
Role of lysine acetylation-related 
genes in the diagnosis and 
prognosis of glioma
Min Zhou1,2, Bing Wang2, Richu Liang2 & Xinping Luan1

Glioma is the most common and aggressive malignant tumors in central nervous system, its morbidity 
and mortality are both high. Lysine acetylation could alter the expression of oncogene and anti-
oncogene. Thus, this study explored the potential mechanism and aimed to find new diagnostic and 
therapeutic methods. The Cancer Genome Atlas Glioblastoma Multiforme, Glioma related dataset were 
downloaded from UCSC and CGGA database respectively. Lysine acetylation-related genes (LARGs) 
was acquired from published literature. Differentially expressed genes (DEGs) were analyzed between 
GBM and control samples. LARGs (DE-LARGs) were obtained by taking the intersection of DEGs and 
weighted gene co-expression network analysis (WGCNA) module genes. Subsequently, enrichment 
analysis and protein–protein interaction (PPI) network was processed. Then, prognosis genes were 
selected, risk model was constructed and verified. After that, independent prognosis factors were 
used to predict the survival of GBM patients. Corresponding pathways and functions were analyzed 
between different groups. The difference of immune environment was compared. Finally, the drug 
prediction and regulatory network construction was performed. Prognosis genes in tumor and normal 
tissue were identified using immunohistochemistry. Totally 6767 DEGs were screened out. A total of 
2890 module genes were identified highly correlated with lysine acetylation score by WGCNA. A total 
of 313 DE-LARGs were acquired by taking the intersection of DEGs and module genes. PPI network 
was constructed and 215 genes were obtained. Further, risk model revealed 5 genes (CD79B, STXBP4, 
DDHD1, FKBP1B and TRAM2) was related with overall survival (OS) of GBM patients. Kaplan–Meier 
survival and receiver operating characteristic curves were proved to be highly accurate both in training 
and validation set. Based on nomogram, riskscore was the independent prognosis factor for patients. 
The immune infiltration level was highly expressed in high risk group. Four drugs (PAC.1, OSI.906, 
WH.4.023, BMS.536924) were identified as chemotherapeutic drugs in Glioma. The transcription 
factors (TFs)-mRNA regulatory network was constructed and 76 TFs were obtained using TRRUST. 
Finally, the expression of prognostic genes in tumor was significantly higher than that in normal tissue. 
New prognostic genes CD79B, STXBP4, DDHD1, FKBP1B, and TRAM2 were identified for glioma 
through the new perspective of lysine acetylation, suggesting their importance in the development of 
the disease and offering potential insights for diagnosis and treatment.
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Glioma is a common type of brain tumor that originates from neuroglial cells and is known for its infiltrative 
growth, making it challenging to fully remove and likely to come back, putting patients at risk. Glioma symptoms 
vary depending on tumor size and location, but commonly include headaches, nausea, vomiting, and neurological 
issues like limb weakness and speech problems. Without prompt treatment, glioma can cause serious neurological 
damage and be life-threatening1. Glioma research has advanced significantly in understanding its molecular 
mechanisms and developing novel therapeutic strategies, yet critical challenges persist. At the molecular level, key 
drivers such as IDH1/2 mutations disrupt cellular metabolism through 2-hydroxyglutarate accumulation2, while 
EGFR amplification and TP53/ATRX loss drive proliferation and genomic instability3,4. Epigenetic dysregulation, 
notably MGMT promoter methylation predicting temozolomide sensitivity5, and histone modifications further 
shape tumor behavior6. The immunosuppressive microenvironment, mediated by glioma-associated microglia 
and Treg infiltration, alongside hypoxia-induced VEGF-driven angiogenesis, complicates treatment efficacy7. 
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Current therapies rely on surgery, radiotherapy, and chemotherapy, but limitations arise from infiltrative growth 
and resistance mechanisms. Emerging approaches include IDH inhibitors extending progression-free survival, 
CAR-T cells targeting IL-13Rα2/EGFRvIII, and tumor-treating fields (TTFields) improving median survival to 
20.9 months in newly diagnosed GBM8. Liquid biopsy (ctDNA, exosomal miRNAs) and AI-enhanced imaging 
(multimodal MRI radiomics) now refine diagnosis and prognosis9,10. However, challenges such as blood–brain 
barrier limitations, tumor heterogeneity revealed by single-cell sequencing, and GSC-driven recurrence demand 
innovative solutions like nanoparticle drug delivery, CRISPR-based gene editing, and adaptive clinical trial 
designs11. Glioma treatment options include surgery, radiotherapy, and chemotherapy. Surgery aims to remove 
as much tumor tissue as possible, but complete removal is often challenging due to the tumor’s infiltrative 
growth. Radiotherapy and chemotherapy are used to kill remaining tumor cells, but can have side effects12. 
Despite multimodal therapeutic interventions, the prognosis of gliomas remains dismal, characterized by high 
recurrence rates, limited survival durations, and treatment-associated morbidities13. Notably, glioblastoma 
(GBM) exhibits a 5-year survival rate below 10%, reflecting its aggressive biological behavior. In pediatric 
populations, diffuse midline gliomas—exemplified by diffuse intrinsic pontine glioma (DIPG)—demonstrate 
even greater lethality, with clinical cohorts reporting a median overall survival of merely 11 months, a 5-year 
survival rate under 1%, and near-universal mortality approaching 100%14. Therefore, it is crucial to explore new 
diagnostic and treatment approaches for glioma.

