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Soil-transmitted helminths primarily comprise Ascaris lumbricoides, Trichuris trichiura, and 
hookworms, infecting more than 600 million people globally, particularly in underserved communities. 
Manual microscopy of Kato-Katz thick smears is a widely used diagnostic method in monitoring and 
control programs, but is time-consuming, requires on-site experts and has low sensitivity, especially 
for light intensity infections. In this study, portable whole-slide scanners and deep learning-based 
artificial intelligence (AI) were deployed in a primary healthcare setting in Kenya. Stool samples 
(n = 965) were collected from school children and Kato-Katz thick smears were digitized for AI-based 
detection. Light-intensity infections accounted for 96.7% of cases. Three diagnostic methods - manual 
microscopy, autonomous AI and human expert-verified AI - were compared to a composite reference 
standard, which combined expert-verified helminth eggs in physical and digital smears. Sensitivity for 
A. lumbricoides, T. trichiura and hookworms was 50.0%, 31.2%, and 77.8% for manual microscopy; 
50.0%, 84.4%, and 87.4% for the autonomous AI; and 100%, 93.8%, and 92.2% for expert-verified AI in 
smears suitable for analysis (n = 704). Specificity exceeded 97% across all methods. The expert-verified 
AI had higher sensitivity than the other methods while maintaining high specificity for the detection of 
soil-transmitted helminths in Kato-Katz thick smears, especially in light-intensity infections.
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Neglected tropical diseases (NTDs) are a diverse group of conditions that receive inadequate attention in research 
and treatment because they primarily affect low-income countries and mainly cause chronic disability, without 
generating the same urgency as other global health priorities1,2. Soil-transmitted helminths (STHs) are the most 
prevalent NTDs, and in 2021, it was estimated that more than 600 million people were infected worldwide3,4. 
Children in underserved communities account for most of the morbidity caused by STHs, and infections can 
lead to malnutrition, impaired physical and mental development and anemia, through a complex interplay 
with other health determinants3,5. Four species account for the majority of STH infections: Ascaris lumbricoides 
(giant roundworm), Trichuris trichiura (whipworm), and two species of hookworm (Necator americanus and 
Ancylostoma duodenale)6.

The World Health Organization (WHO) currently recommends microscopy of stool samples prepared using 
the Kato-Katz technique for diagnostic tasks, such as large-scale monitoring of STH infections within mass 
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drug administration programs and epidemiological surveys because of its simplicity, ease-of-use and ability to 
classify infection intensity7,8. The infection intensity is classified as either light, moderate, or high by quantifying 
parasite eggs per gram (EPG) in stool, and has clinical relevance as the intensity is correlated to the severity of 
symptoms5,9. However, limitations of microscopy of Kato-Katz smears include that an expert microscopist is 
required to be on-site, manual microscopy is time consuming and has low sensitivity especially for light intensity 
infections. The Kato-Katz technique requires the sample to be analyzed within 30–60 min, as glycerol causes 
disintegration of hookworm eggs10,11. Therefore, well trained on-site microscopists capable of performing the 
analysis on demand are required9.

Other methods have been developed to improve the diagnosis of STHs, both microscopy based methods such 
as formal-ethyl acetate sedimentation concentration (FLOTAC), McMaster and mini FLOTAC, and molecular 
methods such as polymerase chain reaction (PCR) and antigen tests10,12. These methods generally have 
higher sensitivity than Kato-Katz, but require more advanced laboratory equipment and additional technical 
expertise12. Such equipment and skills are often scarce in underserved communities where STHs are endemic; 
therefore, manual microscopy assessment of Kato-Katz thick smears remains the most used diagnostic method, 
especially in STH monitoring and control programs7,12. Deploying artificial intelligence (AI) supported digital 
microscopy for the diagnosis of STHs in Kato-Katz thick smears has been proposed as an approach to improve 
the diagnostic accuracy13–15.

Recent technological advancements have led to the development of more affordable and portable digital 
microscope scanners, offering a promising alternative for field-based digital diagnostics13,14,16. These instruments 
allow for digitization of entire microscope slides, i.e. whole slide imaging outside of high-end laboratories. The 
digitization not only facilitates remote diagnosis, quality assurance and educational reviews but also enables 
advanced medical image analysis using AI-based methods such as deep learning with convolutional neural 
networks, vision transformers, and vision-language models13,17.

