d (k) [AdTiPiVu + AgiHVu] ¥ (v)
+2¢" (k- d (k) [A% P Hyi + AL TLH | w (k)
+ 97 (v) [ViE PiVas + Vi TIVA ] ) (v)
+ 207 (v) [VEPJAIM + qu;l_lﬁn} w (k)
+wT (k) [ﬁlTiPz‘Hu + fAhTiHHu] w (k)
+ ¢ (k= di) (=Q1) C (k — d1) + ¢ (k —d2) (—Q2) ¢ (k — d2)

1 —d1—1

= Y Y k0 Ziyk+0) = Dy (k+0) Zay(k+0)
0=—d(k) o=—d(k)
—d(k)—1
= > YT (k+0)(Z1+ Za)y (k+0).
0=—d>
¢k 71" ¢ (k)
C(k—d(k)) C(k—d(K))
Multiplying (14) from the left by g Ez B Z;; and then from the right by g EZ B g;g , we have.
P(v) ¥(v)
w(k) w(k)

¢t (k) [AfpiAi P Qi+ Qat(de—di+1) Qs+ (A —1) T (A - 1)} C (k)

+2¢7 () [ AT Pidas + (A = 1) A ¢ (= d (R)

+2¢7 () [ATPVA + (A= 1) ] w0 (0)

+¢T (k—d (k) [ALPAg + ALTIAG — Q3] ¢ (k — d (k)
+2¢" (k —d (k) [Agipivli + A;HVM] ¥ (v)

+2¢" (k= d (k) [AL P Hys + ALTTH ] w (k)

+ 7 (v) [Vi PiVas + Vi TV ] 4 (v)

+ 2¢T (v) [VSPJ:IM + Vlgnﬁu} w (k)

+w" (k) [HY;PHy; + HEITHG ) w (k)

+ ¢ (k= d) (—Q1) ¢ (k= d) + ¢T (k — da) (—Q2) ¢ (k — da)

—1 —d;—1

= > Y k0 Ziyk+0)— Yy (k+0) Zoy (k+0)
0=—d(k) 0=—d(k)
—d(k)—1 N

= > VR (Zi+ Z)y (0~ Rwk) + Y Bl (B)(Er — PC(R) < 0.
0=—do r=1, r#i

Then, according to the above two inequalities, we can obtain

AV (k) < w (kRyw(k) = Y BT (k)(Pr = P)C(R),

r=1, r#i
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By switching law (17) again, we can get

N
D BT (k)P = P)C(R) 2 0,
r=1, r#i
therefore

AV(((k)) < w” (k)w(k). (19)
Case 2:0(k) = i, o(k + 1) = r and i # 7, for Y¢(k) € Q(Pi, p1 + 8) N ®; C L(N;, H;). By switching law
(17), we can get

AV(((R)) =

Ve(C(k+1)) -
< Vi(C(k +

1)) = Vi(¢(k))

<w(Rywk) = Y BT (k)(Pr = P)C(R).
r=1,r#i

From the switching law(17) again, it follows that

Vi(C(k))

N
D Bl k)P = P)S(R) 2 0,
r=1,r#i
which indicates

AV (¢ (k) < wT (k)w(k).

By combining Egs. (19) and (20), we can obtain

(20)
AV(((k) = V(S(k+1)) = V(((K) < w” (k)w(k), 1)
V¢(k) € UL (P, o1+ B) N ).
Thus, it follows that
Z AV(C(t)) < Z w ),
which in turn gives

k

(C(k+1)) < V() + Y w (Hw(t), Yk > 0.
t=0

Next, it is easy to see that the following inequalities hold

¢T(0)Pic(0 0) < max
6

Zc DQ1C()

HC( H maX}\max(Pi) < K111

= ("(=d)Q1¢(=dr) + ¢ (—di + 1)Q1{(—d1 + 1)
l=—d;
+ T (=1)Qu¢(-1)
< max S Amax(@1) + max IS Amax(Q1)
4ot

2
max COI A (@)

< K11diAa
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Zc (DQ26(1) = ¢"(=d2)Q2((—dz) +¢" (=da + 1)Q2¢(~d2 + 1)

l=—d;
+ ¢ (=1)Q2¢(—1)
<lmax [CDII* Amax(Q2) + max  [[CD)]I* Amax(Q2)
el le[—d2, 0]

+oo4 m HC( )I* Amas (Q2)
clod
Slﬂudz)\s
—di+1 -1
o> Qs = anQsc(z Z ¢"()Qa¢(D) +Z< DQs¢(1)
O=—do+11=0—1 I=—ds I=—dy+1 I=—dq
< max (1) I d2Amax(Q3) + max I\C(l)\l (d2 = 1)Amax(Q3)
€[—dsz, 0] €[
oot max I d1 Amax(Q3)
< wurg (d + d2)(da — di + 1o
—1 —1
Z Z WZyD) = > vy OZiyD+ Y v OZyD) +--+ Zy D) Z1y(l)
O0=—do+11=0—1 l=—d> l=—do+1 I=—1
N ly(D? d2Amax(Z1) + emax Iy (d2 = 1) Amax(Z1)
ot max Iy (DI* Amax (Z1)
< sz%(l + d2)d2Aa
—dq -1 -1
Z Z (1) Z2y(1) Z y" (1) Z2y(1) + Z (1) Zay(1) -+ Z () Z2y(1)
0=—do+11=6—1 I=—ds I=—dy+1 I=—dq—1
S max ly(DI? daAmax(Z2) + X Iy (d2 — 1) Amax(Z2)
+---+le[ ax (M1 (dr + 1) Amax(Z2)
< f<&222(1 + di + d2)(d2 — d1)As,
Thus, we have
_1 -1 —di4+1 -1
V(¢(0) = ¢TOPCO0) + > CFORu) + Y 0+ > > FDQsc)
I=—d, l=—dsy 0=—do+11=60—1
0 -1 —di
+ > D> SOz + Y Z (1) Zay(l)
O=—do+11=0—1 O=—do+11=0—1

< k11 (M +dida +dads +0.5(d2 — di + 1) (d2 + d1) e
+Ka2 [05d2 (dz =+ 1) A2+ 0.5 (d2 — d1) (dz +d; + 1) )\3] s
=Q(¢(1)).

wT(k)w(k) <p

Due to =0 , we have
V(¢(k+1)) <Q(C(0) + B (22)

Thus, in light of Q(¢(1)) < p1, it is easy to see that ¢T(0)P;¢(0) < p1, and the control constraints
L(N;, H;) are also satisfied owing to (15). Thus, all the trajectories of closed loop system (9) that start from
U (UP;, p1) N ®;) remain in set UL ; (Q(P;, p1 + ) N ®;).This proof is completed.