Lysine acetylation is a dynamic post-translational modification that regulated the functions and subcellular 
localization of target proteins through structural alterations, thereby influencing key physiological processes such 
as cell proliferation and transcriptional regulation15. In glioma, this process not only drives oncogenic signaling 
pathways through epigenetic regulation (such as chemotherapy resistance related to histone deacetylase HDAC 
activity), but also has a deep interaction with the histone methylation modification network, jointly shaping 
the malignant phenotype of the tumor16,17. Recurrent histone mutations—including H3K27M, H3G34V/R, and 
H3K36M—disrupt epigenetic homeostasis by altering histone methylation patterns, thereby driving oncogenic 
transcriptional programs in gliomas18,19. Notably, the H3K27M mutation, a hallmark of diffuse midline gliomas 
such as DIPG, induces global hypomethylation at H3K27 residues while concurrently modulating lysine 
acetylation dynamics through cross-talk with histone acetyltransferases (HATs) and deacetylases (HDACs). This 
dual perturbation of methylation and acetylation networks creates a permissive chromatin state that sustains 
tumor proliferation across pediatric and adult glioma subtypes20.

This dual perturbation of methylation and acetylation is not an independent event but jointly drove the 
initiation and progression of glioma through coordinated regulation of chromatin accessibility and transcriptional 
programs21. Specifically, hyperacetylation at oncogenic promoters synergizes with histone mutation-driven 
epigenetic reprogramming to amplify tumor growth signals, while hypoacetylation states correlate with therapy 
resistance via DNA repair pathway suppressio22,23. Therapeutic targeting of acetylation regulators, such as 
HDAC inhibitors, has shown promise in restoring epigenetic balance and overcoming treatment refractoriness 
in preclinical models24. These findings position lysine acetylation not merely as a parallel epigenetic mechanism 
but as an integral component of the histone modification network governing gliomagenesis and therapeutic 
vulnerability.

In this study, we employed integrated bioinformatics and statistical approaches to systematically identify 
lysine acetylation-related differentially expressed genes (KAc-DEGs) in gliomas. Through multi-omics analysis 
of public glioma datasets, five pivotal genes (CD79B, STXBP4, DDHD1, FKBP1B, and TRAM2) demonstrating 
significant associations with tumor progression and clinical outcomes were identified. These molecular markers 
were subsequently incorporated into a novel prognostic model, which was rigorously validated using an 
independent cohort of glioma specimens through immunohistochemical analysis. Furthermore, we quantified 
tumor mutational burden (TMB) patterns in TCGA datasets to investigate their potential correlation with 
therapeutic responsiveness. Our findings not only elucidate the critical role of lysine acetylation-associated 
genes in glioma pathogenesis but also provide clinically actionable biomarkers for patient stratification. This 
investigation aims to address current knowledge gaps in glioma etiology by identifying molecular targets with 
diagnostic and therapeutic potential, ultimately facilitating the development of precision medicine strategies to 
improve clinical outcomes and quality of life for glioma patients.

