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High-precision prediction of near-surface PM2.5 concentration is a significant theoretical prerequisite 
for effective monitoring and prevention of air pollution, and also provides guiding suggestions for 
the prevention and control of PM2.5-related health risks. It has been acknowledged that existing 
PM2.5 prediction models predominantly rely on variables influenced by near-surface factors. This 
inherent limitation could hinder the comprehensive exploration of the continuous spatio-temporal 
characteristics associated with PM2.5. In this study, an optimal 7-day prediction model for PM2.5 
concentration based on the Stacking algorithm was constructed based on multi-source data mainly 
including atmospheric environment ground monitoring station data, MODIS remote sensing-derived 
aerosol optical depth (AOD) daily data and meteorological factors. The findings indicated that the 
PM2.5 forecasting outcomes derived from this integrated RF-LSTM-Stacking model exhibited a 
superior fit, with R², RMSE, and MAE values of 0.95, 7.74 µg/m³, and 6.08 µg/m³, correspondingly. 
This approach enhanced the accuracy of prediction to a degree of approximately 17% in comparison 
with a solitary machine learning model. The findings of this study demonstrated that the integration 
of the LSTM-RF model with the fusion-based Stacking algorithm led to a substantial enhancement 
in the accuracy of PM2.5 predictions. This model was found to serve as an effective reference for the 
monitoring of PM2.5 prediction and early warning systems.
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Particulate matter 2.5 (PM2.5) refers to particles in the atmosphere with an aerodynamic equivalent diameter of 
no more than 2.5 μm, which are capable of entering human lungs via the respiratory tract. This has the potential to 
cause harm to the human immune system and to have adverse effects on human health1,2. In the interim period, 
studies have demonstrated that atmospheric concentrations of PM2.5, which remain elevated for protracted 
durations, have a deleterious effect on the visibility of the atmosphere. Moreover, evidence has indicated that this 
phenomenon can have significant consequences for ecosystem integrity and crop productivity3,4. In recent years, 
the implementation of various measures aimed at the prevention, control, and management of air contamination 
has resulted in a notable decreased in PM2.5 concentration pollution across the majority of regions within the 
country. Nevertheless, instances of pollution remain relatively prevalent during the autumn and winter periods5,6. 
It is therefore crucial that accurate prediction of near-surface PM2.5 concentration and in-depth exploration of its 
spatial distribution are of great significance in guiding with the refined management of air pollution prevention 
and control, as well as the safeguarding of population health and safety7.

At present, the principal methodologies for the high-precision prediction of near-surface PM2.5 concentrations 
include atmospheric physical transport models and statistical theory models8. Atmospheric physical transport 
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models typically rely on emission inventories and a range of historical meteorological data, incorporating 
comprehensive considerations of chemical reactions between pollutants, the diffusion of atmospheric pollutants, 
and the process of gaseous solid-state interconversion9, such as WRF-CMAQ10, WRF-Chem11. Nevertheless, 
these techniques were constrained by inadequate temporal precision, the necessity for a considerable number 
of parameters for model construction, the prolonged process of forecasting PM2.5 concentrations, and the 
requirement for a specialized background in meteorology12. By way of comparison, statistical theory models 
did not require consideration of complex and varied chemical-physical evolution processes, as the case with 
atmospheric physical transport models. The potential existed to exploit the characteristics of the non-linear 
relationship between atmospheric pollutants, meteorological factors, the natural environment, and socio-
economic factors, in order to achieve more accurate predictions of PM2.5

13,14. The prevailing statistical theory 
models were as follows: the linear regression model15, the machine learning model16, and the deep learning 
model17. The linear regression model was advantageous in terms of simplicity, interpretability, and ease of 
comprehension. Nonetheless, it was less efficacious in the context of fitting non-linear relationships and data sets 
with extensive feature spaces, was vulnerable to the influence of outliers, and was incapable of accommodating 
high-dimensional features18. The most commonly adopted machine learning models, such as Random Forest 
(RF)19 and Support Vector Machines (SVM)20, were preferred due to their underlying mathematical theory. 
However, the efficacy of these models was constrained by limitations in their data feature extraction abilities 
and a tendency to overfit, particularly when the available data was insufficient for effective training. The most 
common deep learning models currently in use are Long Short-Term Memory Neural Networks (LSTM) and 
Convolutional Neural Networks (CNNs)21. These models were demonstrated proficiency in temporal feature 
extraction; however, they are vulnerable to challenges such as local optimality and sluggish iteration speeds22.

