
Association and reliability analysis 
of multi-trait selection methods 
and selection of superior genotypes 
across the traits in Indian mustard
Raj Kumar1, Mukesh Kumar1, Lokesh Kumar Gangwar1, Vivek Kumar2, Sudhanshu Singh3, 
Premnath Edhigalla1 & Mehdi Rahimi4,5

Selection of desirable genotypes across the traits is the most challenging task for plant breeders. 
This experiment aims to study the association and reliability of the Smith-Hazel Selection Index 
(SH), Factor Analytic Best Linear Unbiased Prediction (FAI-BLUP), Multi-Trait Selection Index (MTSI) 
and Multi-Trait Genotype–Ideotype Distance Index (MGIDI) selection index with Weighted Rank 
Aggregation (WRA) and Genotype by Yield×Trait (GYT) Biplot analysis for the selection of superior 
genotypes. The evaluation of 55 genotypes, including parents and hybrids, was done at CRC of 
SVPUAT Meerut, UP, India, during 2023–2024 following Randomized Complete Block Design within 
three replications. The FAI BLUP and MGIDI both revealed the highest percentage increase in selection 
differential for SY, followed by SL, HI, SMR and TW. The highest rank correlation was observed 
between SHI and MTSI, followed by MGIDI and FAI BLUP. The Venn diagram revealed the best 
genotypes in all four indexes are C3, C4, C7, C32 and C36. The WRA analysis also suggested similar best 
genotypes such as C4 followed by C3, C27, C7 and C32 by assigning different weights to four indexes. 
PCA of the GT biplot revealed the PC1 and PC2 accounting for a total cumulative variance of 72.29%, 
whereas in GYT biplot PC1 and PC2 accounted for a cumulative variance of 96.96%, which is greater 
than GT biplot. Amongst all the selection indexes FAI-BLUP, MTSI and MGIDI are found more reliable 
whereas genotypes namely C3, C4, C7 and C32 can further be used in crop improvement programs.
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Indian mustard (Brassica juncea L. Czern & Coss) is a crucial crop belonging to the Cruciferae (Brassicaceae) 
plant family, known as the mustard family1. The essential oil of Brassica juncea seeds has been used in cosmetics 
for hair control, preparation of pickles and medicines, and for flavoring2. The seed contains protein (26 g/100 g), 
carbohydrates (28 g/100 g), dietary fiber (12 g/100 g), and fat (36%) with oil content ranging from 37 to 49%. 
Along with major components, it also has an ample number of vitamins like vitamin C and vitamin K, trace 
minerals such as Fe, Ca, Zn, Cu, Se, Mn, and Mg, as well as electrolytes like Na and K, etc3–5. In recent decades, 
India has witnessed a substantial rise in per capita edible oil consumption, reaching 19.7 kg per year. However, 
this increasing demand has outpaced domestic production, resulting in a high dependence on imports—nearly 
57% of the edible oil consumed in the country is imported DFPD, 20246. This growing reliance emphasizes 
the need to enhance indigenous oilseed productivity to achieve self-sufficiency. Among the various oilseed 
crops cultivated in India, rapeseed-mustard holds a significant position. During the 2018–19 cropping season, 
Indian mustard was grown on 6.23 million hectares, producing about 13.16 million tonnes, and contributing 
33.24% of the nation’s total oilseed output DRMR7. This highlights its vital role in meeting the country’s edible 
oil requirements. Despite its importance, achieving a balance between high seed yield and improved oil quality 
remains a major breeding challenge, as these traits are often negatively correlated8. Additionally, the productivity 
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and oil composition of mustard are influenced by multiple biotic and abiotic stresses. The effective utilization 
of diverse germplasm through hybridization plays a crucial role in the genetic improvement of mustard crops 
to develop the architecture of genotypes having desirable traits, resulting in better performance of genotypes 
referred to as an ideotype9. The selection of superior genotypes across the traits is a challenging task; that’s why it 
requires a robust approach for selection which is based on multiple traits. Selecting genotypes having a balance 
of multiple desirable long-term traits is the aim of the breeder10. The presence of multicollinearity and the choice 
of weighting coefficients in classical linear multi-trait selection indices depletes the genetic gain11,12. Smith-
Hazel Selection Index (SHI), developed by Smith13 and Hazel14 is a weighted selection index that enhances 
genetic gain by considering multiple traits simultaneously. Breeder faces difficulties in assigning the economic 
value of traits, converting them into realistic economic weightings with a multicollinearity issue15. Factor 
Analytic Best Linear Unbiased Prediction (FAI-BLUP) incorporates factor analysis for handling multi-trait 
to improve accuracy in multi-trait selection. Multi-Trait Selection Index (MTSI) identifies the high-yielding, 
stable genotypes across the environment. Multi-Trait Genotype –Ideotype Distance Index (MGIDI) ranks the 
genotypes based on multiple traits simultaneously with balanced trait performance. This MGIDI can effectively 
be used for multi-trait selection by overcoming the difficulties of SHI10. The combination of these rankings into 
a single robust decision-making framework, Weighted Rank Aggregation (WRA) using ranker accuracies, is a 
robust approach for genotype selection when multiple rankings are available. Genotype by Yield×Trait (GYT) 
Biplot used to visualize and interpret the relationship between genotypes and traits with special emphasis on 
yield. Genotype-by-trait biplots (GT biplots) have constraints, like failing to explain most of the variation and 
therefore being unable to give all patterns of data. Along this, it is unable to differentiate the effect of all traits on 
yield, while in the case of the genotype by yield×trait biplot (GYT biplot), it is able to address all these challenges 
present in the GT biplot12,16. The GYT biplot method is a comprehensive and effective method that gives the 
strengths and weaknesses of each genotype graphically and provides the rank of each genotype using superiority 
index (SI) based on GYT score by including all traits with yield12,16. It is applicable to different kinds of data sets 
having different agronomic traits, multiple locations or multiple years. Accordingly, the following study aims to 
understand the reliability of different multi-trait selection index and to select the best genotypes using WRA by 
utilizing the rank of SHI, FAI-BLUP, MTSI and MGIDI, the association of different multi-trait selection index 
and the selection of genotypes with special emphasis on yield traits using GYT biplot analysis.

