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Risk management is essential for optimal decision-making during tunnel boring machine (TBM) 
excavation. Previous methods, however, have struggled with interpreting the uncertainties associated 
with TBM excavation and managing multiple concurrent adverse factors. This study proposes an 
interpretable risk management method that effectively addresses these uncertainties and concurrent 
sources. It employs an expert elicitation framework combined with fuzzy set theory to distribute the 
confidence levels of experts’ evaluations across multiple classes. The resulting impact, probability, and 
risk are presented as distributions, allowing for a comprehensive interpretation of expert judgment 
trends, which reveals how uncertainties are distributed and identifies any dominant class or risk level. 
The proposed method was applied to a slurry shield TBM tunnel project, where most distributions 
showed no single dominant class or risk level due to significant uncertainties, emphasizing the need for 
comprehensive interpretation. Furthermore, the method effectively addressed increased probabilities 
and risks stemming from concurrent factors, in contrast to when these factors were considered 
individually. Comparative analysis demonstrated that even meaningful but minor responses can 
significantly influence the determination of risk levels through comprehensive interpretation.
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Tunnel construction has emerged as a viable solution to address the challenges of densely populated surface 
spaces and growing traffic congestion costs1. Among various tunnel construction methods, there has been a 
substantial increase in demand for tunnel boring machines (TBMs) due to their eco-friendliness, stability, and 
constructability. However, the inherent risk arising from various uncertainties associated with TBM excavation 
cannot be disregarded. Therefore, during the design phase, effective risk management is required for optimal 
decision-making, which mitigates delays and potential casualties resulting from accidents.

Risk is generally defined as the expected losses of a specific factor, which is expressed through two risk 
components: impact and probability2. Due to the site-specificity of these components and challenges in collecting 
and analyzing quantitative data, risk management during the design phase has relied on expert elicitation. As a 
widely adopted scientific consensus methodology, expert elicitation aggregates expert judgments on a particular 
subject, especially in situations with limited information3. Previous studies on tunnel risk management have 
integrated expert elicitation with various techniques2,4–8. For instance, Eskesen et al.2 provided guidelines for 
expert elicitation in tunnel risk management with systematic risk management techniques. Hong et al.4 analyzed 
the probability of risk in underwater TBM tunneling by applying event tree analysis (ETA). Hyun et al.5 developed 
a risk matrix method that incorporated fault tree analysis (FTA) and analytic hierarchy process (AHP). Chung 
et al.6 assessed the degree of risk of potential accidents for each geological source based on Bayesian networks 
and detailed cost analysis of mitigation measures. Chung et al.7 improved the risk matrix method by employing 
causal networks. Sharafat et al.8 integrated FTA and ETA, presenting a risk management method featuring a 
generic bow-tie structure. In these approaches, each expert first selects a class or value for impact and probability. 
The aggregated expert judgments are then employed in various methods (e.g., ETA, FTA, and AHP) to evaluate 
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the overall impact, probability, and associated risk level. However, expert judgments in TBM excavation are 
subject to significant uncertainty due to limited available information9. Accordingly, relying on a single selection 
to assess impact and probability may be insufficient to fully capture the inherent uncertainties. Moreover, these 
studies tend to focus exclusively on major responses, overlooking the uncertainties reflected in less frequent 
ones, which may lead to limited or less robust decision-making. For example, Hyun et al.5 and Chung et al.7 
determined risk levels solely based on the most frequently selected impact and probability classes (e.g., Low), 
without accounting for the contributions of responses falling into other possible classes (e.g., Medium or High).

Fuzzy set theory (FST) addresses uncertainties by distributing an expert’s evaluation confidence across 
multiple classes using the concept of membership degree, which indicates the degree to which an element 
belongs to a set. Accordingly, FST has been widely applied to risk management in various domains, including 
tunnel construction10–15, rock or coal bursts16,17, and other related fields18–22. Nonetheless, these FST-based 
studies face challenges in interpretability, particularly in illustrating how uncertainties arising from expert 
elicitation are distributed across multiple classes and whether any specific class exhibits dominance. Moreover, 
risk management involving concurrent sources has not been fully explored, although their complex interactions 
can significantly increase the risk of certain types of accidents23. In other words, most of previous studies 
struggle to adequately capture the synergistic risk arising from the simultaneous occurrence of multiple sources. 
For instance, Nezarat et al.10 assessed the risk of each geological source independently and prioritized them 
accordingly, without considering potential interactions among concurrent sources. Although Koohathongsumrit 
and Chankham12 considered multiple concurrent sources using FTA, the inherent logic of the OR gate in FTA 
may lead to an overestimation of accident probability, even when the individual probabilities of all contributing 
sources are relatively low.