Ensemble learning is a machine learning approach that has been shown to enhance the predictive accuracy 
and the robustness of the models involved by means of a combination of multiple underlying models. Common 
integrated learning algorithms include bagging, boosting, and stacking23. The Stacking algorithm is notable for 
its employment of a hierarchical structure, which is instrumental in the effective synthesis of the characteristics 
of various base learners. This process is further augmented by the utilization of data for model training and 
optimization, thereby ensuring the efficacy of the algorithm. This approach enhances the prediction accuracy 
and stability of the integrated model, while circumventing the limitations associated with overfitting and slow 
iteration speed, which are commonly observed in conventional models. A considerable body of research has 
utilized ensemble learning algorithms to predict ground-level PM2.5 concentration, yielding specific research 
outcomes24. Nevertheless, the control variables employed in these prediction studies were generally near-surface 
influences with large spatial limitations. The advent of satellite remote sensing observation technology has 
led to the availability of a greater number of continuous parameters that are indicative of spatial distribution 
for the purpose of PM2.5 concentration monitoring. This development has resulted in the provision of 
continuously varying remotely derived parameters on a large-scale spatial scale, and to a certain extent, has 
facilitated the generation of a continuous sequence of reliable eigenvectors for the prediction of near-surface 
PM2.5 concentration25. The principal remote sensing satellite-derived products employed for the monitoring 
of atmospheric aerosols are the Aerosol Optical Depth (AOD) and the Angstrom Index26,27. Aerosol optical 
depth (AOD) is a pivotal parameter in the study of atmospheric columnar aerosols, and it has emerged as a 
prevalent derivative of remotely sensed aerosols28,29. The temporal-spatial variability characteristics of aerosol 
optical thickness data would be combined with integrated learning algorithms with the objective of improving 
the prediction accuracy of PM2.5 to a certain extent.

The Beijing-Tianjin-Hebei region is of significant importance in northern China. The region is facing severe 
environmental challenges related to PM2.5 concentrations, which are a result of high-density industrial activities, 
energy consumption and traffic congestion. The accurate prediction of regional PM2.5 concentration is of significant 
scientific importance, as it would provide a robust foundation for decision-making and strategic management of 
air pollution control measures. In this study, a 7-day prediction model of PM2.5 concentration based on LSTM-
RF- Stacking Integrated Learning Framework was constructed based on the atmospheric monitoring data from 
80 national air quality monitoring stations and their corresponding AOD and meteorological data, which was 
able to capture the spatial and temporal characteristics of the future changes of PM2.5 concentration, and would 
provide an accurate reference for the prediction of and early warning for PM2.5.

Materials and data sources
Study area
The Beijing-Tianjin-Hebei region encompasses the municipalities of Beijing and Tianjin, as well as 11 prefecture-
level cities located within Hebei Province, spanning from 36°00’ to 42°40’ north latitude and 113°27’ to 119°50’ 
east longitude (Fig. 1). It is situated at the north-eastern extremity of the North China Plain, with the terrain 
exhibiting a marked elevation from west to east, with highlands in the north-west and lowlands in the south-east. 
The region encompasses by a diverse range of landforms, including plains, mountains, hills, and is classified as 
exhibiting a temperate continental climate30.

With the implementation of a series of measures to control and prevent the proliferation of air pollutants, 
PM2.5 has decreased significantly in the Beijing-Tianjin-Hebei region recently. The annual average PM2.5 in this 
area rapidly decreases from 106 µg/m³ to 37 µg/m³ between 2013 and 2022, with an average annual decrease of 
7.67 µg/m³. The proportion of polluted days with PM2.5 decreased from 37.5% in 2013 to 12% in 2022, a decrease 
of approximately 4.4%. The cumulative decrease will be approximately 37.4%, with the proportion of good days 
averaged annually at 65.5%31.
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Data source
In this study, the stacking dataset ensemble model used comprises three constituent parts: air pollution data, 
meteorological data, and AOD. Among them, the observed time series data of air pollutants were obtained 
from the China Environmental Monitoring General Station (http://www.cnemc.cn/sssj/), including seven types 
of PM10, NO2, AQI, SO2, O3, and CO, and the PM2.5 data from the National Tibetan Plateau Science Data 
Centre32,33. The meteorological data were obtained from the ERA5 global climate reanalysis dataset, published 
by the European Centre for Medium-Range Weather Forecasts. The meteorological variables included in the 
analysis were atmospheric pressure (PAIR), relative humidity (EH), temperature (TEM), and wind speed 
(WS), which are denoted by the following abbreviations; The AOD dataset was obtained from MODIS which 
is mounted on the Aqua and Terra satellite probes of the EOS series (https://ladsweb.modaps.eosdis.nasa.gov/); 
The Optical_Depth_550 dataset from the MCD19A2 data was employed to extract daily hourly AOD values 
within the study area at a wavelength of 550 nm, with the objective of contributing to the model predictions.