Materials and methods
Materials
The ten parental genotypes of Indian mustard were sourced from the germplasm repository at the Sardar 
Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India, and selected for their 
contrasting traits relevant to crop improvement. Ten diverse genotypes, viz., RH-725, Pusa Jai Kisan, PM-28, 
Pusa Bold, Pusa Agrani, PM-29, CS-60, Kranti, Giriraj, and RH-749, were used for hybridization. Genotype 
used in hybridization aiming to address the different aspects of crop improvement, like Pusa Agrani and RH-725 
used for short-duration and early sowing, respectively. PM-29 was used in crossing as it has lower erucic acid, 
which plays a crucial role in oil quality. Kranti has resistance to Alternaria blight and aphids, whereas CS-60 has 
tolerance to salinity and alkalinity. Pusa Bold, PM-28, Pusa Jai Kisan, and Giriraj genotypes have bold seed size, 
high oil content, and high yield, respectively; genotypes were used in the mating as yield improvement is the 
main research objective for breeders, and it can be improved by improving yield and its related components like 
bold seed size, high oil content, and high yield. The details of genotypes are provided in supplementary material 
(S1 Table).

Experimental details
During the Rabi season of 2022–23, ten genetically diverse Indian mustard (Brassica juncea L.) genotypes were 
selected and crossed using a half-diallel mating scheme, excluding reciprocals. This crossing program resulted in 
the development of 45 F1 hybrids. Together with the original ten parents with 45 hybrids, a total of 55 genotypes 
were further evaluation in the Rabi season of 2023–24, at the Crop Research Centre, of Sardar Vallabhbhai Patel 
University of Agriculture and Technology, Meerut. The trial was laid out in a randomized complete block design 
(RCBD) with three replications to ensure statistical reliability. Standard agronomic practices were followed 
throughout the growing season to maintain uniform crop management and minimize environmental variation.

Observations recorded
Thirteen quantitative characters were recorded during the experiment: (i) days to 50% blooming (DFB), (ii) 
days to maturity (DM), (iii) plant height (PH), (iv) branches on a main raceme (BMR), (v) siliquae on a main 
raceme (SMR), (vi) length of a main raceme (LMR), (vii) siliqua length (SL), (viii) seeds per siliqua (SPS), (ix) 
biological yield per plant (BY), (x) harvest index (HI), xi) oil content (OC), xii) test weight (TW), and xiii) seed 
yield per plant (SY). Five plants from each parent and hybrid in each replication were randomly selected and 
tagged before maturity. The mean of particular genotypes was calculated using the average of five plants, except 
for DFB and DM, which were assessed on a population basis.

Statistical analysis
All statistical analyses were conducted using R version 4.4.3. The work was performed on a cloud-based RStudio 
environment running Ubuntu 20.04.6 LTS. Analyses were carried out using the metan package17.
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Analysis of variance (ANOVA)
The analysis of variance for the experimental design was based on the model: Pijk = µ + vij + bk + eijk. (i, j = 1…t; 
k = 1…b). Where, Pijk = the phenotype of ijkth observation, µ = the population mean, vij=the progeny effect, bk = 
the block effect, eijk = the error term for ijkth observation.

Smith–Hazel selection index (SH index)
The Smith–Hazel index13,14 is estimated as follows:

	 b = P −1Gw

Where P and G are phenotypic and genetic covariance matrices, respectively and w and b are vectors of index 
coefficients and economic weightings, respectively.

The genetic worth I of an individual genotype based on traits x, y, …, n, is calculated as:

	 I = bxGx + byGy + . . . + bnGn

where b the index coefficient for the traits x, y, …, n, respectively, and G is the individual genotype BLUPs for 
the traits x, y, …, n, respectively.

Factor analytic best linear unbiased prediction (FAI-BLUP)
Multi-trait index based on factor analysis and ideotype design proposed by Rocha, et al.18.

The formula used for calculating the FAI-BLUP index is as follows:

	
Pij =

1
dij∑ i=n;j=m

i=1;j=1
1

dij

Where: Pij is the probability the genotype (i = 1, 2,…, n) is similar to ideotype j (j = 1,2,…,m); dij is the genotype 
j distance, based on the standardized mean Euclidean distance.

Multi-trait selection index (MTSI)
Computes the multi-trait stability index proposed by Olivoto, et al.19. Multi-Trait Selection Index (MTSI) is a 
quantitative method that facilitates the simultaneous selection of multiple traits by assigning appropriate weights 
to each trait, reflecting their relative economic or breeding importance20. This approach enables breeders to 
optimize overall genetic gain by considering the combined value of all targeted traits, rather than improving 
them individually. The general formula for the selection index (I) is a linear combination of trait values:

	 I = b1X1 + b2X2 + . . . + bnXn

Where, b1 represents the weight assigned to traitX1.By effectively balancing multiple traits, MTSI enhances the 
efficiency of breeding programs and accelerates the development of superior genotypes21.

Multi-trait genotype–ideotype distance index (MGIDI)
The MGIDI index is computed as following formula10:

	
MGIDIi =

√∑
f
j=1(Fij − Fj)2

where MGIDIi is the multi-trait genotype-ideotype distance index for the ith genotype;
Fij is the score of the ith genotype in the jth factor (i = 1, 2, …, g; j = 1, 2, …, f), being g and f the number of 

genotypes and factors, respectively, and Fj is the jth score of the ideotype.

Spearman’s rank correlation coefficient
In our study, Spearman’s Rank Correlation Coefficient is employed to assess the strength and.

direction of associations between various selection indices, such as FAI-BLUP, MTSI, MGIDI, and SHI. 
This non-parametric measure is particularly suitable for ordinal data or when the assumptions of Pearson’s 
correlation are not met. By evaluating the rank correlations among these indices, we can identify redundancies 
and ensure that each index contributes unique information to the selection process. This understanding is crucial 
for developing a comprehensive selection strategy that effectively balances multiple traits, thereby enhancing the 
efficiency of breeding programs22. Formulae used for Spearman rank correlation23:

	
ρ = 1 − 6 d2

i

n (n2 − 1)

Where, di: = Difference between the ranks of two variables for the ith observation, n = Number of observations.