This study proposes an interpretable risk management method to support optimal decision-making by 
addressing uncertainties and multiple risk sources. By integrating an expert elicitation framework with FST, this 
method accommodates expert responses that reflect uncertainties. Representing impact, probability, and risk as 
distributions enables a comprehensive interpretation of expert judgment trends, thereby capturing underlying 
uncertainties. A comparative analysis further assesses the influences of concurrent sources on risk compared 
to individual sources. The validity of the proposed method is demonstrated through its application to a slurry 
shield TBM tunneling project.

Theory
Fuzzy set theory (FST)
Fuzzy set theory (FST), initially proposed by Zadeh24, has been utilized for addressing qualitative and subjective 
problems with uncertainties induced by a lack of data or natural sources25. In classical set theory, an element 
must be either a member of the set or not, indicating that the membership degree is zero (non-member) or one 
(member) due to the crisp set boundary. However, FST allows elements to have arbitrary membership degrees 
between zero and one with the aid of an ambiguous set boundary. This feature makes FST a suitable tool for 
modeling uncertainty in various fields, such as risk management, decision-making, and pattern recognition.

Assuming that the fuzzy set is A and the elements are x, the membership function is expressed as µA(x). 
Although various forms of membership functions exist, such as Gaussian and parabolic types, triangular and 
trapezoidal functions are commonly employed due to their ease of definition, representation, and computation26. 
These two function types effectively capture uncertainty while maintaining clear relationships between elements 
and their membership degrees, which is an essential feature in risk management based on expert elicitation. 
Moreover, their widespread use and demonstrated applicability in previous studies18–22,26–28 support their 
adoption. Accordingly, this study employs these two simpler forms, as detailed in Section “Risk analysis”.

The triangular membership function, denoted as (a, b, c), is mathematically formulated using Eq. (1), where 
b gives the maximum value, and a and c denote the lower and upper bounds of the available area, respectively27.

	
µA(x) =

{ x−a
b−a

(a ≤ x < b)
c−x
c−b

(b ≤ x ≤ c)
0 (Otherwise)

� (1)

The trapezoidal membership function is denoted as (a, b, c, d) and mathematically formulated as Eq. (2), where 
the interval [b, c] gives the maximum value, and a and d connote the lower and upper bounds of the available 
area, respectively27.
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Risk matrix
A risk matrix has been widely applied to determine a risk level as it is an intuitive and effective approach2,5,7. 
Specifically, the risk level determination involves combining the impact and probability classes evaluated for the 
corresponding adverse factor. For example, according to Fig. 1, the risk level is classified as Tolerable when the 
impact and probability classes are evaluated as Low and Medium, respectively. Here, the risk level serves as a 
criterion for determining the required level of mitigation measures for the associated adverse factors, facilitating 
implementation of appropriate mitigation measures.
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Analytic hierarchy process (AHP)
The analytic hierarchy process (AHP) has been widely adopted as a technique for determining the weight of each 
decision-making factor in tunnel risk management5,10,11. It involves conducting a pairwise comparison between 
elements based on a specific criterion to determine their relative importance29. A pairwise comparison matrix 
(Eq. 3) is constructed based on expert surveys, and the eigenvalue method is employed to derive the relative 
importance of each element, which is represented as weight. In Eq. (3), aij  represents the importance ratio of 
the ith to jth element. In this study, comparative expert judgments are conducted using a 1–5 scale. A rating 
of 1 represents equal importance between the two elements, while a rating of 5 indicates that one element is 
considered to have a significantly stronger influence than the other, as detailed in Table 1. The eigenvalue method 
identifies the principal eigenvector of a pairwise comparison matrix and derives the component of the vector as 
the weight of each element30. In this study, it is used to construct the weighted risk matrix (WRM), as discussed 
later in Section “Risk evaluation”.

	

A = |aij | where i, j = 1, 2, . . . , n
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Method
Risk identification
Adverse factors requiring risk management are identified in risk identification. In this study, the factor under 
consideration is a causal combination, representing a one-to-one causal relationship between a potential 
accident and its source specific to a target tunneling site. This approach accounts for the varying probability of 
accidents depending on the accident-inducing source. Accordingly, identifying accidents, sources, and causal 
combinations associated with the target tunneling site is essential for this study.

Moreover, the proposed method addresses the coexistence of multiple sources that could independently 
contribute to a specific accident. In this context, a concurrent causal combination is defined as a causal relationship 
between an accident and each concurrent source affecting the accident. This study focuses on potential geological 
sources because these are inherent to the site and contribute significantly to a large proportion of reported 
accidents31,32. In addition, estimating the probabilities associated with operational sources must account for 
potential improper TBM operations, a challenging task during the design phase33. To enhance the reliability of 
risk identification results, this study employs both literature reviews and expert interviews concurrently34.