The dataset adopted a tabular structure with hierarchical organization by monitoring stations, where each 
row encapsulated daily observations of air quality parameters, meteorological variables, and aerosol optical 
depth (AOD) measurements, systematically timestamped by date and local time. Spanning the Beijing-Tianjin-
Hebei region from January 1 to December 31, 2020, this comprehensive collection comprised 29,263 hourly 
records obtained from 80 environmental monitoring stations. These temporally resolved measurements were 
specifically curated for time series analytical applications in atmospheric research.

Data reprocessing
The AOD dataset with the primary processing, including the extraction of the dataset, filtering of the QA values, 
and other processes. The MCD19A2 dataset was extracted by first filtering the AOD multivalue data in the 
550 nm band that had passed the quality control from the raw data and converting it to real data, which in turn 
led to the acquisition of daily 550 nm_AOD averages. Subsequently, the data underwent a series of processing 

Fig. 1.  Schematic distribution of the study area and monitoring stations.
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stages, including image stitching, conversion of the projection system, and other procedures, in order to get the 
daily AOD data.

In case a single missing value within the dataset, the preceding moment of data for that specific missing value 
was employed in its place. The min-max normalization was used to mitigate the adverse effects on the prediction 
outcomes resulting from discrepancies in the magnitude and value ranges between individual characteristics. 
Consequently, this approach accelerated the training process of the model to a certain extent, while ensuring a 
uniform transformation of the feature range between 0 and 17. The formula was as shown:

	
x̄ = x − xmin

xmax − xmin
� (1)

 

where x̄ denotes the normalized independent variable, xmax denotes the maximum value of the original 
independent variable, and xmin denotes the minimum value of the original independent variable.

Research methods
Stacking ensemble learning model
The stacking learning ensemble model is a multi-layer learning system that organizes different learners through 
a hierarchical structure (Fig. 2). The model consists of several base learners as the first layer of the prediction 
model, a meta learner as the second layer of the prediction model, and a feature extractor that trains the features 
included from the base learner model on the dataset again as inputs to the meta learner34. This process enables 
the learner model to synthesize and stack features23. Furthermore, the findings demonstrate that the robustness 
and generalizability of the stacking ensemble learning model is considerably enhanced in comparison to a 
solitary model35. In this study, the Multiple Linear Regression Model (MLR) is selected as the meta-learner. 
MLR is responsible for identifying the relationship between the input features and the target variable PM2.5 
by employing a linear combination of the prediction results of the base learner model. The prediction results 
output from the base learner model are utilized as the input feature matrix, and the coefficients of the linear 
regression equation are determined by minimizing the error between the predicted value and the actual value. 
The advantages of each base learner are combined to enhance the overall prediction accuracy and generalization 
ability of the model, thereby facilitating highly accurate prediction of PM2.5

36.

Long short-term memory
Long Short-Term Memory (LSTM) is an improved version of the Recurrent Neural Network (RNN) model, 
which enables the storage and regulation of temporal data by adding memory units to the hidden unit layer. LSTM 
networks facilitate the transfer of information between units in the hidden layer through the incorporation of 
three storage unit structures: the forgetting gate, input gate, and output gate. This unit structures design facilitates 
the effective filtering and memorization of information37. In comparison to conventional RNN models, LSTM 
models are capable of addressing issues such as gradient vanishing or gradient explosion, which are inherent to 
RNN18, the network architecture is shown in Fig. 3.

Among them, it, ft, and ot are three gating structures: input gate, forgetting gate, and output gate, respectively. 
The input gate is responsible for the regulation of information input, the forgetting gate for the retention of 
information regarding the historical state of the cell, and the output gate for the control of information output. 
And σ()is the sigmoid function, and tanh()is the activation function.

Random forest
Random Forest (RF) is a combinatorial model consisting of a set of regression decision trees. In accordance 
with the idea of Bagging (Bootstrap Aggregating), the Random Forest model acquires a multitude of subsets 
of training samples, each distinct from the others. This is achieved through the random extraction of features 
from the original samples on multiple occasions, followed by their subsequent reintroduction38. The Random 
Subspace Method (RSM) is employed for the construction of decision trees utilizing various sample subsets39. 
The features incorporated into the decision tree are randomly extracted from the data features. When the nodes 
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Fig. 2.  Stacking network architecture.
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of the decision tree are split, the best feature nodes within the randomly generated feature subset are selected 
for splitting. Ultimately, the final prediction result of the RF model is obtained by averaging the prediction 
results of each decision tree, as illustrated in Fig. 4. Compared with the base learner, the RF model exhibits a 
greater capacity for randomness in the selection of samples and feature nodes. This can enhance the model’s 
generalization ability to a certain extent. Furthermore, the RF model exhibits a notable advantage over other 
algorithms in its ability to process multidimensional data without the necessity of feature selection40.