From the above conclusions, we know that the disturbance tolerance capacity of the closed loop system
should be estimated before analyzing the restricted L,-gain. It is obvious that the larger the j3, the larger the

disturbance tolerance capacity is. Thus, the largest disturbance tolerance level 3* for the closed-loop system (14)
can be obtained by solving the following optimization problem
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sup B,
P;,Q1,Q2,Q3,21,22,J;,Bir

s.t. (a) inequality (14), i € Iy, (23)
(b) UP;, p1+ B)N®; C L(N;, Hy), i € In.

Applying the lemma 1 to (14), we get

Ui * * * * * * * *
0 —Qs3 * * * * * * *
0 0 —Q1 * * * * * *
0 0 0 —Q2 * * * * *
JiH; 0 0 0 —2J; * * * *
0 0 0 0 0 -1 * * X <0, (24)
PLA:‘i P Ay 0 0 PiVi; Py, -b; * *
V&P, (A — 1) VdPAy 0 0 V&PV VdPH; 0 -PRZ'P *
diPi(Ai—1)  diPAu 0 0 diPVu diPHu 0 0 -PZy'P,

where

N
vi= =P Qi+ Qe+ diQs+ Y B (Pr—P), di =/ds—di,d3 = d> — i + 1.

r=1,r#1

Dueto A; = A; + IrK; + EiMo¢LiI£,V1i = Q(Ez + IREci)Mol-Gi, the inequality (24) can be arranged as

r v; * * * * * * * * a
0 —Qs3 * * * * * * *
0 0 —Q1 * * * * * *
0 0 0 —Q2 * * * * *
JiH; 0 0 0 —2J; * * * %
0 0 0 0 0 -1 * * *
Pi(A; A 2P:(B; :
A P Ay 0 0 A PiHy; —-P;
JFIRKi) 4 +IRE”)]\/[01G1 ! * *
A, N
v A 24/d2 Pi(B; % —1
d Pi I, K1 d PZA i 0 0 24 LN d- PlHi 0 —PZZ Pi *
Vdy <i-IR ) Vda d A+ IpEw) MosCh Vaz 1 1
A' * >
-« * «p A 2d7 Pi(B; * . 1] -1
di P; i di P; Ag; 1 A di P;Hq; —-PZ,"P;
! '<+§RKL> 1 0 0 +IrEc:)MoiGi ! ! 0 0 2

(25)

Lf[o 0o 0 0 0 0 MEBIPY &MEBIPT diMEBIPL ]

+
coococococooy

[eNeren s anNan)

L[IH 0000000 0]<o.

P;BiMo;
Vda2 P; B; My;
di P; Bi Mo;

From Lemma 3, (25) holds if and only if the following matrix inequality holds
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AL

* *
* *
* *
—Q "
0 —2J;
0 0
+IREci) MoiGi
0 2VdP(Bi
+IREci) MoiGi
o 2iP(Bi

+IrEci)MoiG;

Vi * *
0 —Qs3 *
0 0 -1
0 0 0
JiH; 0 0
0 0 0
Pi(4; A
+IrK;) Pida 0
A; .
Vo Py | +1RK; Vd2 P Adi 0
-1
4, )
diP; | +1rK; di P Aa; 0
iy
Ir
0
0
0
0 [[I1F 00 0 0 000 0]+
0
0
0
0
0
0
0
0
0
AO
P;B; Mo
V2 P, Bi Moi
di P; B; Mo,

where A1; >0.
Then, using Lemma 1 to (26), we have

v + Milrlh
0

0

0
JiH;

0

Pi(A; + IrK;)

di P ( i +0[RK1' - 1)

* * *
* k *

* * *

* * *

* k k

-1 * *
Piffli —Pi *
VdaP;Hy; 0 —-PZ
diP;Hq; 0 0
0 * *

m

=

\/@PZ‘ (Al + IrK; — I) \/@PzAdz

* *
_Q3 *
0 -Q
0 0
0 0
0 0
PiAdi O
0
diPiAg 0
0 0

*

*

*

*

*

*

*

*
—-PZ;'P;

*

Then, the inequality (27) can be again arranged as

iy

OO OO oCOoOH* * *

P, B; My,
v d2 P; B; Mo;
di P; B; Mo;

* * * *

* * * *

* * * *

* * * *

* * * *

—T * * *

PlI:]u P * *

V&PH; 0 —PZ7'P *
&P 0 0 -PZ7'P;

N)

* ¥ X ¥ ¥ X

1

[0 0 0 0 0 0 MEBTPT V&MEBTPT diMEBTPT | <0,

—2J;