We and others have demonstrated the potential of AI-supported digital microscopy to increase the diagnostic 
accuracy for STHs14,18,19. In our previous study we showed that AI could potentially improve the detection rate 
of light intensity STH infections that might be missed with manual microscopy, thus increasing sensitivity14. 
Improved sensitivity has become more important in order to achieve efficient morbidity control. The morbidity 
of STHs has decreased from 2.49 million daily adjusted life years in 2010 to 1.38 million in 2021, as a result 
of improved socio-economic standards as well as interventions with mass drug administration programs, 
educational efforts and improvements in water, sanitation and hygiene3. The global decline of STHs has led to 
an increased proportion of light intensity infections; therefore, more sensitive diagnostic methods are needed 
to ensure that decision makers are provided with robust data to guide policies on mass drug administration 
programs and for individual test-and-treat approaches7,8.

Our previous study indicated that digital whole-slide imaging combined with AI could improve the diagnosis 
of STHs, but indicated a need for further development of the AI and validation of the results14. To improve 
the AI-method used in the previous study, an additional deep learning (DL) algorithm to detect partially 
disintegrated hookworms has now been added to the original DL-algorithm, since the hookworm sensitivity 
was relatively low and partly disintegrated hookworm eggs were not detected by the AI in our previous study14. 
Furthermore, an AI-verificator tool is introduced to allow experts to verify AI-findings. The current study aimed 
to compare the diagnostic accuracy of autonomous AI, expert-verified AI and manual microscopy for STH 
diagnostics in a series of Kato-Katz thick smears obtained from school children in Kwale County, Kenya. The 
region is endemic for infections with A. lumbricoides, T. trichiura, and hookworm, but not Schistosoma mansoni. 
The three diagnostic methods were compared to a composite reference standard based on a combination of 
manually verified eggs in the digital and physical smears. Samples were considered positive if: (1) eggs were 
verified by an expert during manual microscopy or (2) two expert microscopists independently verified AI-
detected eggs in the digital smears.

Results
Prevalence of soil-transmitted helminths
A total of 764 samples had a manual microscopy diagnosis; but 60 of those did not have an available scan. 
Of those 60 samples, seven (11.7%) were positive for STHs with manual microscopy: six (10%) hookworms 
and one (1.7%) T. trichiura. Of the 704 smears included in the analysis 122 (17.3%) were positive according to 
the composite reference standard, of which six contained mixed infections: one mixed A. lumbricoides and T. 
trichiura infection and five mixed T. trichiura and hookworm infections (Table 1).

Manual microscopy Autonomous-AI Expert-verified AI Composite reference standard

Soil-transmitted helminths (any species) 82 (11.6%) 131 (18.6%) 129 (18.3%) 122 (17.3%)

A. lumbricoides 3 (0.4%) 10 (1.4%) 11 (1.6%) 6 (0.85%)

T. trichiura 10 (1.4%) 38 (5.4%) 35 (5.0%) 32 (4.6%)

Hookworm 70 (9.9%) 95 (13.5%) 94 (13.4%) 90 (12.8%)

Negative 622 (88.4%) 573 (81.4%) 575 (81.7%) 582 (82.6%)

Table 1.  Prevalence of soil-transmitted helminths. Due to mixed infections, the sum of A. lumbricoides, T. 
trichiura, and Hookworm cases exceeds the total number of STH-positive smears.

 

Scientific Reports |        (2025) 15:20332 2| https://doi.org/10.1038/s41598-025-07309-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


With the additional DL-algorithm that detects disintegrated hookworm eggs, 95 smears were identified 
as positive for hookworms by the autonomous AI and 94 by the expert-verified AI, compared to 60 and 63, 
respectively, when only the original DL-algorithms were used.

Infection intensity in positive smears
Of the 122 smears classified as STH-positive according to the composite reference standard, 118 (96.7%) were 
classified as light intensity infections or negative by all the diagnostic methods. The remaining four smears 
were classified as follows: two A. lumbricoides as high intensity by all diagnostic methods, one hookworm as 
moderate intensity by the two digital methods and light intensity by manual microscopy and, one hookworm 
as high intensity by the two digital methods and light intensity by manual microscopy. Furthermore, 60 smears 
(A. lumbricoides: 3, T. trichiura: 34 and hookworm: 23) were unanimously identified as containing ≤4 eggs per 
Kato-Katz smear corresponding to < 100 eggs per gram (EPG). Of the 40 smears classified as negative by manual 
microscopy but positive according to the composite reference standard, 30 (75%) had ≤4 eggs detected by the 
other methods, an example of such a smear is shown in Fig. 1.