Risk analysis
In this study, the objective of risk analysis is to derive impact and probability distributions through expert 
elicitation integrated with FST. These distributions are expressed with the membership degree allocated to each 
class, as later illustrated in Figs. 5, 6, and 7. This study adopts four classes (i.e., None [N], Low [L], Medium [M], 

Intensity of the relative importance Definition

1 Two items are considered equally

3 One is considered slightly influential over another

5 One is considered strongly influential over another

Reciprocals of above numbers
When the ith item compared to the jth item is 
assigned one of the above numbers, the jth item 
compared to the ith item is assigned to its reciprocal

Table 1.  Scale for pairwise comparison in the AHP29.

 

Fig. 1.  Risk matrix example.
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and High [H]) represented with two membership function forms (i.e., triangular and trapezoidal). Furthermore, 
12 scores (i.e., integers between 1 and 12) are used to quantify the membership degree of each impact and 
probability class. Establishing membership functions for the adopted classes involves three key considerations:

	1.	 The total membership degree of two classes is set to one when a given score is associated with them.
	2.	 The classes at the extremes (i.e., N and H classes) possess a wider range with a membership degree of one 

because they may have higher judgmental clarity compared to the intermediate classes.
	3.	 An appropriate number of scoring options should be available to enable differentiated distributions of mem-

bership degrees between two adjacent classes (e.g., 1/3 for N class and 2/3 for L class), while also avoiding an 
excessive number of choices.

The membership functions corresponding to each impact/probability class and score are shown in Fig. 2 and 
summarized in Table 2, respectively.

Subsequently, each expert is required to select one of the 12 available scores when assessing impact and 
probability. Unlike the probability of an accident, this study assumes that the impact of the accident remains 
relatively constant, even if the accident-inducing source changes. Thus, the impact scores relate to the accident, 
while the probability scores pertain to the causal combination. In this method, the impact of a causal combination 
is assumed to be equal to that of an accident within the same causal combination.

Meanwhile, due to the inherent subjectivity of expert judgment, some experts may provide outlier responses 
that significantly deviate from others, potentially influencing the outcomes of risk management. To mitigate 
the impact of such outliers during the aggregation of expert opinions, this study employs an outlier exclusion 
approach based on the interquartile range (IQR). In general, the IQR is the difference between the first quartile 
(Q1) and third quartile (Q3) of the data, as expressed in Eq. (4). The data falling outside the lower bound (Eq. 5) 
and upper bound (Eq. 6), as defined by the IQR, are excluded.

	 IQR = Q3 − Q1� (4)

	 Lower bound = Q1 − 1.5 ∗ IQR� (5)

	 Upper bound = Q3 + 1.5 ∗ IQR� (6)

Although this general IQR-based outlier exclusion method is effective, the difference between the bounds may 
decrease when the IQR approaches zero, resulting in the exclusion of data slightly differing from the majority. To 
address this limitation, cases where the IQR is less than two are adjusted to set the IQR to two. Following outlier 

Membership degree

Score

1 2 3 4 5 6 7 8 9 10 11 12 

Class

None [N] 1 1 2/3 1/3 0 0 0 0 0 0 0 0

Low [L] 0 0 1/3 2/3 1 2/3 1/3 0 0 0 0 0

Medium [M] 0 0 0 0 0 1/3 2/3 1 2/3 1/3 0 0

High [H] 0 0 0 0 0 0 0 0 1/3 2/3 1 1

Table 2.  Membership degree corresponding to each class and score.

 

Fig. 2.  Membership functions employed in this study.
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exclusion using the modified IQR, the membership degrees for all impact and probability classes are calculated 
using Eqs. (7) and (8). Here, MDI  and MDP  represent the membership degrees for impact and probability, 
respectively, while i, j, and n denote the class, score, and number of non-excluded experts. Consequently, the 
impact and probability distributions are represented based on the calculated membership degrees. Importantly, 
a comprehensive interpretation of these distributions can clarify how uncertainties are distributed across all 
classes and indicate whether any specific class demonstrates dominance.

	
MDI,i =

∑12
j=1MDI,i,j

n
� (7)

	
MDP,i =

∑12
j=1MDP,i,j

n
� (8)

Furthermore, this method derives the probability and risk distributions corresponding to concurrent causal 
combinations. In this study, a probability set is defined as a combination of the four probability classes of single 
causal combinations, such as None–Low (involving two sources) and High–Medium–Medium (involving three 
sources). Each single causal combination represents the relationship between one source and a specific accident 
within a specific concurrent causal combination. The representative probability class for each probability set is 
the most dangerous class among the combined probability classes; for instance, None–Low corresponds to Low, 
and High–Medium–Medium corresponds to High.