ON % ¥ ¥ %

2Pi(Bi + IREci)MOiéi
2v/d2Pi(B;i + IrEc;) Mo: G5
QdTPi(Bi + IREci)MOiéi
0

<0,

27)
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v; + /\ulRIg * * * * * * * * * 1
0 —Qs3 * * * * * * * *
0 0 —-Q * * * * * * *
0 0 0 —-Q * * * * * *
JiH; 0 0 0 —2J; * * * * *
0 0 0 0 0 -1 * * * *
'i/‘idi 0 0 0 PZHM —P; * * PszA{nz
A R R
+RKL Vd2PiAg; 0 0 0 VdPH; 0 -PZ7'P * V3 P, B; Mo;
A, R R
diP; | +IrK; diPAq; 0 0 0 diPH;; 0 0 —PiZy'P;  diPiBiMo;
71
L 0 0 0 0 0 0 * * * -l
r o
0
0 (28)
0
T | Ar 2Mg: (B; o/daME(B;  2ds M;(Bs
+ G; 00 0 0 0 O i 0‘ N 0
8 { +IrE.)" Pl 4IgE.)"PF +IrEe)" Pl
0
0
L O
- 0 ;
0
0
0
0 N
+ 0 G0 00011 0000 0]<0
2Pi(Bi + IrEe:) Mo;
2v/d2P;(B; + IrEci) Mo;
2d; Pi(B; + IrEci) Mo;
0
From Lemma 3, (28) holds if and only if the following matrix inequality holds
’Ui+>\11131}§ * * * * * * * * * ]
0 —Qs3 * * * * * * * *
0 0 Q * * * * * * *
0 0 0 —Q2 * * * * * *
JiH; 0 0 0 —2J; * * * * *
Q 0 0 0 0 —I * * * %
Pi(Ai PAa o 0 0 Pl —P . * PiBiMoi
+IRA i)
A; R .
V2 P; <+IRK,> Vd:PAg 0 0 0 Vd&PH, 0 -PZ'P * Vd2P; Bi Mo;
—I
A; . . -
diPi | +IrK; di PiAa; 0 0 0 diPiHy; 0 0 —PIZ(_,’IR di P;B; Mo;
-1
0 0 0 0 0 0 * * * =il
] ) T (29
0
0 0
0 0
0 0
O 0
T -1 AO
e | N0 {1000 0 7 000 0 0]+, 2P(Bi
0 +IREci) Mo;
0 24/ dZPz(Bz
0 +IRrFEci) Mo
0 943 Py(B, + InFui) Mo;
L 0
MY W/daME(B;  2d5 Mg, (B
o0 0 0 0 O 0i( 0’ i 147 0i 0| <0,
+IREM> TPl 4IgE.)TPT +IrEs)" P
where \2; >0.
Then, in the light of Lemma 1, we can get
I1. *
i1l <0, (30)
Hi21 H¢22
where
T
vi + Ailrlp * * * * *
0 —Qs3 * * * *
1 I T A S
- 0 0 0 —Q2 * * ’
il JiH; 0 0 0 —2Ji+ X I7T %
0 0 0 0 0 —I
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Pi(Ai-i-IRKi) PZ‘Adi 0 0 O PZqu
V2P (A + IrKi — 1) Vd&aPiAg; 0 0 0 +d2PHy
H = | diP(Ai+1gK;—1) diPAsi 0 0 0 diPHy, |-
i21 0 0 0 0 O 0
0 0 0 0 0 0
—P; * * * *
0 -PZ'P * % %
0 0 ~P,Z;'P; * *
[I=| mgsrer vamgsrer d; MEBT PT ol
i T T (5
22 2Moi(Bs 2\/EMOi(Bi QdTM(E(Bz + IrE:)TPF 0 —Aoil

+IrE.)" P +IrE:)" P

Next, let e = (p1 + 8 )71 and we will explain that the constraint (15) can be transformed into the following
matrix inequality

€ Niijij
N
s P~ Y sn(p-p) | =20 (31)
r=1, r#i

where §;, > 0,and N f H f denotes the j — th row of N; and H; respectively.
N
Gi=P— Y 6u(P—P)

Let e .For V¢ (k) € Q(P;, p1 + B) N ®;, then from switching law (17), it is
clear that
N
> 0T (k)P = PICR) 2 0,
r=1,r#i
and
CT(R)PC(k) < (m+B)=¢".
Then, we get
CTGz(: S 671, (32)
Gi — (N — H)Te ™ (N] — H]) > 0. (33)

Finally, we have
CHN? = H])Te T (N - H)C < (TG < e
or

|(N7 — HI)¢| < 1. (34)

(34) implies that if V((k) € Q(Pi, p1 + ) N @, then ((k) € L(N;, Hy;). As a result, constraint condition
Q(P;, p1 + ) N®; C L(N;, H;), i € In, can be transformed into (31).
Thus, we can rewrite the optimization problem (23) as follows:

inf €,
P;,Q1,Q2,Q3,21,%2,J;,Bir

s.t. (a) inequality (30), ¢ € I, (35)
(b) inequality (31), i € In,j € V,.

If we do not consider the anti-windup compensation cases, we can get the corollary 1.
Corollary 1: Consider the closed -loop switched system (9). For a given positive scalar p1, if there exist positive

definite matrices P;, Q1, Q2, @3, Z1, Z2, positive definite diagonal matrices J;, and a set of scalars 3; > 0,
such that.
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A Aiie 0 0 Aiis Aite
* Nioo 0 0 Aias Az
* * —Q1 0 0 0
* * * —Q2 0 0 <0,
* * * * Ai55 A¢56
* * * * * Aiss
i€ In,

and
Q(Pi, p1+B)N®; C L(N;, Hy), i€ In,
where
A; = A + InK; + B;Mo; Li T},
Vii = 2B, Moi G,
I =d2Z1 + (d2 — di) Za,
N
At = ATPA =P+ Qi+ Qo+ (do —di + 1) Qs + (A4 = 1) "I (A 1) + Y i (P = P,
r=1,ri
Nirz = A7 PiAg; + (Az - I)THAdi7
Ais = ATPVA + (A = 1) TV + HT T,
Aite = AT P Hys + (Az - I)Tﬂflu,
Nizo = A PiAg; — Qs + ALTIAy;,
Aizs = AL PiVi; + ALV,
Ning = AL PiH1; + A} TLH;,
Aiss = Vii PiVas + Vi 1TV, — 273,
Aise = Vi P HY; + Vi, ITHY;,
Aise = H{; P Hy; + HTTH — 1,
®; ={CeR”": ("(P. — P)(>0,Vr €Iy, r#1i},

then for the closed-loop system (9), under the sate-dependent switching law (17) and the initial conditions
(16), the state trajectory starting from the region UL, (Q(P;, p1) N ®;) will remain inside the region
UL, (UP;, p1+ B) N ;) for every Vw € W3,

L34, -Gain analysis

In this section, we will use the multiple Lyapunov functionals method to solve the restricted L,-gain problem for
the system (9), based on Theoreml, that is, the state trajectories of the system are bounded. Similarly, the design
method of anti-windup fault-tolerant controller will be proposed in section"Control synthesis solution".