Diagnostic accuracy of the three methods
The expert-verified AI had significantly higher sensitivity than manual microscopy for detecting T. trichiura 
(p < 0.001) and hookworm (p = 0.019). Similarly, the autonomous AI had significantly higher sensitivity for 
detecting T. trichiura (p < 0.001) than manual microscopy. Conversely, manual microscopy had significantly 
higher specificity than the autonomous AI for detecting A. lumbricoides (p = 0.016), T. trichiura (p = 0.001), 
and hookworm (p < 0.001), as well as higher specificity than the expert-verified AI for detecting hookworm 
(p = 0.001) (Table 2).

The diagnostic accuracy with 95% confidence intervals (CI95%) of the digital methods was also calculated 
with the original DL-algorithms14, without the additional disintegrated hookworm detection algorithm. For the 
autonomous AI that resulted in a sensitivity of 55.6% (CI95% 44.7–66.0) and specificity of 98.4% (CI95% 97.0-
99.2); and for the expert-verified AI a sensitivity of 61.1% (CI95% 50.3–71.2) and a specificity of 98.7% (CI95% 
97.4–99.4). When the additional disintegrated hookworm DL algorithm was included, sensitivity significantly 
increased for both the autonomous AI (p < 0.001) and the expert-verified AI (p < 0.001). However, the detection 
of disintegrated hookworm eggs led to a significant decrease in specificity for the autonomous AI (p = 0.03) but 
not for the expert-verified AI (p = 0.25).

Egg counts of the three methods in positive smears
When comparing the egg counts of the positive smears according to the composite reference standard, the two 
digital methods had significantly higher egg counts than manual microscopy for T. trichiura and hookworms 
(p < 0.001 for both). When comparing the digital methods, the expert-verified AI yielded significantly higher 
egg counts for T. trichiura (p < 0.001) whereas the autonomous AI yielded significantly higher egg counts for 
hookworms (p < 0.001). Differences in A. lumbricoides egg counts were not significant between any of the 
diagnostic methods (Fig. 2).

Discussion
This study compared the diagnostic accuracy of three methods for STH detection in Kato-Katz thick smears: 
manual microscopy, autonomous AI and expert-verified AI. The digital methods were based on an AI-method 
from our previous study which was further improved by the introduction of an additional DL-algorithm for 
the detection of partially disintegrated hookworm eggs and the AI-verificator tool for expert assessment of AI 
findings14. The vast majority (97%) of the positive smears were light-intensity infections, with only four being 
categorized as either moderate- or high-intensity infections by at least one diagnostic method.

The highest sensitivity for detection of all three STHs was achieved by the expert-verified AI (where an 
expert was shown findings in the AI-verificator tool). The expert-verified AI achieved higher sensitivity than 
the autonomous AI because the expert was shown objects the autonomous AI considered artifacts (confidence 
between 0.5 and 0.9) and reclassified them as positive. Manual microscopy had the lowest sensitivity for detection 
of all three STHs (tied with the autonomous AI for A. lumbricoides). Both digital methods identified more eggs 
in the positive smears than manual microscopy, which is consistent with the higher sensitivity of smear level 
analysis. The specificity for all diagnostic methods and species was above 97% with the manual microscopy 
having the highest specificity for all STHs followed by the expert-verified AI and then the autonomous AI. Since 
the composite reference assumed that findings in manual microscopy are correct, a noteworthy finding was 
that the autonomous AI was able to achieve a high specificity without relying on any human verification. When 
comparing the diagnostic accuracy of the methods, the main difference was in the sensitivity, where the expert-
verified AI was superior to the other methods.