The process for determining the probability distributions of concurrent causal combinations consists of 
two steps. First, the membership degree of each probability set is calculated by multiplying the membership 
degrees of the probability classes within that probability set. Second, the membership degree of each individual 
probability class (i.e., None, Low, Medium, and High) is determined by summing the membership degrees of all 
probability sets where that class is representative, which can also be expressed as Eq. (8). This approach supports 
risk management for any combination of existing sources by incorporating the individual causal combinations 
associated with each source. Furthermore, it enables dynamic updates to risk management through real-time 
assessment of unforeseen causal combinations among known sources.

Risk evaluation
The risk evaluation aims to determine risk distributions and risk levels based on the impact and probability 
distributions with a risk matrix. It is crucial to define specific criteria when constructing the risk matrix for 
application to a particular project. For example, a symmetric risk matrix may be limited as it yields the same 
risk level regardless of whether the analyzed impact and probability classes are reversed. Depending on project’s 
specific objectives and financial margins, one risk component may need to be considered more influential 
than the other. This prioritization necessitates the use of an asymmetric risk matrix that reflects the differing 
importance of each component. In this study, weights are assigned to the impact and probability components 
to quantify their relative significance, and an asymmetric risk matrix, referred to as the weighted risk matrix 
(WRM), is constructed accordingly. AHP (refer to Section “Analytic hierarchy process (AHP)”) is employed to 
determine the weight of each risk component and construct the WRM. Experts with professional experience and 
knowledge compare two risk components for weight distribution and evaluate the relative importance of one 
risk component over the other based on Table 1. Applying AHP to the aggregated expert judgments, the impact 
weight (ωI ) and probability weight (ωP ) are determined.

The proposed method involves the development of questionnaires that require experts to assign scores for 
both impact and probability assessments, as well as to evaluate the relative importance of impact compared to 
probability. For instance, experts are asked to: (1) assess the probability score of Faults-Collapse on a scale from 
1 to 12; (2) assess the impact score of Collapse on a scale from 1 to 12; and (3) evaluate the relative importance of 
Impact compared to Probability using the scale [5, 3, 1, 1/3, 1/5].

This study adopts four risk levels (i.e., Negligible [N], Tolerable [T], Significant [S], and Intolerable [I]). 
Notably, the risk level is classified based on a combination of impact and probability classes to construct the 
WRM. The class representative score (CRS) of the impact and probability is defined as N = 2, L = 5, M = 8, 
and H = 11, with reference to Fig. 2. Subsequently, the risk level score (RLS) of each component set (i.e., the 
combination of the impact and probability classes) is calculated using the assigned weights and CRS, as expressed 
in Eq. (9). The risk level of each component set is determined based on the magnitude of the calculated RLS 
(i.e., N : 2 < RLS ≤ 4.25, T : 4.25 < RLS ≤ 6.5, S : 6.5 < RLS ≤ 8.75, I : 8.75 < RLS ≤ 11). It is 
important to note that the WRM should be reconstructed for each project considering its objective and financial 
margin. An example of the constructed WRM is provided in Fig. 8, as presented later in Section “Results of risk 
evaluation”. Table 3 summarizes whether to take mitigation measures according to each risk level.

Risk level Need for mitigation measures

Negligible [N] Mitigation measures are unnecessary

Tolerable [T] Mitigation measures not recommended but can be taken depending on the situation

Significant [S] Mitigation measures recommended but cannot be taken depending on the situation

Intolerable [I] Mitigation measures are necessary

Table 3.  Need for mitigation measures according to risk level.

 

Scientific Reports |        (2025) 15:23030 5| https://doi.org/10.1038/s41598-025-07514-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	 RLS = CRSI × ωI + CRSP × ωP � (9)

This study first determines the risk distributions based on the impact and probability distributions as well 
as the WRM. Then, it provides the risk levels that facilitate an intuitive understanding of the results of risk 
management. This study recommends optimal decision-making for mitigation measures based on the 
comprehensive interpretation of risk management results, including impact, probability, risk distributions, and 
risk levels, during the design phase. The risk evaluation process is summarized as follows.

	1.	 The membership degree of each component set (e.g., None-Low) is calculated by multiplying that of the 
corresponding impact class (e.g., MDI,N) and probability class (e.g., MDP,L) that constitute the component set.

	2.	 The membership degree of each risk level is then determined by summing the membership degrees of all 
component sets that contribute to that risk level, based on the WRM, thereby obtaining a complete risk dis-
tribution. For example, considering Table 8 in Section “Results of risk evaluation”, the membership degree 
of the Negligible risk level is calculated by summing the membership degrees of four component sets (i.e., 
None-None, None-Low, None-Medium, and Low-None).