Venn analysis
A venn diagram with four circles was created using Microsoft Excel to visually represent the relationships among 
different datasets. The diagram was customized by adjusting circle sizes, colors, and overlapping regions to 
highlight shared and unique elements among the groups.

Scientific Reports |        (2025) 15:23405 3| https://doi.org/10.1038/s41598-025-07721-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Weighted rank aggregation (WRA)
Weighted Rank Aggregation (WRA) based on Ranker Accuracies (RA) is a robust statistical approach used to 
combine multiple ranking methods into a single final ranking by assigning weights to each method based on 
its reliability. In the context of plant breeding, this method resolves conflicts between selection indices like FAI-
BLUP, MTSI, MGIDI, and SHI, ensuring accurate identification of superior genotypes. By giving higher weight 
to less correlated and more reliable indices, WRA enhances decision-making and improves selection efficiency 
in multi-trait analysis.

	
wi = ( 1 − |ri|)

( 1 − |ri|)

Where, ri is the average absolute Spearman correlation of each selection index (FAI-BLUP, MTSI, MGIDI, SHI), 
wi is the weight assigned to each index based on its Ranker Accuracy (RA)24.

Genotype by yield×trait biplot (GYT biplot)
Genotype by Yield×Trait (GYT) biplot analysis is a novel method that evaluates genotypes based on their 
combined performance across multiple traits, emphasizing the integration of yield with other agronomic 
characteristics. By focusing on the combined effect of yield and other traits, GYT biplot analysis provides a 
comprehensive evaluation of genotypes, aiding in the selection of superior cultivars with balanced performance 
across multiple characteristics12.

GYT index

	
GY T ij = Tij

−
Tj

× Yi

Where: GYTij: GYT Index for the ith genotype and jth trait, Tij: Trait value of genotype i for trait j, Tj : Mean value 
of trait j across all genotypes, Yi: Yield of genotype i.

GYT standardized value

	
Zij = GY T ij − G

−
Y Tj

σ j

Where: Zij: Standardized GYT value, G
−
Y Tj : Mean of GYT value for trait j, σ j : Standard deviation of GYT 

values for trait j.

Results
Analysis of variance
ANOVA for thirteen traits observed highly significant for all 13 traits for genotypes as a source of variation. The 
ANOVA for 13 quantitative traits is presented (Table 1). It revealed that sufficient variations were present in 
germplasm, as the presence of heritable variation in germplasm is the key requirement to accomplish any plant 
breeding program. The presence of variation in the germplasm is essential for accurately estimating heritable 
values and identifying superior genotypes for use in future breeding programs.

Smith–Hazel selection index (SH index)
In the Smith-Hazel index, the genotypes were ranked as per the SH score, in which the high-score genotype was 
considered superior compared to the low SH score, and it is used by breeders frequently for selecting multi-trait. 
The ranking of 55 genotypes with score is presented (Table 2), whereas its visual representation is shown (Fig. 1). 
As per the result observed, the best ten genotypes with the SH index score are C16 (7.02), followed by C3 (6.74), 
C37 (6.18), C36 (5.89), C15 (5.75), C32 (4.07), C4 (3.65), C7 (3.58), C29 (3.21) and C27 (2.90).

Factor analytic best linear unbiased prediction (FAI-BLUP)
The ranking of 55 genotypes with score according to FAI BLUP is presented (Table  2), whereas its visual 
representation is shown (Fig. 1). FAI BLUP factor analysis grouped into three factor analyses: FA1, FA2 and FA3. 
The communality results of three-factor analysis for each trait are DFB (0.74), DTM (0.81), PH (0.35), BMR 
(0.85), SMR (0.89), LMR (0.78), SL (0.79), SPS (0.87), BY (0.87), HI (0.93), OC (0.75). TW (0.87) and SY (0.91) 

Source of variation DF DFB DTM PH BMR SMR LMR SL SPS BY HI OC TW SY

Replication 2 5.26* 5.27* 20.59 0.001 22.04** 24.87* 0.13 0.06 36.32* 43.04** 0.30 0.08 15.35*

Treatment 54 50.54** 61.66** 379.98** 1.807** 65.29** 201.14** 0.83** 4.72** 382.52** 68.61** 6.43** 1.19** 73.71**

Error 108 1.63 1.56 9.01 0.077 3.69 7.05 0.04 0.29 10.83 2.93 0.18 0.05 1.23

Table 1.  Analysis of variance for 13 quantitative traits. *, **significant at 5% and 1% level, respectively.
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Genotype code Genotype name