Our results align with those of other studies, where AI has shown high diagnostic performance for STHs 
at the parasite egg level13,20,21 and smear level14,18,19. One study that investigated T. trichiura showed that it is 
possible to identify more eggs in large fields-of-view with AI-assisted analysis than with manual microscopy18. 
Another study, where an AI-supported digital microscopy method was compared to manual microscopy, showed 
that the AI correctly identified more positive smears of A. lumbricoides whereas the amounts of T. trichiura and 
hookworms were similar19. In a previous report from our team, 10% of Kato-Katz smears classified as negative 
by manual microscopy and positive by a DL-algorithm contained manually verified parasite eggs in the digital 
smears, and the AI supported digital method generally identified more eggs than manual microscopy in positive 
smears14. This study, however, is the first to our knowledge that shows that expert-verified AI-analysis can 
increase the sensitivity for all STH species (with statistical significance for T. trichiura and hookworms) on a 
smear level in Kato-Katz thick smears compared to manual microscopy.
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Hookworm disintegration is a well-known issue with the Kato-Katz technique, and it was hypothesized to 
be the reason for the relatively low sensitivity of hookworms in our previous study, as partially disintegrated 
hookworm eggs detected in digital smears were falsely classified as negative by the AI-method10,14. The improved 
disintegrated hookworm detection algorithm presented in the current study increased the sensitivity for 
hookworms for both the autonomous AI (from 55.8 to 87.8%) and the expert-verified AI (from 61.1 to 92.2%). 
The sensitivity improvements demonstrate the benefit of using DL-algorithms that can identify parasite eggs 
with variable morphology, such as partially disintegrated hookworm eggs.

A limitation of our study is that the composite reference standard is not a true gold standard and was based 
on visual assessments by two experts (FK and KO) in the physical and digital Kato-Katz thick smears, with 
no inclusion of any alternative methods. Therefore, the composite reference standard likely contains smears 

Fig. 1.  Visualization of findings from the same light-intensity infection smear, which was classified as negative 
by manual microscopy but positive by the expert-verified AI. (a) The whole Kato-Katz smear with a grid 
representing fields of view (colored red if positive) under a 10X objective; (b) the two fields of view with 
parasite eggs in the microscope; and (c) a close-up of the two parasite eggs (T. trichiura). (d) Visualization of 
the four objects detected by the DL algorithms as potential parasite eggs in the AI verificator tool.
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falsely classified as negative due to the inherent weaknesses of the manual Kato-Katz technique. The challenge 
of identifying helminth eggs in smears with light intensity infections is illustrated in Figs. 1 and 75% of false 
negative smears in manual microscopy had four or fewer eggs detected by both the autonomous and the expert-
verified AI. As a result, the sensitivities of the three methods are likely overestimated, making comparisons with 
other sample preparation techniques or molecular methods such as FLOTAC or PCR challenging. However, 
since manually verified eggs are generally considered to be highly specific22,23, the number of false positive 
smears in our composite reference standard can be assumed to be low, allowing for reliable comparisons between 
the three diagnostic methods evaluated in this study. To account for potential misclicks in the AI-verificator, 
findings in the digital smear had to be verified by two experts (FK and KO) whereas only a single expert (FK) 
performed manual microscopy of the physical smears.

A limitation is that only one expert (FK) performed the manual microscopy, because of the short timespan 
available to perform microscopy of the physical smears before hookworm disintegration. Also, the results for 
expert-verified AI represent a single user, since we chose to minimize the inter-observer variability by having the 
same expert that performed manual microscopy to use the AI-verificator tool.

Another limitation is the high number of samples that were excluded (n = 261). The two main reasons for 
exclusion were the 181 inadequate samples (for example because of sand contamination, the stool containing 
excessive oil or vegetable cells or the stool consistency being too loose or hard) and the 60 smears which had 
no available scans. The smears with missing scans were excluded prior to analysis (due to reasons such as no 
researcher operating the scanner or issues with the uploads of the digital smears) and should therefore not 

Fig. 2.  Egg count for the three diagnostic methods. The graph includes all smears that were positive according 
to the composite reference standard. The Y-axis represents eggs per gram. Cutoffs for the WHO’s definitions 
of light, moderate, and high-intensity infections have been marked with dashed lines for each species. *Two 
smears of A. lumbricoides were marked as uncountable in manual microscopy, for these smears the egg count 
from the expert-verified AI was used.