Theorem 2: Consider the closed-loop system (9). For a given constant 8 € (0, 8] and v > 0, suppose there
exist positive definite matrices P;, Q1, Q2, 3, Z1, Z2, diagonal positive definite matrices J;, and a set of
scalars B3; > 0, such that.

Yiin Yiie 0 0 Tiis Yite
* Tioo 0 0 Tios  Yioe
* * -1 0 0 0
* * * —Q2 0 0 <0,
* * * * Tiss  Yise (36)
* * * * * Tie6

i€ In,
and
Q(P;, p1 +B)N®; C L(N;, Hy), i € In, (37)
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where
A; = Ai + InKi + BiMo,LiIF,
Vi = Z(BZ + IREci)MOiéia
Tt = AT PA - P+ Qi+ Qe+ (o —di + 1) Qs+ (A= 1) (A = 1)+ > B (P —P) +97°CTCs,
r=1,ri
Yi2 = AT PiAg; + (Al - I)T A4,
Yias = A] PiVii + (Az - I)T Vi, + H; T
Tie = A} PiHyi + (A — I)T 1,
Yioo = AL PiAai — Qs + ALTI Ay,
Yios = Ag; P,Vi; + ALTIVA,,
Yioe = AL PiHy; + A T1H
Yiss = Vi PiVai + Vi Vi, — 25,
Yise = Vi P HT; + Vi ITHT;,
Yiee = Hi; P H1i + HIUH; — 1.
Then the restricted L»-gain from w to 2 over w € W7 is less than ~ under the state-dependent switching law
J:argmin{CTPiC,iGIN}. (38)
Proof: Using the similar method as for proving Theorem 1, we choose the Lyapunov-Krasovskii functionals of
the closed-loop system (9) as.
V(C(R)) = Vis (C(K)) + Va(C(K)) + Va(C(k)) + Va({(K)), (39)

where

Via (C(k)) = ¢* (k) PoC (k) ,

Va(¢ Zc (k+1)QiC (k+1) + Zc (k +1) Q2€ (k+1),

l=—d; I=—ds

—di+1 -1

DT+,

O=—dy+11=0—1

—dy
Z Zy (k+1) Ziy (k+1) + Z Zy (k+1) Zay (k + 1),
O0=—do+11=0—1 O0=—do+11=0—1

y(k)=C(k+1)—C(k).

Here, we still divide the proof into two parts. .
Case l:0(k + 1) = o(k) = i,for V((k) € QP;, p1 + B) N ®; C L(N;, H;). It follows that:

AVai (C(k)) = Vai (G(k + 1) = Vi (C(K)) = ¢" (k+ 1) Pi¢ (k+1) = (" (k) Pi¢ (),

(
AVa (C(k)) = Va (K + 1)) — Va (C(k))
(k) (Q1+ Q) C(k) — ¢" (k—di) Qi¢ (k —dv) — ¢" (k — d2) Q2 (k — do)

—dq
AVs (C(k)) = Vs (((k + 1)) = V5 (C(k)) = (d2 — di + 1) ¢ (k) QsC (k Z ¢ (k+0) Qs (k +0)
O0=—d2
< (dz —di 4+ 1) ¢ (k) Qa¢ (k) = ¢7 (k — d (k) QsC (k — d (),
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AVa (¢(k)) = Va (C(k +1)) — Va (¢(K))

-1

=y  ()Ty (k) — Y " (k+0) Ziy (k+0)

0=—d(k)
—d;—1 —d(k)—1

= > YTkt Zy(k+0) — >y (k+0)(Zi+ Zo)y(k+0).
0=—d(k) 0=—do

Thereby,.
AV (¢(k)) =AV1i (C(k)) + AVz (C(k)) + AVs (((k)) + AVa (¢(k))

< ﬁ??XCT (k) {ALTP@-A@- P4+ QA Qe (da—di+ 1) Qs+ (A — 1) T (A - 1)} ¢ (k)

+2¢T (k) {AfPiAdi +(Ai-1)" HA[“} ¢(k—d (k)
+2¢7 () [ATPVA:+ (A= 1) TV 0 @)

+2¢7 (k) [/LTPV;ETM +(Ai-1)" Hﬁh} w ()

+¢" (k—d (k) [ALPAg + AGTTAy — Qs] ¢ (k — d (k)
+2¢7 (k — d (k) [A3:PiVis + AgiTIVis] 1 (v)

+2¢" (k —d(k)) [AZ;'P'LHU + AEHHU} w (k)

+ 97 (v) [Vii PiVis + Vi TV ) o (v)

+ 297 (v) [Vi; PiHy + Vi THHy | w (k)

+w" (k) [HY;PiHyi + HEIUH | w (k)

+¢" (k= d1) (—Qu) z (k — da)

+ (" (k= do) (—Q2) ¢ (k — do)

—1
= > YT k+0) Ziy(k+0)
6=—d(k)
—di—1
= > YT k+0) Zoy (k+0)
6=—d(k)
—d(k)—1
= > YT k0 (Zi+ Za)y (k+0).
0=—ds