Inverse distance weighting
Inverse Distance Weighting (IDW) is based on the improvement and optimisation of distance-weighted 
interpolation. The method is predicated on the assumption that each measurement point is subject to local 
effects that diminish with distance41,42. In the event that a test site is divided into multiple regions, neighbouring 
points within each region are employed for the estimation of unknown points, provided that the locations of all 
measurement points are known. This method assigns higher weights to points in close proximity to the predicted 
location, with the weights gradually decreasing as the distance from the predicted location increases. The 
topography of the Beijing-Tianjin-Hebei region is complex, and the PM2.5 concentrations in different regions 
are greatly influenced by pollution sources, meteorological conditions and other factors. The IDW method is a 
geostatistical interpolation technique that can fully take into account the influence of spatial location on PM2.5 
concentrations. In order to predict the PM2.5 concentration at a specific location, greater reliance is placed on 
data from neighbouring monitoring stations. This approach ensures that the prediction results accurately reflect 
the local pollution situation and facilitates the assessment of the reasonableness of the interpolation results. The 
formula is as follows:

	
Z =

∑n

i
zi

dk
i∑n

i
1

dk
i

� (2)
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Fig. 3.  LSTM network architecture.
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Assessment indicators
The Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Determination 
Coefficient (R2), and Mean Absolute Percent Error (MAPE) were employed to assess prediction results of each 
predicted model. The relevant assessment indicators are as shown:

	

R2 = 1 −

n∑
i=1

yi − ŷ2
i

n∑
i=1

yi − ȳ2
i

� (3)

 

	
MAE =

n∑
i=1

|yi − ŷi|

n

� (4)
 

	
RMSE =

√√√√
n∑

i=1
yi − ŷ2

i

n

� (5)

 

	
MAP E = 100%

n

n∑
i=1

∣∣∣∣
(ŷi − yi)

yi

∣∣∣∣� (6)
 

Where yi denotes the actual measurement value of the i-th PM2.5, ŷi denotes the predicted value of the i-th PM2.5, 
ȳi denotes the actual mean measurement value of the i-th PM2.5.

Results
RF-LSTM-stacking model construction
The various influencing factors were illustrated by Pearson’s correlation coefficients (Fig.  5). It was evident 
that there was a significant positive correlation between the data on air pollution and AOD, with a correlation 
coefficient of 0.39 between O3 and PM2.5, indicating a robust correlation and a more intricate non-linear change 
rule. Moreover, the correlation between PM2.5 and meteorological data proved to be significantly low, with the 
correlation coefficient between PAIR and PM2.5 displaying the least substantial correlation among all variables. 
Consequently, the present study selected air pollution data and AOD data for incorporation into the model 
construction process.

The PM2.5 prediction model was on the basis of the stacking ensemble learning algorithm, the base learners 
were LSTM and RF, while MLR was employed as a meta-learner. Among them, LSTM showed a superior 
prediction accuracy for long time series and was suitable for PM2.5 prediction on the basis of historical data43; 
The RF model was good at dealing with data with high-dimensional features and did not require characteristics 
selection, and usually had fast model training and high prediction accuracy, so it was suitable for multivariate 
PM2.5 prediction44.