	3.	 The final risk level is identified as the one with the highest membership degree. If multiple risk levels share 
the highest degree, the more severe level is selected to ensure a conservative approach to risk management.

Both single and concurrent causal combinations are applied identically in this risk evaluation process. The risk 
evaluation results for both individual and concurrent causal combinations support the development of mitigation 
measures tailored to each source and their interactions. Notably, decisions regarding the implementation and 
extent of mitigation measures should consider not only the final risk level but also the membership degrees of 
the various risk levels. For instance, if the membership degree of Intolerable is substantial when the final risk 
level is classified as Significant, mitigation measures should still be applied. In this way, the interpretable results 
provided by the proposed method can support more informed and comprehensive risk management decisions. 
Figure 3 presents a flowchart illustrating the process of the interpretable risk management method, covering risk 
identification, analysis, and evaluation.

Results
Project overview
The proposed method was applied to a 2.86 km under-river tunnel project to verify its practical applicability. 
This tunnel has been under construction since 2022, with its alignment passing through several hazardous 
sections associated with shallow cover depth, mixed ground conditions, and high water pressure exceeding 300 
kPa. A slurry shield TBM with a 14.01 m diameter was utilized, which is advantageous for face pressure control. 
Details of the slurry shield TBM are summarized in Table 4. The ground along the tunnel alignment primarily 

Fig. 3.  Flowchart of the proposed method.
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comprises weathered, soft, fair, and hard rocks. The longitudinal geological profile along the tunnel alignment 
is depicted in Fig. 4.

Results of risk identification
Through literature reviews and expert interviews, five potential accidents likely to occur during the under-river 
tunneling project were identified at this site. Table 5 presents these accidents and the sources of high association 
with each accident present at this site. Table 6 summarizes the causal combinations based on the identified 
sources and accidents. The concurrent causal combinations are identified by linking one accident with multiple 
related sources, such as [Faults and Shallow cover depth–Collapse].

Table 6 is organized based on findings from a review of relevant previous studies. Faults can induce shear 
failure along discontinuities and deform the surrounding ground, resulting in collapse, surface settlement, and 
mud/water inflow. The slurry can infiltrate the tunnel face and be ejected onto the ground surface (i.e., blow-
out) due to the high hydraulic conductivity of the faults. Additionally, clay minerals within fault gouges can 
adhere to cutter head and disc cutters depending on soil properties such as cohesion and water content, inducing 
cutter head clogging35. Shallow cover depth can expand the displacement of the surrounding ground to the 
ground surface, and if displacement continues, the ground can collapse. Moreover, heaving or blow-out can 
occur when the face pressure exceeds the overburden pressure arising from the shallow cover depth. Mixed 

Type Symbol Description

Accident

A1 Collapse

A2 Surface settlement

A3 Heaving or blow-out

A4 Mud/water inflow

A5 Cutter head blockage

Source

S1 Faults

S2 Shallow cover depth

S3 Mixed ground

S4 Cross-passage

S5 High water pressure

S6 Weathered ground

Table 5.  Identified accidents and sources of the target project.

 

Fig. 4.  Geological profile of the site investigated in this study.

 

Description Specification

TBM excavation diameter 14.01 m

Max. thrust force 171,003 kN

Max. torque 39,727 kN⋅m

Max. RPM 4.0

Max. working pressure 600 kPa

Segment diameter 13.5 m (OD*), 12.6 m (ID*)

Segment width 2.0 m

Table 4.  Utilized slurry shield TBM specifications. *OD: outer diameter, ID: inner diameter.
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ground conditions can cause uneven face pressure on the TBM, leading to face instability and over-excavation of 
weaker parts of the mixed ground, resulting in collapse and surface settlement36.

Stress concentration can occur during cross-passage excavation owing to the different constraints and 
behaviors at the connection37, and deform the surrounding ground and segment lining, thereby enabling collapse, 
surface settlement, and mud/water inflow. High water pressure is a primary consideration for face pressure 
management. Unless the management is appropriate, ground loss due to the mud/water inflow increases, leading 
to collapse or severe surface settlement. Finally, weathering can lead to the inability to maintain face pressure, 
inducing collapse or excessive settlement38. Discontinuities in weathered rock can also increase the possibility of 
mud/water inflow into the TBM39.