Results
6767 differentially expressed genes (DEGs) and 2890 module genes were identified
There were 6767 DEGs were found between glioblastoma multiforme (GBM) and normal samples in The Cancer 
Genome Atlas Glioblastoma Multiforme (TCGA-GBM) and included 3400 up-regulated and 3367 down-
regulated genes (Fig. 1A,B). All samples were in clusters, so it is not necessary to remove outlier (Supplementary 
Figure 1). Scale-free network was constructed with optimal soft threshold set to 6 (Fig. 1C). Finally, 11 gene 
modules were obtained (Fig.  1D). Furthermore, correlation analysis demonstrated that blue module had 
significantly highest correlation (cor = 0.7267338, p value < 0.05) with lysine acetylation-related sSingle-sample 
gene set enrichment analysis (ssGSEA) score. Thus, 2890 genes involved in this module were used for further 
research (Fig. 1E).

Enriched analysis and protein–protein interaction (PPI) network analysis of differentially 
expressed lysine acetylation-related genes (DE-LARGs)
A total of 313 DE-LARGs were obtained by taking the intersection of 6767 DEGs and 2890 module genes 
(Fig. 2A). Based on DE-LARGs, totally 458 terms were enriched in GO-biological processes (BP), such as axon 
development, gland development. A total of 45 terms were enriched in GO-cellular component (CC), such as 
cell leading edge, collagen-containing extracellular matrix. Totally 49 terms were enriched in GO-molecular 
functions (MF), such as GTPase regulator activity (Fig.  2B,C). In addition, 18 kyoto encyclopedia of genes 
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and genomes (KEGG) pathways were enriched (p value < 0.05), including focal adhesion, PI3K-Akt signaling 
pathway, which were relative with Glioma and lysine acetylation (Fig.  2D,E). Finally, the PPI network that 
included 215 nodes which associated with 414 edges was constructed. Up-regulated genes were AR, CCND1, 
PXDN, FLNA, NOTCH2 and so on. Down-regulated genes were following: MN1, SH3TC2, SH3TC2, PTK2, 
ZEB2, etc. (Fig. 2F). Multiple topological analysis methods were used to evaluate the importance of nodes and 
screen out the core gene modules. The top 10 genes were selected. These genes have high connectivity in the 
network, suggesting that they may play a key role in lysine acetylation related pathways and the progression of 
glioma (Supplementary Figure 2).

Identification of 5 prognosis genes
Among 215 genes obtained from PPI network, 5 genes (CD79B, STXBP4, DDHD1, FKBP1B and TRAM2) were 
identified as prognosis genes by univariate Cox, Least absolute shrinkage and selection operator (LASSO), 
multivariate Cox and multiple stepwise regression analysis (Fig. 3A–E). Optimal cutoff was calculated aimed to 
5 genes. Subsequently, samples of GBM were divided into high and low risk groups through optimal cutoff. After 
log Rank test, Kaplan–Meier (KM) curve were plotted, these 5 genes had significantly different expression in two 
groups. CD79B, FKBP1B, TRAM2 had longer OS in low risk group (Fig. 3F1, F4, F5), but STXBP4 and DDHD1 
had opposite result (Fig. 3F2, F3).

Characterization of riskscore to predict the prognosis of GBM
Riskscore = CD79B × (0.597) + STXBP4 × (− 1.047) + DDHD1 × (− 0.519) + FKBP1B × (0.391) + TRAM2 × 
(0.611). All patients was separated into high (n = 87) and low risk (n = 80) groups by optimal cutoff (1.139165) 
in training set (Fig. 4A). OS of two groups was analyzed (Fig. 4B). KM curve showed OS of low risk groups 
was significantly longer. Area under the curve (AUC) at 1, 2, 3 years were 0.67, 0.73, 0.86 respectively. These 
results demonstrated that risk model had a high accuracy (Fig. 4C–E). In validation set, among 137 samples, 
59 patients was categorized to high risk patients and 78 were low risk patients relied on the optimal cutoff 
(2.588629) (Fig. 4F,G). KM curve showed longer OS in low risk group and AUC at 1, 2, 3 years were 0.61, 0.66, 
0.66 (Fig. 4H,I), this result indicated that the model had good predictive effects. The heat map of the validation 
set risk model showed that CD79B,STXBP4, DDHD1,FKBP1B and TRAM2 were expressed differently in the 
high and low risk groups (Fig. 4J).