 

Method

Manual microscopy Autonomous AI Expert-verified AI

Sensitivity, % (CI95%) Specificity, % (CI95%) Sensitivity, % (CI95%) Specificity, % (CI95%) Sensitivity, % (CI95%) Specificity, % (CI95%)

Species

 A. lumbricoides 50.0 (11.8–88.2) 100 (99.5–100) 50.0 (11.8–88.2) 99.0(97.9–99.6) 100 (54.1–100) 99.3 (98.3–99.8)

 T. trichiura 31.2 (16.1–50.0) 100 (99.5–100) 84.4 (67.2–94.7) 98.4 (97.1–99.2) 93.8 (79.2–99.2) 99.3 (98.3–99.8)

Hookworm 77.8 (67.8–85.9) 100 (99.4–100) 87.8 (79.2–93.7) 97.4 (95.8–98.5) 92.2 (84.6–96.8) 98.2 (96.8–99.1)

Table 2.  Diagnostic accuracy of the different diagnostic methods compared to the composite reference 
standard. 95% confidence interval (CI 95%).
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introduce any bias in the comparison of the three diagnostic methods. This is supported by the fact that the 
STH prevalence in the 60 excluded smears was similar to that observed in the 704 smears included in the 
main analysis. A further limitation of the study is that manual microscopy was performed prior to scanning 
of the smears; therefore, hookworm disintegration and clearing of the sample (improved contrast against the 
background) potentially revealing eggs of other species may have occurred before scanning. Clearing may 
explain why more positive smears of T. trichiura were identified with the two digital methods11. Delaying the 
manual microscopy reading, including multiple manual and digital readings, or randomizing the order in the 
workflow may have mitigated this limitation, and should be considered in future studies. Another limitation of 
the study is the small number of smears with A. lumbricoides and T. trichiura (6 and 32, respectively), and the fact 
that half of the Ascaris smears contained only a single verified egg and all T. trichiura smears were light intensity 
infections, with only four smears containing more than four eggs per smear according to any diagnostic method. 
This could explain the low sensitivity of manual microscopy but also shows the strength of the expert-verified AI 
for detection of light intensity STH infections.

With the global decline of STHs, diagnostic methods with high accuracy are critically needed to guide 
programmatic policy decisions and test-and-treat approaches7,8. The results of our study indicate that 
implementing digital microscopy and expert-verified AI may improve the diagnosis of STHs in populations 
mainly harboring light intensity infections. According to the WHO target product profile for STH diagnostics, 
a sensitivity of above 77% and a specificity above 97% is considered ideal, and our proposed expert-verified 
AI fulfills this criteria for all STH-species in the current study against the composite reference standard8. 
Performing the analysis with the expert-verified AI locally would take 11–16 min (scanning 5–10, AI-analysis 
5 and expert-verification 1 min). Since only approximately one minute is expert hands on, the method could 
provide rapid diagnosis and reduce the workload of local experts. To further investigate the diagnostic accuracy 
of AI-supported digital microscopy for Kato-Katz thick smears it would be important to compare the method 
with molecular methods and other advanced microscopy methods, such as FLOTAC or McMaster. Furthermore, 
research on the cost efficiency of AI-supported digital microscopy would be warranted.

Conclusion
This study presents a method that combines a portable whole-slide scanner with DL-based AI for STH detection, 
implemented in a real-world primary healthcare laboratory setting. The expert-verified AI correctly identified 
more Kato-Katz thick smears as positive than the manual microscopy with a majority being light intensity 
infections, with statistically significant improvements in the detection of T. trichiura and hookworms. The 
sensitivity of expert-verified AI was higher than that of both manual microscopy and autonomous AI while 
maintaining high specificity for all STHs.

Methods
Study design
The diagnostic accuracy of three methods for detection of STHs in Kato-Katz thick smears was compared to a 
composite reference standard. The methods were: manual microscopy, an autonomous AI-based digital method 
and an expert-verified AI. To evaluate these three methods, 965 stool samples were collected from school 
children in Kwale County, Kenya. The study was conducted at the Kinondo Kwetu Hospital ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​k​i​n​o​
n​d​o​k​w​e​t​u​h​o​s​p​i​t​a​l​.​c​o​m​​​​​)​, a primary health care hospital, owned and supported by a trust fund (Kinondo Kwetu 
Trust Fund). The study flow is presented in accordance with the Standards for Reporting of Diagnostic Accuracy 
Studies (STARD)-guidelines in Fig. 324.

Overview of the three diagnostic methods
Each Kato-Katz thick smear was analyzed individually using the three diagnostic methods. All methods shared 
the same sample collection and preparation process (Fig. 4), and the two digital methods also shared the scanning 
procedure and parts of the analysis procedure (Fig. 4b and c), described in detail in the following paragraphs.