Results of risk analysis
Expert elicitation engaged 30 experts possessing relevant expertise and experience to determine impact and 
probability distributions. Specifically, five of these experts have over 15 years of experience in TBM tunnel design 
and construction, while the remaining experts have over 10 years of experience. This process was conducted 
through written evaluations using questionnaires, which required the experts to assign scores for impact and 
probability, as well as to determine the relative importance of impact compared to probability. Figure 5 presents 
the impact distributions for the five identified accidents, with each distribution labeled using the corresponding 
symbol defined in Table 5.

According to Fig. 5, none of the identified accidents showed a single dominant class with a membership 
degree above 0.5. However, the sum of the membership degrees corresponding to the M and H classes, except for 
cutter head blockage (A5), exceeded 0.5, suggesting that the occurrence of these accidents causes severe damage 
during TBM tunneling. Meanwhile, the impact distribution was more left-skewed in the order of A1, A2, A3, 
A4, and A5, implying that the impact of these accidents was relatively low in the same order. This observation is 
in line with the findings of Sousa and Einstein40, which identified collapse as the most critical accident in tunnel 
excavation.

The probability distributions of all identified causal combinations are shown in Fig. 6, with each distribution 
labeled according to the corresponding symbol defined in Table 6. Similar to the impact distributions, except for 
S4-A1, all causal combinations showed balanced probability distributions with no noticeably high membership 
degree in any of the classes. Particularly, in the case of S5-A1, the membership degrees of three classes were 
evidently comparable (N: 0.32, L: 0.31, and M: 0.29).

Figures 5 and 6 indicate that the impact and probability distributions should be considered comprehensively 
rather than focusing solely on the class with the highest membership degree. Relying on a single class in risk 
management may result in limited decision-making. In contrast, a comprehensive interpretation of impact and 
probability distributions clarifies how uncertainties are distributed across all classes and reveals whether any 
specific class exhibits dominance.

Meanwhile, the probability distributions of causal combinations associated with the collapse (S1-A1, S2-
A1, S3-A1, S4-A1, and S5-A1) were more left-skewed compared to those of the remaining combinations (i.e., 
the N and L classes exhibit relatively higher membership degrees than the others). This implies that adequate 
preventive measures are being designed or implemented to mitigate the most critical accident (A1). In addition, 

No Symbol

Causal combination

Source Accident

1 S1-A1 Faults

Collapse

2 S2-A1 Shallow cover depth

3 S3-A1 Mixed ground

4 S4-A1 Cross-passage

5 S5-A1 High water pressure

6 S1-A2 Faults

Surface settlement

7 S2-A2 Shallow cover depth

8 S3-A2 Mixed ground

9 S4-A2 Cross-passage

10 S5-A2 High water pressure

11 S6-A2 Weathered ground

12 S1-A3 Faults
Heaving/blow-out

13 S2-A3 Shallow cover depth

14 S1-A4 Faults

Mud/water inflow
15 S4-A4 Cross-passage

16 S5-A4 High water pressure

17 S6-A4 Weathered ground

18 S1-A5 Faults
Cutter head blockage

19 S3-A5 Mixed ground

Table 6.  Identified causal combinations of the target project.
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the causal combinations with the highest membership degree of the M class pertained to surface settlement and 
heaving/blow-out sourced from shallow cover depth (S2-A2 and S2-A3). Moreover, the H class’s membership 
degree of S2-A1 was higher than that of the remaining combinations. Therefore, shallow cover depth can be 
identified as the most accident-inducing source during TBM tunneling at this site.

Furthermore, this study specifically examined the probability distributions of concurrent causal combinations 
involving two sources that induce collapse, although the proposed method is applicable to other combinations 
as well. The ten concurrent causal combinations under consideration and their probability distributions are 
summarized in Table 7 and Fig. 7, respectively.

As shown in Fig. 6, the five single causal combinations associated with collapse (i.e., S1-A1, S2-A1, S3-A1, 
S4-A1, and S5-A1) exhibited the highest membership degree in the N and L classes. In contrast, their concurrent 
causal combinations had the highest membership degree in the L and M classes, as illustrated in Fig. 7. These 
differences indicate that the proposed method effectively captures the increased probability arising from 
concurrent multiple sources compared to a single source.

Results of risk evaluation
Through expert elicitation from the 30 experts participating in risk analysis, the impact weight (ωI ) and 
probability weight (ωP ) were determined to be 0.74 and 0.26, respectively. Figure 8 and Table 8 present the 
WRM and the corresponding risk levels for each component set, determined based on the assigned weights, 
CRS, and RLS described in Section “Risk evaluation”. Figure 9 illustrates the risk distributions of single causal 
combinations determined by integrating the impact and probability distributions with the WRM.