Then, combining with Lemma 2 and condition (37), we have
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AV(C(k)) = AVii (C(k)) + AV2 (C(k)) + AV (¢(k)) + AVa (C(F))
< max (T (k) [AZTPZ/L P+ Qi+ Qx+(d—di+1)Q3+ (Az - I)TH (Az - ])} ¢ (k)

i€l
+2¢" (k) [AT Pidai + (As = 1) TAw] ¢ (b — d (k)
+2¢" (k) [AT PV (A= 1) TV 6 ()
+2¢T (k) [AZTPZ»PIM +(Ai-1)" Hflh} w (k)
+¢" (ke — d (k) [AL PiAai + ALTTAG — Qs] ¢ (k — d (k)
+2¢7 (k — d (k) [AL P VA + ALTIVA] 4 (k)
+o7 (k) [ViS PiVai + Vi TIVAG ) 4 (k)
+2¢7 (k) [VERFIh + VEHI:IM] w (k)
+w™ (k) [ﬁlTZPzHu + ﬁsz'HHli] w (k)
T (k d) (=Qu) @ (k — dv) +¢" (k — d2) (—Q2) ¢ (k — do)

—d1—1
- Z T(k+0)Zry(k+0)— Y y" (k+0) Zay (k+0)
o=—d(k) 0=—d(k)
—d(k)—1
= 3T Tk 0) (Zi+ Z) y (k4 0) — 20T (NiC(k)) J: [$(NiC (k) — HiC(R)] -
0=—dz
¢ty 1" ¢ (k)
C(kk— d(g ) C(kk (gk))
Multiplying (36) from the left by égk ds g and then from the right by ggk B d;; , we have
P(v) P(v)
C (k)[ATPA Po+Qi1+ Q2+ (d2 —di + )Qg-‘r( -—]) ;11 I) ¢ (k

+2¢T (k) {AiTPiAdi (A —1)" HAdi} C(k—d(k))
+2¢7 (k) [/LTPiVu‘ + (A~7, - I)T HVM‘:| ¥ (v)
+¢T (ke — d (k) [AL P Agi + ALTIAG — Qs] ¢ (k — d (k)
+2¢7 (k —d (k) [Ade'PiVu + AZ;HVM] Y (v)
20T (k — d (k) [AT P+ AL w (k)
+o7 (v) [Vii PiVai + Vi TTVA ] @ (v)
+21/JT (v) [VEPJ:IM + VEHEIM] w (k)
+w” (k) [HTPiHy + HEIUHy | w (k)
+¢" (k d1) (=Q1) x (k — dv) + (T (k — da) (—Q2) ¢ (k — da)

—dij—1

- Z Tk+0)Ziy(k+0)— Yy (k+0) Zoy (k +0)
0=—d(k) 0=—d(k)
—d(k)—1
= N YT+ 0) (2 + Z2)y (k+0) — w” (R)w(k)
0=—do
+y 75T (k) CT Cig (K Z Bir¢( P)((k) < 0.

r=1, r#i

Then, according to the above two inequalities, we can obtain.
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AV (k) < w" (Ryw(k) = y72¢T (k) CT Ci¢ (k) — i Bir¢" (k) (Pr — Pi)¢(k). By switching law
(38), we can get r=1, r#i

N
D Bl (k)P = P)S(R) 2 0.
r=1, r#i
Therefore
AV(C(K)) < wT (B)w(k) — v 22T (k)z(k). (40)

Case 2:0(k) =i, o(k + 1) = r and i # 7, for V((k) € Q(Pi, p1 + ) N ®; C L(Ni, H;). By switching law
(38), we can get

AV(((K)) = Ve (C(k + 1)) = Vi(C(K))
< Vi(C(k + 1)) = Vi(C(k))

<w'(kywk) =722 (kR)z(k) = Y BT (k)(Pr — P)C(k).

r=1, r#i
From the switching law (38), it follows that
N
> BT R)(Pr = PYC(R) > 0,
r=1, r#i¢
which indicates
AV(C(K)) < wT (B)w(k) — v 22T (k)z(k). (41)

By combining Egs. (40) and (41), we can obtain

AV(C(k) = V(C(k+1) = V(G(k) < w™ (k)w(k) —7"=" (k)2 (k), @)
V¢(k) € Uil (QUP;, p1 + B) N D).
Thus, it follows
D CAVCR) < > w(k)wk) = > 2T (k)2 (k),
k=0 k=0 k=0
which in turn gives
V(C(00) < V() + Y w (Ryw(k) = > 52" (k)2(k) (43)
k=0 k=0
Due to ¢(0) = 0and V ({(c0)) > 0, we obtain, we obtain
> T (k)z(k) <47 wT (k)w(k). (44)

(44) means that the switched system (9) has the restricted L,-gain from w to z over w € Wﬁz less than ~. This
proof is complete.

Just as (15) is treated as (31), (37) can also be treated as (31), similar to the processing of (15) into (31), (37)
can also be processed into (31).

It follows from Theorem 2 that for each given 8 € (0, 3], the minimum upper bound on the restricted L,-
gain of the closed-loop system (9) can be obtained by solving the following optimization problem

inf 2
P;,Q1,Q2,Q3,21,%2,J;,G1:,G24i,Bir

s.t. (a) inequality (36), i € In, (45)

(b) inequality (31), 7 € In,j € V,.

Then, we adopt the similarly method for converting optimization problem (23) into optimization problem (30).
If the following matrix inequality holds, then matrix inequality (36) holds.
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Oi11 *
[ Oi21  Ojo2 ] <0, (46)
where
v; + )\11-113[17; * * * * *
0 —Qs3 * * * *
0.1 — 0 0 —Q1 * * *
i1l = 0 0 0 _Q2 * * ’
J:H; 0 0 0 —2J; + )\QiIT] *
0 0 0 0 0 —1I
Pi( A; + IrRK;) PiAg 0 0 0 P Hy;
Vd2P; (Ai + IrKi = 1) Vd2PiAg; 0 0 0 Vda2PiHy
Q01 = d’{PZ (AZ + IrK; — I) dTP»LAdl 0 0 O dTPZ.Hh
0 0 0 0 O 0
Q 0 0 0 O 0
C; 0 0 0 O 0
—P; * * * * *
0 —PiZflPi * * * *
Oroo — 0 0 -PZ;'P; * * *
e Mg; Bl P! VMg, BT PT di Mg, B] P Ml s *
OIME(B; + IrE)TPY 2V/daME(B; + IrEe)T PE 2di ML (Bi + IrEe)T PT 0 il *
0 0 0 0 0 —cI

where, ¢ = ~2.
Then, optimization problem (45) can be expressed as
inf S,
P;,Q1,Q2,Q3,21,2Z2,J;,G1i,G2i:Bir
s.t. (a) inequality (46), i € In, (47)
(b) inequality (31), 7 € In,j € V.