MTSI MGIDI SHI FAI BLUP

WRA of FAI 
BLUP, MTSI, 
MGIDI and 
SHI

Rank Score Rank Score Rank Score Rank Score Rank Score

P1 RH-725 24 11.64 32 5.08 26 −0.17 32 0.072 23 28.65

P2 Pusa Jai Kisan 45 13.13 42 5.33 43 −1.48 37 0.068 49 41.38

P3 PM-28 55 18.58 46 5.40 55 −6.28 17 0.089 48 41.37

P4 Pusa Bold 44 12.87 25 4.93 42 −1.47 26 0.079 35 33.99

P5 Pusa Agrani 47 13.34 37 5.13 50 −2.28 30 0.075 45 40.46

P6 PM-29 48 13.39 45 5.38 49 −2.20 43 0.064 52 46.10

P7 CS-60 25 11.69 35 5.12 16 0.38 55 0.041 36 33.99

P8 Kranti 53 17.75 27 5.03 53 −5.80 11 0.100 37 34.64

P9 Giriraj 54 17.82 22 4.83 54 −6.13 7 0.105 31 32.85

P10 RH-749 35 12.34 47 5.58 38 −0.93 45 0.062 47 41.36

C1 RH-725 x Pusa Jai Kisan 29 11.98 12 4.17 34 −0.68 18 0.087 18 23.41

C2 RH-725 x PM-28 19 11.41 18 4.67 22 0.15 23 0.082 15 20.82

C3 RH-725 x Pusa Bold 1 6.07 6 3.37 2 6.74 6 0.106 2 3.84

C4 RH-725 x Pusa Agrani 5 9.52 1 1.37 7 3.65 1 0.146 1 3.46

C5 RH-725 x PM-29 22 11.63 33 5.10 25 −0.08 35 0.070 24 29.08

C6 RH-725 x CS-60 9 10.48 23 4.83 24 0.05 27 0.078 16 21.40

C7 RH-725 x Kranti 7 9.85 3 2.85 8 3.58 2 0.129 4 4.89

C8 RH-725 x Giriraj 46 13.26 40 5.27 46 −1.69 33 0.072 46 40.74

C9 RH-725 x RH-749 38 12.56 41 5.32 41 −1.38 39 0.068 43 39.72

C10 Pusa Jai Kisan x PM-28 32 12.23 38 5.13 28 −0.36 34 0.072 30 32.80

C11 Pusa Jai Kisan x Pusa Bold 39 12.67 54 5.92 39 −1.11 48 0.060 51 44.87

C12 Pusa Jai Kisan x Pusa Agrani 20 11.47 19 4.79 31 −0.52 25 0.080 19 24.23

C13 Pusa Jai Kisan x PM-29 51 17.20 34 5.11 51 −5.61 14 0.094 41 36.04

C14 Pusa Jai Kisan x CS-60 13 11.05 16 4.55 17 0.37 21 0.083 13 17.15

C15 Pusa Jai Kisan x Kranti 10 10.48 14 4.53 5 5.75 13 0.096 9 10.44

C16 Pusa Jai Kisan x Giriraj 14 11.10 17 4.66 1 7.02 12 0.097 10 10.58

C17 Pusa Jai Kisan x RH-749 17 11.36 52 5.81 14 0.61 51 0.049 34 33.95

C18 PM-28 x Pusa Bold 50 13.69 55 5.95 45 −1.69 50 0.050 55 49.71

C19 PM-28 x Pusa Agrani 16 11.20 9 4.00 11 2.01 20 0.085 11 14.49

C20 PM-28 x PM-29 26 11.86 39 5.15 21 0.19 52 0.049 39 35.42

C21 PM-28 x CS-60 34 12.30 48 5.59 23 0.11 54 0.043 44 40.19

C22 PM-28 x Kranti 18 11.39 11 4.06 19 0.27 16 0.092 12 16.20

C23 PM-28 x Giriraj 41 12.74 36 5.12 40 −1.24 31 0.073 42 36.61

C24 PM-28 x RH-749 52 17.30 20 4.79 53 −5.64 9 0.101 29 32.35

C25 Pusa Bold x Pusa Agrani 31 12.18 28 5.03 30 −0.45 36 0.069 27 31.67

C26 Pusa Bold x PM-29 33 12.27 31 5.06 27 −0.25 46 0.061 38 35.04

C27 Pusa Bold x CS-60 2 8.61 2 2.41 10 2.90 4 0.110 3 4.72

C28 Pusa Bold x Kranti 49 13.62 50 5.62 48 −1.92 47 0.060 54 48.32

C29 Pusa Bold x Giriraj 8 9.88 4 3.16 9 3.21 3 0.122 7 5.89

C30 Pusa Bold x RH-749 21 11.60 8 3.96 35 −0.70 15 0.093 14 20.15

C31 Pusa Agrani x PM-29 37 12.48 13 4.30 29 −0.45 19 0.086 20 24.38

C32 Pusa Agrani x CS-60 6 9.57 5 3.32 6 4.07 5 0.109 5 5.48

C33 Pusa Agrani x Kranti 40 12.68 51 5.64 36 −0.72 44 0.064 50 42.45

C34 Pusa Agrani x Giriraj 27 11.90 26 5.02 37 −0.81 28 0.077 25 29.73

C35 Pusa Agrani x RH-749 28 11.92 15 4.54 32 −0.59 22 0.082 22 24.52

C36 PM-29 x CS-60 4 9.06 7 3.66 4 5.89 8 0.102 6 5.86

C37 PM-29 x Kranti 3 8.94 10 4.00 3 6.18 10 0.100 8 6.61

C38 PM-29 x Giriraj 36 12.38 30 5.05 33 −0.66 41 0.067 40 35.53

C39 PM-29 x RH-749 23 11.64 42 5.33 15 0.58 41 0.066 26 30.38

C40 CS-60 x Kranti 15 11.18 21 4.82 20 0.23 29 0.077 17 21.89

C41 CS-60 x Giriraj 11 10.54 53 5.92 12 1.42 53 0.048 32 32.92

C42 CS-60 x RH-749 12 10.95 29 5.05 13 0.82 40 0.067 21 24.44

C43 Kranti x Giriraj 30 11.99 44 5.35 18 0.35 38 0.068 28 32.21

Continued
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with an overall mean communality value of 0.80. It revealed the percentage improvement (selection differential 
percentage) for the trait SY increased by 28.65%, followed by SL (15.49%), HI (15.02%), SMR (14.30%), TW 
(11.87%), BY (11.64%), SPS (10.85%), LMR (5.09%), OC (2.19%), PH (1.19%), DTM (0.97%), BMR (0.51%) and 
DFB (−2.58%). The genotypes having a high score are considered superior compared to lower score genotypes. 
The best ten genotypes ranked with score as per FAI BLUP are C4 (0.146), followed by C7 (0.129), C29(0.122), 
C27(0.110), C32(0.109), C3(0.106), P9(0.105), C36(0.102), C24 (0.101) and C37(0.100).

Multi-trait selection index (MTSI)
Multi-Trait Selection Index is a quantitative method that facilitates the simultaneous selection of multiple traits 
by assigning appropriate weights to each trait, reflecting their relative economic or breeding importance (20). 
This approach enables breeders to optimize overall genetic gain by considering the combined value of all targeted 
traits, rather than improving them individually. The ranking of 55 genotypes with score is presented (Table 2), 
whereas its visual representation is shown (Fig. 1). MTSI score ranks the 55 genotypes in the following manner: 
lower scores are considered desirable genotypes whereas higher scores depict undesirable genotypes. The best 
ten genotypes observed with score as per MTSI ranks with MTSI scores are C3 (6.06), followed by C27 (8.61), 
C37 (8.93), C36 (9.05), C4 (9.51), C32 (9.57), C7 (9.84), C29 (9.88), C6 (10.47), C15 (10.45) and C41 (10.53).