Collection of stool samples and Preparation of Kato-Katz Thick smears
Stool samples were collected from school children (age 5–16) either at their homes or at the Kinondo Kwetu 
Hospital (Kwale County, Kenya) between March 2020 and April 2021. A total of 965 stool samples were collected 
from 898 participants. A single Kato-Katz thick smear was prepared from each stool sample. For patients with 
an initial positive stool sample, a second sample was collected four days after treatment initiation to assess 
treatment outcome, resulting in more samples than participants in the study. Smears were excluded if they were 
inadequate. The main reasons for a smear being deemed inadequate were as follows: contamination with sand 
of the stool, oil or high amount of vegetable cells in the stool (leading to obscured parasite eggs), poor stool 
consistency (to hard or diarrhea) or fragmented filtrate causing empty or dense areas in the smear. For the 
samples in which microscopy analysis failed a second sample was collected when possible. The fecal samples 
were transported to Kinondo Kwetu Hospital, where they were assigned a study code and prepared by trained 
laboratory technicians using the Kato-Katz staining technique10.

Manual microscopy
The smears were analyzed using a manual light microscope (CX23; Olympus, Tokyo, Japan) by an expert (FK) 
within 5 min after preparation to minimize hookworm disintegration. The entire cellophane-covered area was 
examined at 10X or 40X magnification with numerical apertures (NA) of 0.25 and 0.65 respectively. Smear 
quality was monitored by the expert (FK) performing the microscopy. Additionally, the technician conducting 
scans (MM) assessed the physical and digital smear quality. When issues arose, the sample quality was discussed 
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and smears were re-prepared from the original stool sample if this could resolve the issue; otherwise, an attempt 
to collect a new stool sample was made. Furthermore, digital smear quality was assessed continuously by off-site 
researchers. The parasite eggs were counted for the respective STH species detected.

Digitization of the smears
After manual microscopy, the smears were digitized using a portable whole-slide scanner (Ocus, Grundium, 
Finland) equipped with a 6-megapixel image sensor and a 20X objective (NA 0.40), producing a digital whole 
slide image with a pixel size of 0.48 μm. Before scanning a smear, the coarse focus was manually adjusted, and the 
built-in autofocus was subsequently used for fine-tuning. The entire cellophane-covered area was scanned, and 
the digital smears were initially saved in Tagged Image File Format (TIFF). The scanning time was 5–10 min. The 
smears were then converted into JPEG-compressed tiles sized at 512 × 512 pixels, with a quality of 70% before 
being uploaded to the image management platform (Aiforia Hub, Aiforia Technologies, Helsinki, Finland) using 
a mobile network (Diani Networks Limited, Kenya). On the image management platform, the digital smears 
were converted into JPEG-compressed tile maps with a pyramid zoom level structure. Afterwards, the digital 
smears were downloaded from the image management platform for further processing in MATLAB (MathWorks 
Inc, Natick, MA, USA). The uploading and downloading time was in total 10–20 min per sample with mobile 
network. No digital scans were available for some smears (n = 60). Out of these 60, 40 were not scanned (for 
example because there was no researcher available who could operate the scanner at the time), 13 were scanned 
and not uploaded (for example because the scanner had no memory left and could not save the scan) and for the 
remaining seven no explanation was available.

AI-model for image analysis
Training and inference were performed on a PC workstation equipped with an Intel Xeon E3-1241 v3 CPU, 
an NVIDIA GeForce GTX1660 Super GPU, and 32GB of RAM, running MathWorks MATLAB R2022b on a 
Microsoft Windows 10 operating system. The complete analysis with the AI-model took about 5 min per sample.

Development of the DL-algorithms
The AI-model consisted of three sequential DL-algorithms. The first two formed a complete model in our 
previous study and were not retrained or modified within this study, and the third was trained in this study 
to improve the original model14. The training data used for the development of DL-algorithms in the previous 
study was gathered from 388 Kato-Katz thick smears, and 15,058 training regions that measured 512 × 512 pixels 
were annotated through AI-assisted manual annotation (where earlier DL-algorithms were used to identify 

Fig. 3.  Standard for Reporting Diagnostic Accuracy (STARD) Flow Chart of the Kato-Katz samples collected.
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potential parasite eggs, which were manually classified to train the next iteration of the DL-algorithms). The 
training regions used contained: A. lumbricoides (n = 2,299), T. trichiura (n = 2,727), hookworms (n = 552) and 
artefacts (n = 9,480). The two DL-algorithms operated sequentially. The first (detector-algorithm) was trained to 
detect suspicious objects, and the second (classifier-algorithm) to classify objects into one of four categories: A. 
lumbricoides, T. trichiura, hookworm or artefact (i.e., debris or other non-STH objects). Further details on the 
two initial DL-algorithms are described in our previous study14.