Control synthesis solution
In this section, we consider the anti-windup compensator gain E.; and the dynamic state feedback controller
gain K; as the variables to be designed, which allows the performance of the closed-loop system (9) to be further
improved.

Firstly, set P =X, Fy = HiX,J7 = S, Qit=U, Q;t=Ui,
Q;l = Us, Zl_1 = Us, ZQ_1 = U4, K; X; = Y;. Multiplying both sides of the inequality (24) by the diagonal
matrix {Pi_l, Qg17 QT Q5! 7Ji_l, 1, Pi_l, Pi_l7 Pfl7 I, I'} respectively, and using lemma 1, we have

Vi1 *
Viz1 Vi } <0, (48)
where
_ N _
-Xi— Y. BuaX: * * * * * * * *
r=1,r#1
0 —Us * * * * * * *
0 0 -U * * * * * *
0 0 0 Uy * * * * *
—28;
F; 0 0 +>\2iITI * * * *
0 0 0 0 0 -1 * * *
Vin = X, . : ,
1 AiX AgiUs 0 0 0 Hi  —-Xi =+ %
+IRY;
Vd2 A X; R .,
+]R1/i vV dQAdiUQ 0 0 0 \/dth‘ 0 —U3 *
-X;
&AL,
+IRY: diAgUs 0 0 0 diHy; 0 0 -U
~X;
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T 0 000 0 0 MELEBT Vd:MEBT  diMEBT T
o 0 0 0 0 o 2M(Bi o 2Vd:Mgi(B; 2diMi(B;
+IRE:)"  +IpEn)T +IrE:)"
X 0 0 0 0 O 0 0 0
Vo1 = X 0 0 0 0 O 0 0 0 ,
VdiX; 0 0 0 0 0 0 0 0
Itx, 0 0 0 0 0 0 0 0
X; 0 0 0 0 O 0 0 0
X 00 0 0 O 0 0 0
. ¢ 0 0 0 0 O 0 0 0 i
r =AMl * * * * * * * * b
0 —Xoi 1 * * * * * * *
0 0 -U * * * * * *
0 0 0 -U: * * * * *
0 0 0 0 —Us * * * *
Vigz = 0 0 0 0 0 =M * * *
0 0 0 0 0 0 -Bi' X1 x *
0 0 0 0 0 0 0 . *
L0 0 0 0 0 0 0 0 —BnXn |
A similar process is applied to (31), then we also obtain
N
Xi+ Y. X x % * *
7":1,7”7%
]\Afini—Hf € * * *
X; 0 (5;11)(1 * * ZO’ (49)
X; 0 0 - *
X; 0 0 0 OnyXn

where, NZ ,H f denotes the j — th row of N; and H; respectively.
Thus, the maximum allowable disturbance level 3* can be established by solving the following optimization
problems.

inf €,
Xiy JJ1,Jd2,03,J4,Y5, Biry Alis A2is0ir
s.t. (a) inequality (48), i € In, (50)
(b) inequality (49), i € In, j € V.

Next, multiplYing both sides of the inequality (46) by the diagonal matrix
{P,fl7 ;17 P gl,Jfl, I, Pfl, P{l, P,fl, 1, I'} respectively, and using lemma 1, we have

i1 *
[ Zi21 Ei22 } <0, 5D
where
- N T
—-X; — Z Bir X * * * * * * * *
r=1,r#1%
0 —Us * * * * * * *
0 0 U * * * * * *
0 0 0 -U; * * * * *
_ F, 0 0 0 =28 +AI"T * o * *
=411 = 0 0 0 0 0 —I * * * )
A; X; + IRY; Ag;Us 0 0 0 Hi; -X; * *
+IrY; — X;
dTAle n ]
di AqU: 0 0 0 diHy; 0 0 -U.
L +IRrY; — X; R o .
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[0 00 0 0 0 MELEBT Vda ME BT diMEBT T
2Mo;(B;  2+/daMgy(B; )
0 0000 0 0i - da 0;( 2di Mg;(Bi 4+ IrEei)"
+IREC'L) +IRECZ)
X; 0 00 0O 0 0 0
_ X; 000 00 0 0 0
2421 = \/@Xi 0000 0 0 0 0 7
X, 0 0 0 0 0 0 0 0
X 000 00 0 0 0
X; 00 0 00 0 0 0
Xi 0 0 0 0O 0 0 0
L ¢&Xi 0 0 0 0 0 0 0 0 i
[ —Aud * * * * * * * % %
0 —Aoid * * * * * * * *
0 0 -U * * * * * * *
0 0 0 -U; * * * * * *
0 0 0 0 —Us * * * * *
Sigo = 0 0 0 0 0 —)\fill * * * * ’
0 0 0 0 0 0 —BIXy  x " N
0 0 0 0 0 0 0 * *
0 0 0 0 0 0 0 0 —BnXn *
.l 0 0 0 0 0 0 0 0 0 —71 |

where,r = ~2.

Therefore, the minimum upper bound on the restricted L,-gain of the closed-loop system (9) can then be
obtained by solving the following optimization problem

inf T
Xi, J,J1,J2,73,J4,Y5, Birs Xiy A14,04r
s.t. (a) inequality (51), i € In, (52)

(b) inequality (49), i € In, j € V.