Multi-trait genotype–ideotype distance index (MGIDI)
To address shortcomings of the SH index, MGIDI are used for getting significant results (10, 25). MGIDI is 
a selection index designed to rank genotypes based on multiple traits simultaneously to help in identifying 
superior genotypes that perform well across the traits. The rank of MGIDI for 55 genotypes with score is 
presented (Table 2), whereas as visualization are represented (Fig. 2). It is divided into three factors for different 
traits, like FA1, which includes DFB, DTM, PH, BMR, LMR, and OC; FA2, which includes HI and SY; whereas 
the remaining traits come under FA3, like SMR, SL, SPS, BY, and TW. The MGIDI revealed a percent increase in 
Selection Differential for SY (30.76%), followed by SL (18.37%), HI (15.55%), SMR (15.47%), TW (14.61%), SPS 
(13.64%), BY (13.55%), LMR (9.59), BMR (5.07%), OC (2.99%), PH (1.84%), DTM (0.25%) and DFB (−4.36%). 
The lower score of MGIDI indicates desirable genotypes compared to the higher score, which is not desirable. 
The best ten genotypes as per MGIDI ranks with MGIDI scores are C4 (1.36), followed by C27 (2.40), C7 (2.85), 
C29 (3.15), C32 (3.32), C3 (3.36), C36 (3.66), C30 (3.95), C19 (3.99), C37 (4.00) and C22 (4.05).

Fig. 1.  Genotype rankings based on (a) Smith-Hazel Index and (b) FAI-BLUP across 13 quantitative traits.

 

Genotype code Genotype name

MTSI MGIDI SHI FAI BLUP

WRA of FAI 
BLUP, MTSI, 
MGIDI and 
SHI

Rank Score Rank Score Rank Score Rank Score Rank Score

C44 Kranti x RH-749 44 13.05 49 5.62 47 −1.69 49 0.058 53 47.37

C45 Giriraj x RH-749 42 12.86 24 4.88 44 −1.59 24 0.081 33 33.24

Table 2.  Rank of 55 genotypes for different selection index including final aggregate rank.
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Correlation and venn diagram
Spearman’s rank correlation coefficient was studied to understand the association of different multi-trait 
selection index to ensure the reliability of these indexes. Correlations were calculated between the ranks of 
different multi-trait selection index i.e. SHI, FAI-BLUB, MTSI and MGIDI. The results of the correlation are 
represented (Fig. 3). It showed the highest correlation between SHI and MTSI (0.94), followed by MGIDI and 
FAI BLUP (0.86), MGIDI and MTSI (0.61), SHI and MGIDI (0.51), MTSI and FAI BLUP (0.35) and SHI and 
FAI BLUP (0.25). A venn diagram is used to select the desired genotypes, which are the best in all selection 
indexes. It was created using eight of the best genotypes of all different selection indexes. Venn diagrams for the 
selection index FAI BLUP, MGIDI, MTSI and SHI with respective genotypes are represented (Fig. 3). The best 
five genotypes which are superior in all four indexes are C3, C4, C7, C32 and C36. The genotypes C27 and C29 
were found superior in MGIDI, FAI BLUP and MTSI. The genotypes C37 was found superior in MSTI and C15 
and C16 in SHI. The other two genotypes, P9 and C30, are found superior only in the single selection index FAI 
BLUP and MGIDI, respectively.

Weighted rank aggregation (WRA) based on ranker accuracies (RA)
Selecting the best genotype from a set of multiple ranking methods is a challenging task in plant breeding and 
genetic studies. Different selection indices, such as FAI-BLUP, MTSI, MGIDI, and SHI, provide different rankings 
for the same genotypes. This approach assigns weights to each ranking method according to its reliability and 
then integrates them into a single final ranking. The final weighted rank aggregation rank of 55 genotypes with 
score based on the rank of FAI-BLUP, MTSI, MGIDI, and SHI is presented (Table 2). The visualization of WRA 

Fig. 3.  (a) Rank correlation among different selection indices; (b) Venn diagram showing superior genotypes 
selected by four selection indices.

 

Fig. 2.  Genotype rankings of 55 genotypes based on (a) Multi-Trait Selection Index (MTSI) and (b) MGIDI 
across 13 quantitative traits.
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of 55 genotypes is represented in (Fig. 4). WRA assigned weights to different statistical analyses: FAI BLUP 
(0.30), followed by SHI (0.26), MTSI (0.22) and MGIDI (0.20). Lowest weight scores are considered the best 
genotypes compared to the highest weight scores. The best ten genotypes as per the rank of WRA with WRA 
scores are C4 (3.46), followed by C3 (3.84), C27 (4.72), C7 (4.89), C32 (5.48), C36 (5.86), C29 (5.89), C37 (6.61), 
C15 (10.4), C16 (10.6) and C19 (14.5).

Genotype by yield×trait biplot (GYT biplot)
Genotype by Yield×Trait (GYT) Biplot is a graphical method used to visualize and interpret the relationship 
between genotypes and multiple traits, particularly yield-related attributes. Help to select high-yielding 
genotypes with secondary traits. It used principal component analysis (PCA) to convert multiple trait data into 
a two-dimensional biplot. PCA of Genotype by Trait Biplot (GT Biplot) revealed the variation of PC1 (63.64%) 
and PC2 (8.65%) with a total cumulative variance of 72.29%. Similarly, GYT revealed the variation of PC1 
(94.53%) and PC2 (2.43%) with a total cumulative variance of 96.96%. It revealed GYT captured more variance 
compared to the GT biplot. The GYT biplot of genotypes with traits are represented in (Fig. 5), whereas the 
GYT standardized score of each genotype for all traits with genotype rank and superiority index (SI) are given 
(Table 3). The best ten genotypes as per GYT standardized score are C3, followed by C37, C36, C16, C15, C4, 
C32, C29, C37, C36, C16, C15, C4, C32, C29, C7 and C27. The scores of the best three are discussed. The 
standardized GYT score revealed C3 as rank 1 among 55 genotypes with a total GYT score of 24.42. The C3 
GYT score (24.42) comprises the different scores for DFB (1.48), DTM (1.76), PH (2.06), BMR (2.24), SMR 
(2.22), LMR (2.22), SL (2.03), SPS (2.47), BY (2.46), HI (1.30), OC (1.97) and TW (2.22). The genotype C37 
ranks 2nd amongst 55 genotypes with a total GYT score of 24.32, and it comprises DFB (1.40), DTM (1.82), 
PH (2.27), BMR (2.32), SMR (2.12), LMR (2.27), SL (2.00), SPS (1.98), BY (2.36), HI (1.63), OC (2.03) and 
TW (2.12).Similarly, the genotype C36 ranks 3rd amongst 55 genotypes with a total GYT score of 23.54 and a 
comprises of DFB (1.50), DTM (1.78), PH (2.04), BMR (2.07), SMR (1.90), LMR (2.45), SL (2.05), SPS (2.04), 
BY (2.33), HI (1.44), OC (1.87) and TW (2.07). The different biplot represents the same set of genotypes in a 
group which was found superior in standardized GYT score. Genotypes set C3, C37, C36, C16 and C15 can be 
seen in the GT biplot (S1: Fig.) and GYT polygon biplot (S2: Fig.) for better visualization and validation. Average 
Tester Coordination (ATC) biplot is used in ranking the genotypes, whereas which-won-where biplot is used to 
highlight genotypes, including their outstanding profiles as presented in supplementary files (S3: Fig.) and (S4: 
Fig.), respectively.