Prognosis genes could predict the OS
Univariate Cox analysis showed only riskscore had correlation with prognosis for patient survival (Fig. 5A). 
Therefore, prognosis genes were used to construct nomogram which predicted the survival of patients at 1, 2 
and 3 years (Fig. 5B). Results of receiver operating characteristic (ROC) and calibration curves showed that 
the values of AUC were 0.67,0.74 and 0.86 in 1,2 and 3 years, respectively (Fig. 5C). Decision Curve (DCA) 
demonstrated that the model was valuable and reliable (Fig. 5D–F).

Fig. 1.  Identification of lysine acetylation-related genes in glioma. (A) Volcano plot: Upregulated genes are 
shown in red, and downregulated genes are shown in blue. (B) Heat map of differential genes. Red represents 
higher relative expression while blue denotes lower relative expression. (C) Analysis of the scale-free fit index 
and the mean connectivity for 1–20 soft-thresholding powers (β). (D) Gene modules identified by WGCNA. E. 
The correlation of gene modules with clinical traits. The ordinate represents different modules and the abscissa 
represents different groups. The first line in the module is the correlation coefficient, and the parentheses are p 
value.
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Fig. 2.  Enriched analysis and PPI network analysis of DE-LARGs. (A) The Venn plot of the intersection 
gene. 313 intersection gene was obtained. (B) GO functional analysis of intersecting genes. The horizontal 
coordinate represents the number of genes enriched in the corresponding pathway, and the vertical coordinate 
represents the enriched GO function. (C) GO functional annotation of intersection genes. The circles from the 
outside to the inside represent: the first layer, the ID of the GO function, showing the three functions of BP, CC 
and MF respectively; In the second layer, the color depth represents the significance size, and the length width 
and number represent the number of genes enriched in the function. The third layer represents the number of 
up-down-regulated genes enriched in this function, and the color is used to distinguish the up-down-regulated 
genes. The innermost color piece and color represents different functions, on behalf of the way to the size of the 
RichFactor (RichFactor refers to the transcription of differentially expressed the transcription of the median 
in the GO items this number with all comments transcription in the GO in this entry the transcription of 
the ratio of the total, the greater the RichFactor, the greater the degree of enrichment. (D) KEGG molecular 
pathway of intersecting genes. The circles from the outside to the inside represent: the first layer, the KEGG 
molecular pathway; In the second layer, the color depth represents the significance size, and the length width 
and number represent the number of genes enriched in the function. The third layer represents the number of 
up-down-regulated genes enriched in this function, and the color is used to distinguish the up-down-regulated 
genes. The innermost color block, where the color represents the different function, and the size represents the 
RichFactor of the pathway (RichFactor refers to the ratio of the number of differentially expressed transcripts 
located in that entry to the total number of all annotated transcripts located in that entry, the larger the 
RichFactor,the greater the degree of enrichment. (E) KEGG pathway enrichment bubble map of intersection 
gene. (F) PPI network of intersection DEGs using STRING tool and Cytoscape software. Nodes symbolize 
genes, lines depict reciprocal connections, and colors indicate gene expression levels: red for upregulation and 
blue for downregulation.
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Fig. 4.  Characterization of riskscore to predict the prognosis of GBM. (A) The risk score of training set (The 
data was derived from TCGA). The cut-off value was 1.139165, classifying patients as either high risk (n = 87) 
or low risk (n = 80). (B) Survival distribution of GBM patients. In the training set, mortality increased as 
risk scores increased. (C) Kaplan–Meier estimates of survival curves. The K-M curve shows survival time 
and probability, with the top half representing high and low-risk groups, and the bottom half showing the 
number of samples remaining at different survival times. (D) Time-dependent ROC curves analysis. The 
x-axis shows FPR (specificity) and the y-axis shows TPR (sensitivity) in a graph. Higher AUC values indicate 
greater prediction accuracy, with curves closer to the upper left corner being more accurate. AUC values for 
1, 2, and 3 years are all > 0.6, indicating high accuracy. (E) Risk model gene heat map. Red indicates high gene 
expression and blue indicates low gene expression. (F) Survival distribution of GBM patients in the validation 
set. (G) The risk score of validation set (The data was derived from CGGA). Mortality increased as risk scores 
increased. The optimal cut-off value of 2.588629 divided the sample into high and low groups, with 59 patients 
classified as high risk and 78 patients classified as low risk. (H) Kaplan–Meier estimates of survival curves in 
the validation set. (I) Time-dependent ROC curves analysis of validation set.The AUC at 1, 2, and 3 years was 
over 0.6, showing effective prognostic diagnosis efficiency. (J) Risk model gene heat map of validation set.