The primary steps were: 1) The first 25,000 sets of data in the original dataset were taken as the training set 
M, and the last 4263 sets of the dataset were taken as the testing set N. The total length of the sequences in the 
training set l1 and testing set l2, the sliding time window input was defined as 7, and the step size was defined as 
1. The process generated l1−7, l2−7 sets of subsequences of length 7 for both the training set and testing set. The 
base learner models were trained using the training set M. Furthermore, the Grid Search (GS) was employed to 
identify the most appropriate hyperparameters for each model45. In order to enhance the model’s performance 
and robustness, this study employed the GS method to systematically tune the key hyperparameters of the 
base learner LSTM with RF. GS is a method of filtering out the hyperparameter combinations with optimal 
performance. It performed an exhaustive search for parameter combinations on the training set, using the 
RMSE of the validation set as an evaluation metric. Specifically, the LSTM model was configured with a two-
layer structure comprising hidden units. The first hidden layer contained 30 LSTM units, the function of which 
is to retain the outputs of all time steps for use in subsequent layers. The second hidden layer contained 20 
units, the function of which is to output the hidden state of the last time step. The final stage of the process 
involves the use of a fully connected layer containing 10 neurons with an activation function of ReLU to output 
a single continuous value for the purpose of regression prediction of PM2.5 concentration. The configuration was 
developed to ensure equilibrium between the temporal feature extraction capability and the model complexity. 
In the context of the RF model, the optimal hyperparameters that were determined through grid search were 
as follows: the number of decision trees was set to 200, the minimum number of leaf node samples was 1, and 
the minimum number of division samples was 2. This parameter design ensured the model’s ability to fit the 
data while effectively controlling the training time, thereby achieving the minimum RMSE on the validation 
set. This set of parameters was then used to construct the base learner(Table 1). 2) Following the training of 
each base learner model, the prediction results (M1, M2) for M and (N1, N2) for N were obtained, respectively. 
3) The data in the training set M1 were used as the input feature matrix X, and the corresponding real PM2.5 
values were used as the output matrix Y. Subsequently, X and Y were employed as the input feature matrices 
of the meta-learner model. The sample data constructed with X and Y were used to train the meta-learner 
model in the second layer. During the training process, the regression coefficients were continuously adjusted 
by minimizing the error between the predicted and true values. This process was undertaken to facilitate the 
identification of the optimal linear mapping relationship between the predicted values and output variables of 
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each base learner. 4)The new feature matrix N1 was used to test the prediction of the trained meta-learner, so as 
to capture the effective patterns in the prediction information of multiple base learners, and achieve the synthesis 
of the learning ability of the base learners’ model. This process enabled the meta-learner to effectively extract and 
integrate the prediction ability of multiple base learners in the prediction ability of the different data features, 
and improved the prediction accuracy and generalization ability of the overall model(Fig. 6).

Comparative analysis of model evaluation indicators
In order to ascertain whether the predictive effectiveness of the stacking model exceeded that of the other single 
models, the predictive effectiveness of four single prediction models, LSTM, RF, KNN(K-Nearest Neighbours, 

Model Hyperparameters Name Hyperparameters Value Result

RF
Number of decision trees [10, 100] 40

Minimum sample of leaf nodes [1, 5] 2

LSTM

Hidden layer [1, 5] 2

Number of neurons in layer 1 of LSTM [20, 100] 30

Number of neurons in layer 2 of LSTM [10, 40] 20

Learning rate [0.001, 0.01] 0.01

Table 1.  Grid search results for the main parameters of each model.

 

Fig. 5.  Correlation between characteristics of independent variables.
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KNN), and MLR, were selected for evaluation and analysis (Table 2). Overall, all five machine learning models 
demonstrated an R2 value exceeding 0.92, indicating that the selected optimal parameters were capable of 
effective prediction of PM2.5. The RF model demonstrated superior predictive performance in the training 
set, with a correlation coefficient R2 of 0.99, outperforming the other four models. However, when the model 
was applied to the testing set, the predictive performance of the RF model, which had performed well in the 
training set, was found to decrease. This indicated that the RF model might have been exhibiting problems 
of overfitting in the training set. In comparison to several other models, the MLR model demonstrated the 
poorest performance in the testing set, with an R² value of 0.93. The Stacking model demonstrated superior 
performance when applied to the test set compared to the other four models, exhibiting a correlation coefficient 
R2 of 0.96, MAE and RMSE of 6.08 and 7.74, respectively, and a MAPE of 0.26%. In comparison to the LSTM 
model, the RMSE and MAE were decreased by 16.18% and 22.47%, respectively. Similarly, in comparison to the 
RF model, the RMSE and MAE were decreased by 17.13% and 20.59%, respectively. In comparison to the MLR 
model, the RMSE and MAE were decreased by 22.90% and 23.50%, respectively. Similarly, in comparison to the 
KNN model, the RMSE and MAE were decreased by 56.5% and 51.04%, respectively. In comparison to other 
studies that had attempted to predict PM2.5 concentrations, the Stacking algorithm was capable of effectively 
combining the advantages of different models. Its results demonstrated an improvement in the RMSE and MAE 
by approximately 12.40% - 32.89%, which significantly enhanced the accuracy of the predictions.

In summary, a comparison of the predictive performance of the five machine learning models revealed that 
the Stacking model demonstrates the optimal predictive performance. The LSTM, RF and MLR models exhibited 
inferior predictive performance, while the KNN model produced the least satisfactory results.