As shown in Fig. 9, none of the risk distributions exhibit a single dominant risk level with a membership 
degree greater than 0.5. Additionally, 12 out of the 19 causal combinations were classified as the S risk level, 
where mitigation measures are recommended, though their implementation depends on the specific situation 
(refer to Table 3). Therefore, it is essential to consider the various risk levels (i.e., N, T, and I risk levels) to 
optimize decision-making regarding the implementation of mitigation measures. This analysis is facilitated by 
the comprehensive interpretation of risk distributions offered by the proposed method, which allows for an 
examination of how uncertainties are distributed across all risk levels and the identification of any dominant 
risk level.

Meanwhile, despite having the same component set consisting of the impact and probability classes with the 
highest membership degree, several causal combinations resulted in different risk levels. For instance, compared 
with S2-A1 and S3-A1, the final risk level was observed to be the I risk level for the former and the S risk level 
for the latter, although they equally had the highest membership degree at the H impact class and L probability 
class. This discrepancy stems from that S2-A1 and S3-A1 exhibited relatively high membership degrees of the H 
and N classes regarding probability, respectively. These findings also highlight the necessity of a comprehensive 
interpretation of the probability distribution for the elaborate determination of the risk level, which is not 
possible when considering only a single probability class with the highest membership degree.

Similar to the probability analysis, the importance of the proposed method’s interpretability for uncertainty 
consideration was confirmed through balanced risk distributions across most causal combinations. Specifically, 
ten causal combinations demonstrate minor differences (< 0.05) in the first and second-highest membership 
degrees of risk levels, as shown in Fig. 9. For all causal combinations associated with mud/water inflow (S1-A4, 
S4-A4, S5-A4, and S6-A4) and cutter head blockage (S1-A5 and S3-A5), the difference in membership degree 

Fig. 5.  Impact distributions.
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between the T and S risk levels was less than 0.05. It arose from the similar membership degree between the L 
and M classes of those accidents’ impact. Notably, S5-A1 demonstrates the same highest membership degree 
in two risk levels (i.e., S and I risk levels), which may result from the high standard deviation value described 
in the probability analysis. Such absence of a single dominant risk level demonstrates the danger of the limited 
consideration of only the risk level with the highest membership degree. The proposed method can overcome 
this limitation by exploring the presented risk distribution comprehensively.

No Symbol

Concurrent causal combination

Source 1 Source 2 Accident

1 (S1, S2)-A1 Faults Shallow cover depth

Collapse

2 (S1, S3)-A1 Faults Mixed ground

3 (S1, S4)-A1 Faults Cross-passage

4 (S1, S5)-A1 Faults High water pressure

5 (S2, S3)-A1 Shallow cover depth Mixed ground

6 (S2, S4)-A1 Shallow cover depth Cross-passage

7 (S2, S5)-A1 Shallow cover depth High water pressure

8 (S3, S4)-A1 Mixed ground Cross-passage

9 (S3, S5)-A1 Mixed ground High water pressure

10 (S4, S5)-A1 Cross-passage High water pressure

Table 7.  Concurrent causal combinations consisting of two sources inducing collapse.

 

Fig. 6.  Probability distributions of single causal combinations.
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Meanwhile, S1-A1, S2-A1, and S5-A1 were categorized under the I risk level, necessitating mitigation 
measure implementation. In collaboration with professional site managers, mitigation measures are identified 
for managing the causal combinations at the I risk level, despite minor differences (less than 0.05) in membership 
degrees between the S and I risk levels for S3-A1 and S4-A1. Overall, real-time monitoring and control of face 
pressure and muck discharge volume are planned to ensure face stability and reduce the risk of over-excavation 
during TBM excavation. Injecting high-density slurry proves advantageous in quickly forming filter cakes, 
especially under high water pressure conditions where groundwater inflow may otherwise dilute the slurry or 
hinder proper filter cake formation.

Subsequently, Fig.  10 presents the risk distributions of concurrent causal combinations listed in Table 7. 
As observed in Fig. 9, three out of the five causal combinations associated with collapse were classified as the 
I risk level, while the remaining exhibited the S risk level. In contrast, all concurrent causal combinations 
were categorized as the I risk level, as depicted in Fig. 10. The risk distributions for these concurrent causal 
combinations emphasize that the proposed method effectively addresses higher-risk scenarios arising from 
concurrent sources, unlike the previous studies.

Comparative analysis
A comparative analysis was conducted for two cases to examine the influence of comprehensive interpretation. 
Case 1 is the proposed method, incorporating all impact and probability classes in determining risk levels, 
whereas Case 2 focuses only on the single class with the highest membership degree. The results of the 
comparative analysis are summarized in Table 9.

Although the risk levels of the two cases are consistent overall, five causal combinations obtained different risk 
levels. For four out of these causal combinations (S3-A1, S4-A1, S4-A4, and S6-A4), the risk level considering all 
classes was less dangerous than when considering a single class. These differences were investigated by comparing 

Fig. 8.  WRM determined at this site.