The third DL-algorithm that was trained in this study was based on the ResNet50 architecture25 and was 
trained using transfer learning to identify disintegrated hookworm eggs26. The training data were gathered 
from the image regions (150 × 150 pixels) classified as artifacts by the first two DL-algorithms in smears from 
the previous study14. The annotations were made using AI-assisted manual annotation by three researchers 
(JvB, AS and FK), and the consensus label was used for training. The final training dataset contained 777 
disintegrated hookworms and 991 objects with hookworm-resembling morphology. The training data were 
randomly partitioned into five subsets. K-fold cross-validation was used to train five convolutional neural 
networks (ResNet50), where each was trained using four different subsets as the training set (80%) and the 
remaining subset as the validation set (20%). The training images were augmented with multiple randomized 
transformations, including scale manipulation (± 10%), rotation (0-360°), XY shear (± 15°), XY reflections and 
XY translations (± 15 pixels) and color augmentations with saturation offset (0.1), brightness offset (0.2), hue 
offset (0.05), and contrast scale factor (0.2). Each network was trained for a maximum of 100 epochs with a 
minibatch size of 32. A stochastic gradient descent solver with a momentum of 0.9 was deployed, with an initial 
learning rate of 0.003, and a 50% reduction in the learning rate every 10 epochs. Validation was performed after 
each epoch, and the training was stopped early if the validation loss did not improve within 10 epochs. The 
network with the best validation loss from each training session was selected as the final output network. All five 
convolutional neural networks were combined into one DL-algorithm, and their output confidence scores were 
averaged to produce a single confidence score. The finalized DL-algorithm was then used to classify the objects 
labeled as artifacts by the previous DL-algorithm as either a disintegrated hookworm or “artefact” (Fig. 5).

Application of DL-algorithms on digital smears
The first step of the digital analysis with the AI-model was to create small regions of 512 × 512 pixels 
(246 × 246 μm) with an overlap of 128 pixels (61 μm) with adjacent regions to cover the entire digital smear. 
Each partitioned region was analyzed using the detector-algorithm which identifies suspicious objects. When 
an object was detected in multiple overlapping bounding boxes, the box with the highest confidence (i.e. the 
probability score) was selected and the other boxes were excluded.

Fig. 4.  Workflow for the different methods. On the left: Collection and preparation of smears. On the right: 
Steps in the three diagnostic methods: (a) Manual microscopy, (b) Autonomous artificial intelligence (AI), and 
(c) The expert-verified AI.
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Detected objects were then resized to 150 × 150 pixels (72 × 72 μm) and forwarded to the classifier algorithm, 
where confidence scores for each class were generated. In the autonomous AI method, objects with an egg 
parasite confidence of > 0.9 were classified as parasite eggs. In the expert-verified AI method, objects with an egg 
confidence of > 0.5 or an artifact confidence score of < 0.95 were uploaded to the AI verification app for manual 
verification.

All objects classified as artefacts by the classifier-algorithm were passed through the additional disintegrated 
hookworm detection algorithm to identify disintegrated hookworm eggs. The improved hookworm-algorithm 
classifies each image as either a disintegrated hookworm egg or “artefact”. Each object classified as a disintegrated 
hookworm egg with a confidence level of > 0.99 was considered positive in the autonomous AI-method. For the 
expert-verified AI, objects with a confidence of > 0.96 were uploaded to the AI-verificator tool.

Some objects included in the expert verification were uploaded twice as they fulfilled the criteria from 
both the original classifier and the disintegrated hookworm detection algorithm. These were objects which the 
classifier-algorithm considered an egg with a confidence of 0.5–0.9; thus, they were both classified as an artefact 
(and therefore analyzed by the hookworm-algorithm) and included in expert verification because of an egg 
confidence > 0.5. The final verification label was used for these objects.