Comparative analysis of model station prediction results
The prediction effects of the five models were evaluated using the monitoring station of Tangshan Lunan 
University of Electricity as an example from 23 September 2020 to 31 December 2020 (Fig. 7). It was found 
that the prediction accuracy improved and the predicted values overlapped with the true values more when 
the PM2.5 levels ranged from 20 to 70 µg/m3. Conversely, when the PM2.5 concentration exceeded 70 µg/m3, 
the discrepancy between the predicted and true values of each model increased. When the PM2.5 concentration 

Model

Training set Testing set

R2

(µg/m³)
MAE
(µg/m³)

RMSE
(µg/m³)

MAPE
(%)

R2

(µg/m³)
MAE
(µg/m³)

RMSE
(µg/m³)

MAPE
(%)

LSTM 0.98 2.64 3.77 0.13 0.94 7.85 9.23 0.31

RF 0.99 1.17 2.00 0.05 0.93 7.66 9.34 0.25

KNN 0.95 3.74 5.80 0.13 0.76 12.42 17.84 0.34

ML 0.96 3.74 5.44 0.24 0.93 7.95 10.03 0.47

Stacking 0.97 3.26 4.69 0.19 0.96 6.08 7.74 0.26

Table 2.  Performance of different models on testing and training Sets.

 

Fig. 6.  Stacking ensemble learning framework. Among them, P was PM2.5 concentration data, T was PM10, 
NO2, AQI, SO2, O3,CO and AOD data.
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exceeds 10 µg/m3, a discrepancy emerged between the predicted and actual values of each model. When the 
PM2.5 concentration continued to rise above 120 µg/m3, the discrepancy between the predicted and actual values 
of each model further increased, resulting in unsatisfactory prediction results.

Among them, the Stacking model demonstrated the greatest alignment with the PM2.5 concentration curve, 
exhibiting the most precise correspondence between the predicted and actual values, and was the most effective 
at capturing the evolving trend of PM2.5. The predicted values of the LSTM and RF models were closer to the 
actual values, although they exhibited a slight underestimation of PM2.5 concentrations at high levels and a 
slight overestimation at low levels, and there was a notable discrepancy between the predicted values and the 
observed values of the KNN and MLR models. In comparison to the LSTM and RF models, the variance of the 
PM2.5 concentration prediction results of the Stacking model was smaller. However, there were instances where 
the predicted peaks differed from the actual values. Nevertheless, the highest and lowest points of the overall 
predicted values were closer to the actual values, and the prediction results were superior to those of the LSTM 
model, particularly at the inflection points.

In order to comprehensively evaluate the performance of the evaluation model, a metric known as 
annual cumulative prediction bias was utilized to ascertain the effectiveness of the model in predicting 
PM2.5 concentration values46. This metric enabled the quantification of the predictive accuracy of the model 
by summing the absolute difference between the predicted and true value concentrations. Adopting this 
approach yielded a comprehensive understanding of the model’s predictive capacity and facilitated a judicious 
comparison between models. As demonstrated in Fig. 8, the cumulative bias in the northern part of the study 
area was, in general, smaller than that in the southern part of the study area across the models. The annual 
cumulative prediction bias of the Stacking model was approximately 1300 µg/m3- 5300 µg/m3 across the PM2.5 
monitoring stations, followed by the LSTM and RF models, with the annual cumulative prediction bias ranging 
approximately 1500 µg/m3- 6100 µg/m3. For the KNN and MLR models that demonstrate poorer performance, 
the range was approximately 1000 µg/m3 - 12,000 µg/m3. The disparate ranges of prediction bias observed for 
each model furnished a multiplicity of perspectives on the relative performance of the models in predicting 
PM2.5 concentration values. The Stacking model was demonstrated to effectively combine multiple base learners 
and exhibited reduced prediction bias in terms of variability, thus showing higher reliability and stability.

Comparative analysis of spatial variation characteristics
The spatial distribution of daily average PM2.5 in the study area was obtained by the IDW interpolation method 
based on the PM2.5 concentration prediction results of the LSTM, RF and Stacking models (Fig. 9). As could 
be seen from the figure, the IDW method can accurately reflect the spatial trend of PM2.5 concentration in 
the region according to the distribution of monitoring stations and concentration data. From the results, it 

Fig. 7.  Comparison between predicted and actual values of the five predicted model.
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successfully captured the distribution of PM2.5 concentrations in the Beijing-Tianjin-Hebei region, where the 
concentrations were high in the south and low in the north, as well as the approximate locations of the centers of 
high and low values, which indicates that the method could effectively handle the data in the present study, and 
obtain the spatial distribution results consistent with the actual situation. The spatial distribution of PM2.5 from 
the Stacking model was found to be the closest to the measured data. Among the models considered, the spatial 
distribution of PM2.5 from the Stacking model demonstrated the closest alignment with the measured data, 
thereby providing a comprehensive overview of the distribution of PM2.5 within the study area. In comparison, 
the LSTM model, which employed three gating structures for time-series prediction, yielded results that 
were more consistent and exhibited an overall trend that was similar to that of the measured data. However, 
discrepancies were observed at the boundaries between areas with high and low concentrations. Conversely, the 
RF model utilized a large number of decision trees for prediction and exhibited notable resilience to overfitting. 
Nevertheless, it should be noted that this approach might have resulted in the emergence of bias in specific 
local areas. Satellite remote sensing data estimated PM2.5 concentration through satellite observation of AOD 
in the atmosphere, which was affected by meteorological conditions, surface albedo, and other factors, and thus 
showed a slight difference in spatial distribution from the measured data.