 

Fig. 7.  Probability distributions of concurrent causal combinations consisting of two sources inducing 
collapse.
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Fig. 9.  Risk distributions of single causal combinations.

 

Component set

Risk levelImpact class Probability class

None [N] None [N] Negligible [N]

None [N] Low [L] Negligible [N]

None [N] Medium [M] Negligible [N]

None [N] High [H] Tolerable [T]

Low [L] None [N] Negligible [N]

Low [L] Low [L] Tolerable [T]

Low [L] Medium [M] Tolerable [T]

Low [L] High [H] Significant [S]

Medium [M] None [N] Tolerable [T]

Medium [M] Low [L] Significant [S]

Medium [M] Medium [M] Significant [S]

Medium [M] High [H] Intolerable [I]

High [H] None [N] Significant [S]

High [H] Low [L] Intolerable [I]

High [H] Medium [M] Intolerable [I]

High [H] High [H] Intolerable [I]

Table 8.  Determined risk level corresponding to each component set.
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the risk analysis and evaluation results of these causal combinations with those of other causal combinations 
associated with the same accidents (i.e., A1 and A4). Specifically, S3-A1 and S4-A1 were compared with S1-
A1 and S2-A1; in addition, S4-A4 and S6-A4 were compared with S1-A4 and S5-A4. The observed differences 
in the four causal combinations occurred, as only Case 1 reflected meaningful membership degrees for the N 
probability class (more than 0.25). In contrast, in the case of S5-A1, the risk level considering all classes was 
derived as more dangerous because it considered its close membership degrees of three probability classes (N: 
0.32, L: 0.31, and M: 0.29).

These observations suggest a risk of limited decision-making when meaningful membership degrees are 
disregarded, thereby highlighting the importance of a comprehensive interpretation. Although the risk level in 
the proposed method was elaborately derived by addressing uncertainties, its consideration along with the risk 
distribution in parallel can enable a more comprehensive interpretation of the risk management results.

Discussion
The proposed interpretable risk management method offers three key contributions. First, the FST-based expert 
elicitation framework addresses uncertainties by allowing experts to distribute their evaluation confidence. 
Second, the proposed method facilitates a comprehensive interpretation of overall expert judgment trends by 
representing impact, probability, and risk as distributions. This approach makes it possible to examine how 
uncertainties are distributed and to identify any dominant class or risk level, ensuring that meaningful but less 
prominent responses are also considered. Third, this method effectively captures the increased probability and 
risk associated with concurrent sources that may induce a specific accident.

However, the proposed method focuses on geological sources, excluding operational sources. As previously 
mentioned, estimating the probability of accidents induced by TBM operational sources is challenging during 
the design phase because it necessitates assumptions about improper TBM operations during construction. 
Moreover, a limitation of the proposed method lies in the absence of analyses incorporating diverse types of 
membership functions. Future studies could incorporate incremental weighting for operational sources into the 
results based on geological sources, particularly when accidents or unexpected geological sources are predicted 
by real-time models using electrical resistivity surveys or machine learning techniques41–46. Furthermore, 
exploring a broader range of membership function types, such as Gaussian and parabolic functions, could 
further enrich and diversify risk management approaches.

Conclusions
This study presented an interpretable risk management method for optimizing decision-making in TBM risk 
management. It incorporates an FST-based expert elicitation designed to manage uncertainties. In addition, a 
comparative analysis evaluated the influence of multiple concurrent sources. This method was applied to a slurry 
shield TBM tunnel project, emphasizing its relevance. The main conclusions of this study are summarized as 
follows:

Fig. 10.  Risk distributions of concurrent causal combinations consisting of two sources inducing collapse.
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	1.	 Most of the impact, probability, and risk distributions exhibited no single dominant class or risk level due 
to significant uncertainties. This highlights the importance of comprehensive interpretation for optimizing 
decision-making, as it can analyze how uncertainties are distributed and identifies any dominant class or risk 
level.

	2.	 While only three out of five single causal combinations associated with collapse were classified as the I risk 
level, all concurrent causal combinations were categorized as the I risk level. These differences demonstrate 
the method’s effectiveness in capturing the increased risk associated with concurrent sources.

	3.	 The comparative analysis showed variations in risk levels based on the consideration of meaningful yet mi-
nor responses in risk management, indicating the importance of comprehensive interpretation. These obser-
vations demonstrate the potential for limited decision-making when meaningful responses are disregarded 
simply because they are not dominant.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to site informa-
tion security issues but are available from the corresponding author on reasonable request.

Table 9.  Comparative analysis results.
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