Fig. 4.  Combined rank of 55 genotypes based on four selection indexes (FAI BLUP, MTSI, MGIDI and SHI) 
using weighted rank aggregation.
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Discussion
Selecting superior genotypes based on multiple traits remains a complex and demanding task in plant breeding, 
requiring robust analytical tools capable of handling trait interdependence and variation. The presence of diverse 
genetic variation is the foundation of any breeding program, and the ANOVA results (Table  1) confirmed 
significant differences among genotypes for all studied traits, highlighting the presence of heritable variability. 
This finding underscores the potential of the studied germplasm for genetic enhancement, aligning with 
previous results25–27. Among the earliest approaches, the selection index proposed by Smith13based on Fisher’s 
discriminant function28 provided a way to simultaneously select for multiple traits by focusing on phenotypic 
performance and de-emphasizing fewer desirable traits. The Smith-Hazel index14 further refined this approach 
by incorporating path coefficients, allowing for more informed selection of genotypes with superior overall 
performance (Fig. 1a). This index has been effectively utilized in crops like maize to enhance genetic gain29. 
However, classical indices such as SH often suffer from limitations due to environmental variability and 
challenges in assigning appropriate economic weights. The FAI-BLUP index, which integrates factor analysis 
and BLUPs, addresses these issues by improving multi-trait selection accuracy and minimizing environmental 
noise11,18. In the present study, the FAI-BLUP model revealed communality score of a three-factor analysis 0.91 
for seed yield (SY), which was notably higher than the average communality (0.80), and led to a 28.65% increase 
in selection differential for SY. Its successful application has also been demonstrated in wheat (11) and Brassica 
juncea for oil content and seed weight improvement30. Identification of superior genotypes was performed 
by applying the multi-trait selection index for ranking the genotypes as presented (Fig. 2a). Similarly, it was 
applied to crops like maize for both mean performance and stability analysis31. Multi-trait selection index like 
MGIDI provide a balanced selection strategy by addressing the weaknesses of SH. Unlike traditional indexes, 
MGIDI does not rely on economic weights and is well-suited for practical breeding decisions due to its intuitive 
interpretation and comprehensive selection capabilities10,13,14,18,32,33. The selection-based MGIDI provides more 
balanced gains, making it more desirable compared to FAI-BLUP and SH indexes (Fig. 2b). It ensures long-term 
genetic improvement of the primary trait without compromising associated secondary traits, as demonstrated 
in stress-resilient maize hybrids developed for grain yield under climate change scenarios34. The MGIDI model 
divided the studied traits into three main factors: FA1 (DFB, DTM, PH, BMR, LMR, OC), FA2 (HI, SY), and FA3 
(SMR, SL, SPS, BY, TW). This pattern is consistent with previous studies, such as those conducted in Bush Yam35. 
Similar MGIDI-based genotype selection has also been implemented in Brassica juncea for oil and yield traits30 
Dioscorea rotundata36 and D. praehensilis35 as well as in wheat10,11 eggplant37 and rice for seedling vigor and 
yield traits38. Spearman rank correlation is a robust statistical tool widely used for comparing rankings obtained 
from different selection methods, enabling more stable and reliable decision-making in genotype selection. For 
example, it was effectively used to rank the mean yield of wheat genotypes39. In the present study, the Spearman 
correlation revealed a strong association between various indexes: a high correlation of 0.94 was observed 
between SHI and MTSI, and 0.86 between MGIDI and FAI-BLUP. Overall, the correlation ranged from 0.25 to 
0.94 (Fig. 3a), supporting the reliability of these methods for multi-trait selection. Similarly, in Indian beans, rank 
correlation was used to assess the consistency of different economic weighting methods EW (W1, equal weight), 
GCC (W2, genotypic correlation coefficient), and GPC (W3, genotypic path coefficient) with the ranking of 
seed yield per plant. The results showed a desirable correlation range of 0.67 to 0.99, confirming the robustness 
of such indexes40. In wheat, the rank correlation technique has been applied to examine the relationship among 

Fig. 5.  Representation of genotype by yield*trait biplot for traits and genotypes.
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Genotype DFB DTM PH BMR SMR LMR SL SPS BY HI OC TW GYT Score SI Rank