Overall, the Stacking model performed best in terms of prediction accuracy and showed high robustness. 
From the perspective of the accuracy of the comparison of the PM2.5 concentration prediction results from 
different models, the spatial distribution of PM2.5 concentration obtained based on IDW interpolation had a 
better fit with the prediction results of the Stacking model as well as the measured data, and was able to capture 
the distribution of PM2.5 concentration in the region in a more comprehensive way, which in turn demonstrated 
the validity of the method in this study.

Discussion
The influence of meteorological data
There was a positive correlation between PAIR, EH and TEM and PM2.5, whereas WS displayed a negative 
correlation (Fig. 4). This suggested that meteorological conditions exerted some influence on PM2.5. Among 
the variables under consideration, the correlation between PAIR and PM2.5 was the weakest, with a coefficient 
of 0.03. This was due to the fact that the majority of the monitoring stations selected for inclusion in this study 
were state-controlled stations, with the majority of these located in the main urban areas of each city. The 
proximity of state-controlled monitoring stations in the same main urban area resulted in minimal variation in 
the meteorological data extracted, which have limited the ability to fully understand the relationship between 
meteorological conditions and PM2.5. Further research could have expanded the distribution of monitoring 

Fig. 8.  Annual accumulated bias values for individual PM2.5 monitoring stations for five models in the Beijing-
Tianjin-Hebei (µg/m3).
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stations to obtain a more accurate understanding of the influence of meteorological conditions on PM2.5 
concentrations.

Advantages of LSTM-RF-stacking model for predicting PM2.5 concentration after 7 days
In this study, five PM2.5 concentration prediction models were constructed and compared. The results 
demonstrate that there are discrepancies in the extraction ability, structural mechanism, and generalization 
ability of the models with regard to data features. The RF model is predicated on the Bagging integration learning 
strategy, which constructs multiple decision trees by randomly extracting samples and features multiple times, 
and integrates its prediction results. This mechanism facilitates the demonstration of remarkably elevated fitting 
ability and training efficiency on the training set (R²=0.99). However, it has been observed to demonstrate a 
propensity for overfitting when confronted with the test set data, resulting in a diminution of its generalization 
capability due to the overfitting of noise and local patterns present in the training data47. In the field of time-
series analysis, the LSTM model has been shown to be effective in capturing long-term dependencies through 
its gating mechanism. Its application in dealing with PM2.5 concentration series data, characterized by its 
time-series properties, has yielded relatively robust prediction performance on both the training and test sets. 
However, the model’s performance is not as comprehensive as the integrated approach in handling complex non-
linear relationships. In this regard, the LSTM model exhibits a slight weakness in comparison to the Stacking 
model on the test set48; The KNN model is developed for the purpose of selecting the K nearest neighbours for 
prediction. This is achieved by comparing the distance between the input samples and the samples in the training 
set. Within the training set, the model may exhibit a degree of prediction capability due to the local similarity 
of the data. However, this local similarity-based prediction is deficient in its inability to comprehensively grasp 
the overall characteristics and trends of the data. In instances where the data distribution in the test set deviates 
from that of the training set, the prediction capability of the KNN model is compromised, consequently leading 
to a diminished prediction accuracy in the test set, as evidenced by an R² of 0.7649. The MLR model is predicated 
on the linear relationship between variables, with the regression coefficients being determined by minimizing 
the discrepancy between the predicted and actual values. This model is uncomplicated and straightforward to 
comprehend. Nevertheless, when confronted with a complex time-series problem, such as PM2.5 concentration 

Fig. 9.  Daily spatial variation of PM2.5 employing the IDW interpolation method in the Beijing-Tianjin-Hebei 
region in 2020 (µg/m3).
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prediction, its linear assumption frequently falls short of accurately depicting the true relationship between 
the data, consequently leading to suboptimal prediction accuracy in the test set (R2 = 0.93). Conversely, the 
Stacking model is predicated on a hierarchical structure that integrates the base learner models (LSTM, RF) 
and trains the prediction outputs of the base learner models with MLR as a meta-learner to derive the final 
prediction results. This approach enables the comprehensive integration of the strengths inherent in each base 
learner model, thereby ensuring the enhancement of the model’s prediction accuracy and stability. The Stacking 
algorithm has been demonstrated to facilitate the capture of complex characteristics and nonlinear relationships 
in data, thereby enhancing the generalization capability of the model24.