 

Fig. 3.  5 prognosis genes were identified as by univariate Cox, LASSO, multivariate Cox and multiple stepwise 
regression analysis and Kaplan–Meier analysis of prognostic genes. (A) Forest plot of univariate Cox analysis. 
Through univariate Cox analysis, 17 genes were considered to be statistically significant for patient survival. 
(B) Prognostic genes cross-validation of LASSO regression. The x-axis is log(λ) and the y-axis is degrees of 
freedom. The dashed lines show the λ values for the smallest error mean and within 1 standard deviation. 
The top number shows the number of genes. Red dots show error values for each λ, with bars representing 
confidence intervals. (C) Plot of LASSO coefficient profiles. The x-axis is the log value of λ, the y-axis is the 
regression coefficient. The curve represents the relationship between the regression coefficient and λ, with 
the number at the top indicating the variables whose coefficient remains non-zero when λ is chosen. (D) 
Forest plot of multivariate Cox regression analysis. 9 model genes (SPAG4, BHLHE40, CD79B, STXBP4, 
DDHD1, FABP5, FKBP1B, TRAM2, PXDN) were identified using multivariate COX regression analysis. 
(E) The forest map of multivariate stepwise regression analysis. 5 model genes (CD79B, STXBP4, DDHD1, 
FKBP1B, TRAM2) were identified using multivariate stepwise regression analysis. F. Kaplan–Meier analysis of 
5 prognostic progno genes. The K-M curve shows survival time and probability, with red representing high-
risk and blue representing low-risk groups. The bottom half displays the risk list with remaining samples at 
different survival times. From left to right are CD79B,STXBP4, DDHD1,FKBP1B,TRAM2.
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Different expression of TME score
Potential mechanism of difference in OS was recognized by GSVA, and the result showed 84 significant pathways 
(p.adj < 0.05). From these pathways, graft versus host disease, allograft rejection were up-regulated in high risk 
group. While non homologous end joining, homologous recombination were down-regulated (Fig.  6A,B). 
ESITIMATE results indicated that all TME scores had a significantly higher expression in high risk group 
(Fig. 6C). These three scores all had a significantly positive correlation with riskscore and Cor > 0.3 (Fig. 6D).

Difference of immune expression of different group
Among 28 immune cell types, 23 types involved monocyte, macrophage, etc. had differential expression 
(p.adj < 0.05) (Fig. 7A). Correlation analysis showed riskscore and differential immune cells had significantly 
positive correlation (Fig.  7B,C). Immune function pathway analysis showed these pathways were higher 
expressed in high risk groups except MHC class I and Type I IFN Response (Fig. 7D).

The significant results of immune checkpoints and chemokines showed that among 28 immune checkpoints, 
23 immune checkpoints were up-regulated (IDO1, CD70, PDCD1LG2, CD48, TNFRSF9, etc.) and 5 (TNFRSF25, 
CD244, TNFSF9, CD200 and HHLA2) were down-regulated. For chemokines, 25 (CXCL13, CXCL10, CXCL9, 
CCL23, etc.) were up-regulated, 4 (CX3CL1, CCL28, CCR9 and CCL1) were down-regulated (Fig. 7E,F). And 
the correlation about immune checkpoints and chemokines was shown in Supplementary Figure 3, 4.

Analysis of mutant genes expression
Mutant landscape showed that mutations frequency was higher in high risk group (PTEN: low: 39%, high: 43%. 
TTN: low: 27%, high: 34%.) (Fig. 8A,B). As shown in the Fig. 8C, the OS of patients in high TMB was significantly 
better (P < 0.05). Then TIDE algorithm was used to further investigated patients sensitivity of immunetherapy 
response of two groups. From this study, lower dysfunction score in low risk group was significant (Fig. 8D). 
Furthermore, differential IC50 of anti-tumor drugs of different groups was analyzed. Among 64 drugs which 
had significant difference between two groups (Fig. 8E), 4 drugs (PAC.1, OSI.906, WH.4.023, BMS.536924) were 
selected for further research (Fig. 8F). The correlation analysis showed that PAC.1 and OSI.906 had negative 
correlation with riskscore. WH.4.023 and BMS.536924 had positive correlation with riskscore (Fig. 8G).