C3 1.48 1.76 2.06 2.24 2.22 2.22 2.03 2.47 2.46 1.3 1.97 2.22 24.4 2.04 1

C37 1.4 1.82 2.27 2.32 2.12 2.27 2 1.98 2.36 1.63 2.03 2.12 24.3 2.03 2

C36 1.5 1.78 2.04 2.07 1.9 2.45 2.05 2.04 2.33 1.44 1.87 2.07 23.5 1.96 3

C16 1.38 1.38 1.74 2.25 2.08 2.24 1.92 1.97 2.1 1.51 2.4 2.04 23 1.92 4

C15 1.24 1.44 1.41 2.15 1.82 2.18 1.97 2.02 1.82 1.68 1.94 2.18 21.8 1.82 5

C4 1.81 2.02 1.43 1 1.78 1.39 1.94 1.73 1.9 1.16 1.46 1.4 19 1.58 6

C32 1.77 1.58 1.68 1.2 1.68 1.4 1.73 1.55 1.14 1.8 1.48 1.76 18.8 1.56 7

C29 1.73 1.8 0.88 1.1 1.89 1.41 1.83 1.64 1.12 1.94 1.53 1.58 18.4 1.54 8

C7 1.61 1.57 1.69 1.06 1.71 0.77 1.67 1.47 1.43 1.47 1.42 1.49 17.4 1.45 9

C27 1.58 1.5 1.04 0.83 1.49 0.68 1.52 1.26 0.81 1.31 1.13 1.37 14.5 1.21 10

C41 1.28 0.97 1.01 0.73 0.48 0.85 0.26 0.59 0.29 1.63 0.97 0.72 9.79 0.82 11

C21 0.96 1.16 0.7 0.78 0.47 0.38 0.55 0.39 0.28 1.65 0.84 0.15 8.31 0.69 12

C17 0.57 0.56 0.31 0.83 0.13 0.67 0.22 0.47 −0.1 1 0.39 0.35 5.46 0.46 13

C19 0.44 0.4 0.44 0.39 0.5 0.45 0.35 0.3 1.53 −0.4 0.46 0.22 5.05 0.42 14

C26 1.29 0.61 0.22 0.4 0.19 0.06 −0.1 0.11 −0.1 0.85 0.47 0.23 4.26 0.35 15

C42 0.45 0.47 0.75 0.24 0.2 0.41 0.24 0.1 −0.1 0.75 0.34 0.16 3.97 0.33 16

C22 0.73 0.45 0.26 0.29 0.33 −0 0.35 0.12 0.39 0.27 0.37 0.21 3.74 0.31 17

C20 0.41 0.32 0.08 0.13 0.05 0.43 0.12 0.19 −0.1 0.58 0.28 0.18 2.66 0.22 18

C39 0 0.43 0.6 0.12 −0 0.21 −0.2 0.11 −0.2 0.58 0.22 0.24 2.15 0.18 19

P7 0.01 0.28 0.35 0.06 −0 −0.1 0.48 0.15 −0.2 0.66 0.28 0.09 1.98 0.16 20

C43 0.23 0.24 0.6 0.21 −0.1 −0.1 −0 0.18 0.21 0.24 0.15 0.15 1.95 0.16 21

C14 0.03 0.18 0.14 0.01 0.15 0.22 −0.2 −0.3 0.07 −0 0.12 0.01 0.44 0.04 22

C10 0.23 0.08 0.13 −0.1 −0 −0.2 −0.1 0.1 −0.2 0.29 0.02 −0 0.35 0.03 23

C2 −0.2 0.04 0.26 0.25 0 −0.3 −0.1 −0 −0.1 −0.1 −0.2 −0.1 −0.6 −0.1 24

C25 0.03 0.07 −0.1 −0 −0.2 −0.2 −0.1 −0.1 −0.2 0.16 0.05 −0.1 −0.6 −0.1 25

C31 0.46 0 −0.2 0.01 −0.2 −0.1 −0.3 −0.2 0.53 −0.6 −0.1 −0.2 −0.9 −0.1 26

P1 −0.1 0.03 −0.2 0.26 −0.2 −0.3 −0.3 0.01 −0.3 0.02 −0 −0.1 −1.1 −0.1 27

C6 0.51 −0.3 0.2 −0.2 −0.1 −0.1 −0.4 −0.3 −0.1 −0.4 −0.2 −0.2 −1.6 −0.1 28

C40 −0.3 −0.1 0.13 −0.3 −0.4 0.02 −0.3 −0.3 0.38 −0.7 −0.2 −0.1 −2.2 −0.2 29

C1 −0.5 −0.3 −0.3 −0.3 −0.4 −0.5 −0.1 −0.3 −0.2 −0.5 −0.4 −0.3 −4.2 −0.4 30

C5 −0.1 −0.6 0.02 −0.4 −0.3 −0.2 −0.5 −0.5 −0.5 −0.5 −0.5 −0.3 −4.3 −0.4 31

C35 −0.4 −0.4 −0.4 −0.4 −0.3 −0.2 −0.6 −0.3 −0.2 −0.6 −0.5 −0.4 −4.6 −0.4 32

C30 −0.3 −0.4 −0.6 −0.4 −0.5 −0.1 −0.1 −0.4 −0.3 −0.7 −0.4 −0.5 −4.7 −0.4 33

C33 −0.6 −0.5 −0.3 −0.5 −0.5 −0.1 −0.6 −0.3 −0.5 −0.3 −0.4 −0.4 −4.9 −0.4 34

P4 −0.4 −0.5 −0.6 −0.4 −0.4 −0.5 −0.3 −0.4 −0.5 −0.4 −0.5 −0.4 −5.2 −0.4 35

C34 −0.9 −0.5 −0.4 −0.3 −0.5 −0.3 −0.2 −0.4 −0.5 −0.5 −0.6 −0.8 −6 −0.5 36

P2 −0.3 −0.7 −0.9 −0.4 −0.7 −0.5 −0.8 −0.4 −0.7 −0.6 −0.5 −0.6 −6.9 −0.6 37

C9 −0.9 −0.8 −0.6 −0.6 −0.6 −0.3 −0.3 −0.6 −0.7 −0.6 −0.7 −0.8 −7.5 −0.6 38

C11 −1.1 −0.9 −0.8 −0.2 −0.6 −0.4 −0.7 −0.7 −0.7 −0.8 −0.8 −0.7 −8.3 −0.7 39

C12 −1.1 −0.8 −0.7 −0.7 −0.7 −0.5 −0.7 −0.6 −0.1 −1.2 −0.8 −0.7 −8.6 −0.7 40

P10 −1.1 −1 −0.7 −0.8 −0.6 −0.6 −0.9 −0.7 −0.9 −0.8 −0.8 −0.7 −9.5 −0.8 41

C23 −1.1 −1 −1 −0.7 −0.8 −0.8 −0.5 −0.7 −0.8 −0.9 −0.7 −0.7 −9.7 −0.8 42

C28 −1 −0.9 −0.9 −0.7 −0.8 −0.8 −0.9 −0.9 −0.8 −0.8 −0.8 −0.6 −9.8 −0.8 43

C38 −1.3 −1.1 −0.7 −0.8 −0.8 −1 −0.6 −0.7 −0.6 −1.1 −0.9 −0.7 −10 −0.9 44

C44 −0.9 −1.1 −0.9 −0.7 −0.8 −0.7 −1 −0.8 −0.9 −0.9 −1 −0.7 −10 −0.9 45

C45 −1.1 −1 −1.1 −0.8 −0.8 −0.8 −0.8 −0.8 −1 −0.9 −0.9 −0.7 −11 −0.9 46

C8 −1.4 −1 −1.1 −0.7 −0.8 −0.8 −0.8 −0.8 −0.8 −0.9 −0.8 −0.8 −11 −0.9 47

P5 −1.2 −1 −1 −0.8 −0.9 −0.8 −0.9 −0.8 −0.9 −1 −1 −0.9 −11 −0.9 48

P6 −1.3 −1.1 −1.1 −0.7 −1 −0.9 −1 −0.9 −1 −1.1 −1.1 −0.7 −12 −1 49

C18 −1.6 −1.2 −1 −0.8 −1 −1 −0.9 −0.8 −1 −1 −0.9 −0.9 −12 −1 50

P9 −0.7 −1 −1.4 −1.7 −1.2 −1.5 −1.2 −1.4 −1.1 −1.1 −1.2 −1.4 −15 −1.2 51

C24 −0.8 −1.1 −1.4 −1.6 −1.2 −1.4 −1.2 −1.3 −1.1 −1.2 −1.3 −1.3 −15 −1.3 52

C13 −0.8 −1.2 −1.1 −1.6 −1.2 −1.5 −1.2 −1.4 −1.2 −1.2 −1.4 −1.4 −15 −1.3 53

P3 −0.7 −1.3 −1.5 −1.7 −1.2 −1.4 −1.3 −1.6 −1.2 −1.2 −1.3 −1.4 −16 −1.3 54

P8 −1.1 −1.2 −1.5 −1.7 −1.3 −1.5 −1.3 −1.4 −1.2 −1.2 −1.4 −1.4 −16 −1.3 55

Table 3.  Standardized Genotype-by-Yield*Trait (GYT) scores for 12 quantitative traits, including combined 
GYT score, superiority index (SI), and overall rank.

 

Scientific Reports |        (2025) 15:23405 10| https://doi.org/10.1038/s41598-025-07721-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