Then, we can obtain the anti-windup compensator gain matrices E.; by solving the above two optimization
problems (50) and (52), and the corresponding dynamic state feedback controller gain matrices can be calculated
as K; =V X'

Remark 1. A key feature of the proposed anti-windup approach is that the anti-windup compensator remains
inactive when saturation does not occur, thereby preserving the nominal design performance of the system. In
practice, systems operate in non-saturated conditions most of the time, meaning that the design performance is
unaffected in the majority of cases. The anti-windup compensator only becomes active when saturation occurs,
ensuring system stability and performance during saturation. As a result, the anti-windup method has strong
practical engineering relevance for the switched systems. However, in the convex hull approach®3, as the con-
trol input dimension and subsystem count increase, the number of linear matrix inequalities (LMIs) grows
exponentially, leading to a prohibitively high computational burden.

Numerical simulation

This section presents two numerical examples to demonstrate the effectiveness of the proposed method. We
consider the following a class of time-varying delay discrete-time switched systems with actuator saturation and
external disturbances.

z(k+1) = Asx(k) + Agoz(k — d(k)) + Bissat(u(k)) + Hiow(k),
z2(k) = Coz(k), (53)
Example 1 x(k0+0):¢(0)70:_d27_d2+17"'707
where o € I = {1, 2},
0.415 0.53
Al:[o.m 2.65}’A2:{ 0
0.6 0.99 0. -02 0 03 0
Bl:[0.46 0.807}’32:[ 1039 }vHH:{ 0 01 ] Hm:{ 0 —0.1 }
Assuming that the range of actuator faults is 0.1 < m;; < 0.9, and according to the continuous fault model we
can get

05 0 05 0
Mm:[o 0.5}7M02:{0 0.5}~
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Let M; — { 0 s ] My = { 00 ok ] i =1,ds = 9,p1 = 0.5,\11 = 30, A2 = 0.033.

Then, by solving the optimization problem (50) we can obtain the following feasible solutions

e =0.0782, 8% = 12.2797, Az1 = 3.8568 x 10%, Aa2 = 3.8470 x 10™.

[ 5.2427 —5.6586 —1.6548  0.6425

¥, — * 16.6402 1.1196 —2.4512
1= * * 3.5092  —0.4379 |°

L * * * 0.4815

[ 5.2003 —8.3629 —2.2349  1.1820

X, — * 23.9339 2.8067 —3.6175
2= * * 3.5731 —0.7306 |°

L * * * 0.7273

Vi — 0.8387 —2.8544 —0.8276  0.7040
1= —0.8796  2.1680 1.5216 —1.6516 |°

Y, — 1.2164 1.3004 —0.8668 —0.2484 ]
2= | —-5.3976 —3.0753  0.7083 0.9669 |~

and the AW compensator gains for the closed-loop system are

Jo— 0.3496 —3.2979 Jo 1.4758 —7.1687
el = 06331 —5.7500 |’ 2T | 0.6242 —2.6969 |-

Then, the dynamic state controller gains of the closed-loop system are computed as

RN 701627 02957 01013 2.8426
Ki=wnX, =[G Fh]= [ —1.6428 —2.8636 —1.5807 —17.2541 ]

1 07072 0.3003 —0.0448 —0.0423
=YX, =[G FB]= [ ~3.4430 —1.2946 —1.0559 —0.5748 }

Then, we select w(t) = \/28*e ™" as external interference input for simulation. Figure 1 shows the state response
curve of the switched system (53). The state response of the controller of the switched system (53) is shown in
Fig. 2. Figure 3 shows the switching signal of the closed-loop system. The control input signal for the switched
system (53) is shown in Fig. 4. Figure 5 shows the variation of Lyapunov function values of the switched system
(53). It can be seen through Fig. 5 that the values of the Lyapunov function for the switched system (53) are
consistently less than 8" = 12.2797. This indicates that the state trajectories of the switched system (53) with

the initial conditions always remains within this bounded set.

Then, for each given 8 € (0, 3*], we estimate an upper bound on the restricted L,-gain of the closed-loop

system (53). Therefore, we can consider the following scenarios.

1. If B = 0.5, we obtain,y = 23.0997,

" x1
0.8*‘ R
1
1

0.6 [ J
04

0.2

state
o

Fig. 1. State response of the switched system (53).
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-2

u(k)

-6

-8

101

-12

ut(k)
s - - - - u2(k)

Fig. 2. State response of the controller of the switched system (53).

30

1.9

171

151

Switching signal

1.3

110

Fig. 3. The switched signal for the switched system (53).

0.8

30

Fig. 4. The input signal of the closed loop system (53).
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Fig. 5. Lyapunov function values for the switched system (53).

K — 0.1633 0.2960 0.1014 2.8474 Jo 0.3791 —3.3134
L= | —1.6428 —2.8632 —1.5806 —17.2502 |® <l = | 0.6843 —5.7767 |’
K, — 0.7071 0.3001 —0.0454 —0.0424 B = 1.5081 —7.1632
27| —34434 —-1.2942 -1.0575 —0.5768 |’> 2~ | 0.6368 —2.6950 |-

2.1f 8 = 1, we obtain v = 23.1065,

Ky — 0.1626 0.2949 0.1000 2.8581 B — 0.3855 —3.3244
L= —1.6436 —2.8645 —1.5814 —17.2529 |® =<1 = | 0.6956 —5.7955 |’

K, — 0.7086 0.3010 —0.0475 —0.0443 B — 1.5000 —7.1100
27| —34567 —1.2986 —1.0657 —0.5794 |’> 72T | 0.6343 —2.6733 |-

3.If 8 = 7.5, we obtain v = 23.1960,
0.1630 0.2955 0.1008 2.8534 B — 0.3851 —3.3222
—1.6431 —2.8636 —1.5808 —17.2503 |’ ~°' — | 0.6949 —5.7918 |’

Ko — 0.7078 0.3005 —0.0464 —0.0435 B — 1.5047 —7.1100
27| —3.4477 —1.2956 —1.0602 —0.5768 |> 72T | 0.6357 —2.6742 |-