Manual verification of AI-findings
The AI-verificator is a web application tool developed to enable experts to visualize and verify AI findings. 
An interactive user interface was created using components from an open-source library (Mud Blazor UI, 
MudBlazor). Additionally, Docker (Docker Inc, USA) and Azure DevOps (Microsoft, USA) were used in 
an iterative process to improve the tool based on expert feedback. Serverless functions and Web APIs were 
developed to enable secure data import and export. Role-based access was implemented to ensure secure data 

Fig. 5.  Visualizing the Original AI-model and the additional disintegrated hookworm detection algorithm. 
First step: partitioned images from digital smears are passed through the detector-algorithm. Second step: 
classification of the parasite egg candidates into soil-transmitted helminth and artefact categories. Third step: 
classification of artefacts into disintegrated hookworm eggs and “artefacts” and examples of objects classified 
into each group.
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management using MS Azure Entra ID and additional Azure resources such as Virtual Private Network, Azure 
Cosmos DB and Azure Storage (Microsoft, USA).

The AI-verificator enables the classification of objects performed through multiple microtasks. The options 
included: A. lumbricoides, T. trichiura, hookworm, none of the above (e.g. parasite eggs not included in the study), 
artefact or unclear (e.g. not determinable because of poor focus, object obscuration, unusual characteristics etc.). 
The images are visualized either as a single image (Fig. 6) or as a panel of multiple images (Fig. 1d). The results 
obtained at the object level were used to generate a smear-level diagnosis. The mean time to verify a suspicious 
object was on average 5 s making the average time to verify a smear approximately 1 min. To avoid inter-observer 
variability between the expert-verified AI and the manual microscopy, the same expert (FK) performed the 
verification in the AI-verificator tool and manual microscopy of the smears.

Composite reference standard
The three methods were compared with a composite reference standard that included manually and digitally 
verified positive Kato-Katz thick smears. The composite reference standard assumes that the manually verified 
findings were correct and were consequently defined as true positives. Previous studies have adopted similar 
approaches assuming specificities for STHs of close to or at 100% for multiple microscopy methods including 
Kato-Katz thick smears22,23.

The samples were considered to contain manually verified eggs and thus positive if one of two criteria was 
fulfilled: First, the expert (FK) who performed the manual microscopy identified eggs in the physical smear. 
Second, if a suspicious object presented in the AI verification app was identified independently as an egg by two 
experts (FK and KO) in the digital smear. The remaining slides, without any eggs identified in either the physical 
or digital smears, were considered negative.

Statistical analysis
The necessary sample size for the study was based on the estimations in our previous study14. Based on these 
calculations, 692 and 173 samples were required for sensitivity and specificity, respectively14. Data from each 
sample were entered into a spreadsheet (Microsoft Excel, Microsoft, Redmond, WA, USA). The analyses were 
performed using general-purpose statistical software (Stata, version 18.0, College Station, TX, USA) and 
the metrics evaluated for diagnostic accuracy were specificity and sensitivity. Sensitivity and specificity were 
calculated separately for each species. Statistical estimates of diagnostic accuracy were reported with a CI95%. 
The level of statistical significance was set at 0.05 for all analyses. Further, the positive and negative predictive 
values were calculated for each method and are available in the Supporting Information. To evaluate the statistical 
significance between the different diagnostic methods, McNemar x2 was applied as proposed by Trajman and 
Luiz27. To approximate the EPG of stool it was estimated that each sample contained 41.7 mg stool, rendering 
a factor of 24 (24 × 41.7 mg ≈ 1 g)9. P-values for comparison of egg counts in the positive smears between the 
diagnostic methods were calculated using the Wilcoxon signed-rank test, with the exact probabilities used. This 
was done since the paired egg-counts were non-normally distributed and the number of positive smears was low 
for A. lumbricoides (n = 6).

Fig. 6.  The view of the AI-verificator tool in single object verification mode.
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Data availability
All data required to evaluate the conclusions in the article are included in the manuscript and/or the supple-
mentary material. Additional data are available on request from the Data Access Committee (FIMM-DAC) at 
Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland; fimm-dac@helsin-
ki.fi. Further requests for sharing of deidentified data (digitized samples) will be considered by the FIMM-DAC 
abiding the following principles: data will be securely stored with appropriate documentation and not disposed 
into publicly accessible domains or otherwise shared without explicit permission from the FIMM-DAC, and 
data are only used with the aim to generate data for the public good.
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