The characteristics of PM2.5 spatial distribution
The spatial distribution characteristics of the annual average PM2.5 concentration revealed a significant gradient 
reduction in the annual average PM2.5 concentration extending from the northeast to the southwest. Specifically, 
the northern regions of Zhangjiakou and Chengde have lower annual average PM2.5 concentrations due to 
their mountainous topography, which facilitates good air circulation, high natural vegetation cover, a paucity 
of polluting industries, and well-developed tourism. In contrast, the south-central areas of Beijing, Tianjin, 
Shijiazhuang, Baoding, and Handan are areas with high PM2.5 concentrations, with predominantly plain 
topography, high proportions of agricultural land and urban industrial and mining land, and a serious lack of 
ecological land coverage. This, in conjunction with the obstruction of PM2.5 transportation by the Yanshan and 
Taihang mountain ranges, has resulted in the accumulation of pollution in the mountain front areas, leading to 
elevated annual mean values for the region. The findings of this study demonstrate that the spatial distribution 
characteristics of PM2.5 are consistent with the observations reported by Fu et al.50, which indicate that the 
central and southern regions of Beijing-Tianjin-Hebei are highly polluted areas for PM2.5, while the northern 
regions exhibit reduced PM2.5 concentrations.

Limit and future work
Despite the Stacking model’s demonstrated efficacy in PM2.5 concentration prediction, it remains constrained 
in its ability to accommodate extreme pollution scenarios. The study data demonstrate that when the PM2.5 
concentration exceeds 120 µg/m3, the variance between the predicted and actual values of the model increases 
dramatically, resulting in a significant decrease in prediction accuracy. This phenomenon can be attributed to 
the fact that the environmental factors affecting PM2.5 concentration in extreme pollution events present highly 
nonlinear and complex coupling characteristics, and existing models are unable to comprehensively portray their 
intrinsic correlation mechanisms. Moreover, the Stacking model is an integrated learning framework that relies 
on multiple base models and meta-learners. The training process involves constructing a multi-layer model, 
optimizing hyperparameters and conducting cross-validation. This process is both computationally intensive 
and time-consuming. This feature imposes significant limitations on the model’s capacity for rapid deployment 
and real-time update in practical applications. In the future, we need to start from the optimization of algorithms 
and resource allocation, and improve the application efficiency and environmental adaptability of the model by 
improving the model structure and adopting distributed computing technology.

Conclusions
Accurate forecasting of PM2.5 changes was of significance for air pollution warning information. In this study, we 
employed a multi-source approach, integrating ground-based data from monitoring stations with satellite remote 
sensing AOD data, to structure a PM2.5 Stacking prediction model for the Beijing-Tianjin-Hebei region. The 
model was a combination of time series sliding windows based on LSTM and RF and uses a stacked integration 
framework, which led to the following conclusions: 1) The selection of model input variables had an impact on 
the resulting predictions, and the preprocessing of data could enhance the precision of model projections. A 
positive correlation was evident between AOD and O3, with O3 exhibiting the highest correlation with PM2.5. 2) 
In comparison to a single prediction model, the integrated learning algorithm fuses multiple base-learner models 
with the objective of more effectively capturing the nonlinear relation between each input variable and PM2.5. 
In the five models, the stacking integration model demonstrated the most favourable predictive performance, 
exhibiting a notable enhancement in the model’s generalization capabilities and overall performance. 3) The 
spatial distribution of daily average PM2.5 in the research region was obtained by IDW, which demonstrated a 
notable degree of spatial heterogeneity. The south-central region exhibited elevated PM2.5, while the northern 
area displayed comparatively lower levels. Among them, the Stacking model was the most consistent with the 
measured data in predicting the spatial distribution of PM2.5, and was able to more accurately capture the overall 
distribution and local variations in the study region.

In conclusion, this research developed a seven-day stacking prediction model for PM2.5 utilising the integrated 
learning Stacking algorithm, with the objective of accurately predicting the daily average near-surface PM2.5 
concentration. The optimal Stacking prediction model, when selected and applied to daily ambient air quality 
forecasting, resulted in a further improvement in the precision of PM2.5 prediction. Furthermore, this will offer 
a foundation for strengthening the control of atmospheric pollution and for achieving comprehensive regional 
environmental management and scientific strategic decisions in the Beijing-Tianjin-Hebei region.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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