three ranking parameters—stability, yield–stability, and yield—across four statistical methods: yield–stability 
index (YSi), genotype plus genotype-by-environment interaction (GGE), additive main effects and multiplicative 
interaction (AMMI), and joint regression analysis (JRA). The correlations, particularly among GGE biplots and 
AMMI, ranged from 0.02 to 0.99 and were statistically significant (P < 0.01), highlighting the similarity in yield 
ranking results41. The Venn diagram approach (Fig. 3b) was employed to identify genotypes that were commonly 
ranked superior across the four selection methods. A similar strategy was used by Ambrósio and et al.42 for 
selecting elite black bean genotypes, demonstrating the value of such integrative techniques. Rank aggregation 
methods, which are non-parametric and statistical in nature, are particularly effective in consolidating rankings 
from multiple analytical methods into a single, consensus-based and dependable ranking43–45. These methods 
have been successfully applied across diverse fields including sports competitions43 psychology46 marketing 
research47 and biological sciences44,48. In plant breeding, Simko and Pechenick49 introduced the concept of rank 
aggregation to synthesize results from independent varietal trials, which was later adopted by Van Etten and et 
al.50. In the current study, rank aggregation proved effective in identifying top-performing genotypes (Fig. 4; 
Table 2), reinforcing its utility for crop genotype evaluation. The Genotype by Yield*Trait (GYT) biplot method 
further enhanced the selection process by visually displaying the strengths and weaknesses of each genotype. It 
calculates a superiority index (SI) based on the GYT scores, thereby enabling comprehensive genotype ranking 
across all traits including yield (Table 3; Fig. 5). This approach was similarly employed12,16 confirming its practical 
value. The GYT biplot (Fig.  5) was generated by transforming the traditional genotype-by-trait (GT) biplot 
(S1: Fig.) into a GYT two-way matrix. The polygon view of the GYT biplot is provided in the supplementary 
material (S2: Fig.) for more intuitive interpretation. The average tester coordination (ATC) view of the GYT 
biplot (S3: Fig.) allowed for an objective evaluation of each genotype’s strengths and weaknesses, supporting 
better decision-making through visual ranking of superiority across traits12,51. The practical relevance of GYT 
has also been demonstrated in sunflower single crosses, where genotypes were evaluated for various agronomic 
traits across multiple environments52. Comparable success was reported in multi-environment oat datasets, 
showcasing the method’s broad applicability in plant breeding12.

Conclusion
This study highlights the effectiveness of integrating multi-trait selection indexes SHI, FAI-BLUP, MTSI, and 
MGIDI with advanced tools like weighted rank aggregation and GYT biplot analysis to identify superior 
genotypes in Indian mustard. Among these, FAI-BLUP, MTSI, and MGIDI consistently showed strong reliability, 
with high correlations indicating agreement in genotype rankings. Notably, genotypes C3, C4, C7, and C32 
were repeatedly selected across all indexes, WRA, and GYT, demonstrating favourable improvements in key 
traits such as seed yield, siliqua length, harvest index, and test weight. While the traditional Smith-Hazel index 
remains foundational, it showed limitations due to sensitivity in trait weighting and multicollinearity. In contrast, 
FAI-BLUP and MGIDI effectively accounted for genetic correlations, providing balanced selection across yield 
and related traits. MTSI offered a user-friendly approach for multi-trait improvement. The WRA method 
further strengthened selection by combining ranks from different index, producing a more robust consensus. 
Meanwhile, the GYT biplot visually summarized genotype performance, capturing more variance than the GT 
biplot, thus supporting clearer and objective selection decisions. Practically, breeders are encouraged to combine 
these indexes with graphical tools like GYT to achieve stable, efficient, and balanced genotype selection. This 
integrated approach leverages genetic diversity and accelerates breeding progress. Future research could refine 
weighting schemes and include environmental interactions to enhance selection accuracy further.

Data availability
Data used during the preparation of this manuscript is available within the article.
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