- |

z(k+1) = Asz(k) + Agox(k — d(k)) + Biosat(u(k)) + Hiow(k),
z(k) = Coz(k), (54)
Example 2 x(ko+0)=¢(0),0=—ds,—do+1,---,0,

where o € I = {1, 2},

1195 —1.0 0.80 0.9 03 0 03 03

Al:{ 0.93  0.60 } AQ:[O.% 0.49 } Adl:[03 0.3 } Aﬂ:[ 0 03 }
075 0.83 0.45 0.93 03 0 04 0

Bl:[o.m 0.15}’32:[0.61 0.83}’HH:{ 0 0.2]»H12:[ 0 —02}

Assuming that the range of actuator faults is 0.2 < m;; < 0.4, and according to the continuous fault model,
we can get

03 O 03 O
Mm:[o 0.3}7M02:[0 0.3}~
Let M, = |: 002 003 ] ,Mz = |: 004 003 ] ,dl =dy = 1,p1 = 0.5,)\11 = 20,)\12 =0.5.

Then, by solving the optimization problem (50) we can obtain the following feasible solutions.

£ =0.2400, B* = 3.6674, Az1 = 3.8079 x 10°, Ay2 = 3.8077 x 10°.
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12.8955 —1.2251 —2.8140 —0.5712 7
X, = * 6.9433 —0.6051 —0.0206
1= * * 0.9814 0.0454 ’
* * * 0.4674
12.6572 —2.8802 —2.2339 —0.3790 7
X, — * 7.2063 —0.3242 —0.8016
2= * * 0.9452  —0.0406 |
* * * 0.6740 |

Y, — 0.9701 —1.6553 —1.7354 1.5678
1= 101572 —0.5219 —0.2819 0.3946 |°

Y, — 2.6507 —3.1484 —0.5810 —1.0833
27| —1.1405 —1.7150 0.4720 —0.2846 |°

and the AW compensator gains for the closed-loop system (54) are

5o _ [ —39974 —0.6218 [ —2.2091 —1.2181
el = | 32007 —0.6329 |* P2 = | _4.0736 —1.8668 |-

Then, the dynamic state controller gains of the closed-loop system (54) are computed as

—-0.1884 —0.1915 —0.9779 0.7006

1 —0.6670 —1.2297 —2.7678 —3.6112
Ko=Y2X, =[Gz P ]= [ ~0.3657 05508 —0.6141 —1.3306 }

KievixX =[G - [ ~1.1943  —0.9556 —5.8041 2.4252 } 7

If we set E,; = E., = 0, then the optimal solution obtained is 5* = 1.6372 based on corollary 1. Obviously,
this shows that the interference tolerance of the closed-loop system (54) is enhanced under the action of the
anti-windup compensator.

Then, we select w(t) = \/2B%e ™" as external interference input for simulation. Figure 6 shows the state
response curve of the switched system (54). The state response of the controller of the switched system (54) is
shown in Fig. 7.

In the event of actuator failure, the state response is depicted in Figs. 8 and 9 for switched system (54) under the
conventional anti-windup controller. Note that the conventional anti-windup controller here refers to a design
that does not account for actuator failures. As evident from Figs. 8 and 9, the system states become unbounded
when actuator failure occurs under this controller. In contrast, the anti-windup fault-tolerant controller ensures
that the state trajectory remains within a bounded region, as demonstrated in Figs. 6 and 7. This confirms that
the anti-windup fault-tolerant controller, designed using our proposed method, exhibits superior fault tolerance
performance.

Additionally, Table 1 presents the relationship between the maximum allowable disturbance 5* and
varying d values, obtained by solving optimization problem (50) (where d = d1 = d2). The results demonstrate
that the disturbance tolerance of closed-loop system (54) decreases as d increases.

| x1
0.8*I —-=-=x2|7
1

0.6 [
04

0.2

state
o

-0.8 ]

Fig. 6. State response of the switched system (54).
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time(s)

Fig. 8. State response of system (54) under conventional anti-windup controller.

Conclusion

In this paper, the problem of L,-gain analysis and anti-windup fault-tolerant controller design of a class of
discrete-time switched systems with time-varying delay and actuator saturation is investigated by using the
multiple Lyapunov functionals method. Firstly, with the anti-windup fault-tolerant controller given in advance,
the sufficient conditions to be state bounded under the action of actuator fault and external disturbance are
given for the closed-loop system, and then disturbance tolerance problem is transformed into a constrained
optimization problem. Then, based on this condition, the constrained L2-gain of a closed-loop system is
analyzed and the minimum upper bound of the restricted L2-gain is presented by solving a convex optimization
problem. Finally, in order to obtain better performance of the closed-loop system, we design the AW controller
to maximize the allowable disturbance capability of the closed-loop system as well as to minimize the restricted
L2-gain upper bound. A numerical simulation example is given to verify the effectiveness of the proposed
method in this paper.

In this paper, we presuppose the availability of certain unknown parameters beforehand and subsequently
reformulate the associated optimization challenges into problems featuring LMI constraints. Nonetheless, in
real-world applications, these parameters inevitably influence the outcomes of the optimization processes.
Consequently, determining the optimal selection of these parameters to achieve the highest possible level of
disturbance tolerance and the lowest feasible upper limit of the constrained L,-gain presents a fascinating and
complex area for investigation. Employing advanced optimization techniques, including genetic algorithms and
ant colony optimization, could prove effective in identifying the ideal values for these parameters, meriting
additional exploration and study. In addition, the Zeno phenomenon induced by minimum switching laws can
cause significant issues, potentially resulting in severe harm to real-world engineering systems. As a result, in
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Fig. 9. State response of conventional anti-windup controller.

d |B”
1.5 | 2.8818
2 1.5917
5 0.2435
7 —

Table 1. The values of 5* at different values of d.

our forthcoming research, we intend to employ the dwell time approach to explore the fault-tolerant control
challenges in switched systems experiencing actuator saturation and failure. The switching law developed using

the

dwell time method is expected to successfully prevent the occurrence of the Zeno phenomenon.
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