Regulatory network and ceRNA network analysis of prognosis genes
The lncRNA, miRNA and TFs were predicted to construct ceRNA and TF-mRNA regulatory networks 
respectively. For ceRNA regulatory network, 5 mRNAs (TRAM2, DDHD1, CD79B, FKBP18 and STXBP4), 24 
miRNAs and 26 lncRNAs were included (Fig. 9A). Blue point indicated mRNA, orange square stood for miRNA 
and green circle meant lncRNA. For TF-mRNA, the network included 79 nodes which connected with 106 
edges. CD79B, DDHD1, STXBP4 and TRAM2 were all regulated by AR (Fig. 9B).

Fig. 5.  Construction of predictive nomogram. (A) The results of univariate Cox analysis show that only risk 
scores were associated with survival outcomes. (B) Construct nomograms to predict 1-year, 2-year, and 3-year 
prognosis of patients with GBM. (C) ROC of prognosis model 1, 2, 3 years. (D–F) DCA curves of prognosis 
model at 1, 2 and 3 years. The x-axis is ThresholdProbability and the y-axis is net benefit rate.
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3 prognosis genes were highly expressed in GBM
In this study, TRAM2, STXBP4 and CD79B had up-regulated expression, while the expression of FKBP1B and 
DDHD1 was down-regulated in GBM. The corresponding protein of prognosis genes (Supplementary Table 
2) was analyzed. The results showed that corresponding protein of CD79B, STXBP4 and FKBP1B had varying 
degrees of staining intensity in Glioma (Fig. 10A–C). Strength of STXBP4 was the highest (Fig. 10D). The signal 
of CD79B and STXBP4 were detected in cell nucleus. However, the protein of DDHD1 and TRAM2 was not 
detected in Glioma (Fig. 10E,F).

Validation of the prognosis gene expression level by IHC
In order to further verify the expression level of the prognosis gene (CD79B, STXBP4, DDHD1, FKBP1B and 
TRAM2), we used IHC to compare gene expression levels in the glioma tissue and adjacent tissue. The IHC 
results showed that the expression level of the biomarkers exhibited significant difference. The expression levels 
of 5 prognosis gene were significantly higher in glioma tissue than that in the superficial temporal adjacent tissue 
(Fig. 11).

Discussion
Glioma, a prevalent and aggressive cancer of the central nervous system, presents limited therapeutic 
interventions. Acetylation has been shown to modulate tumor growth by influencing immune response and 
regulating cellular processes such as transcription and DNA repair. The process of lysine acetylation is known to 

Fig. 6.  Results of GSVA enrichment analysis. (A) The most significant 20 molecular pathways. (B) Heat map of 
GSVA enrichment analysis. Red indicates high gene expression and blue indicates low gene expression. (C) The 
ESTIMATE, immune, and matrix scores were significantly higher in the high-risk group compared to the low-
risk group. (D) The correlation between ESTIMATE, immune, and matrix scores with risk score was strong, 
with a correlation coefficient above 0.3.
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play a pivotal role in the pathogenesis of glioma, impacting cellular function and facilitating tumor progression25. 
Lysine acetylation affects glioma cell growth and differentiation by controlling important genes and proteins. 
Dysregulation can cause unchecked cell proliferation and tumor development. It also influences the invasion 
and spread of glioma cells by regulating genes and proteins related to migration and adhesion, potentially 
increasing their ability to metastasize in the brain. Higher levels of lysine acetylation in certain genes or proteins 
are associated with more severe forms of glioma. The complex impact of lysine acetylation on glioma involves 
the intricate interplay of numerous genes, proteins, and signaling pathways. Consequently, further investigation 
into the precise mechanisms underlying lysine acetylation in glioma is imperative to elucidate its contributions 
to the initiation, progression, and malignancy of glioma, and to propose novel therapeutic approaches. This 
study used bioinformatics analysis and IHC verification to investigate the key genes associated with glioma and 
lysine acetylation.

The differential genes between glioma and normal samples were intersected with genes associated with lysine 
acetylation in glioma, followed by GO and KEGG enrichment analyses on the identified genes. The results 
of the enrichment analyses revealed that the intersecting genes were involved in biological processes such as 
axon development, gland development, epithelial tube morphogenesis, regulation of supramolecular fiber 
organization, and axonogenesis. The pathways under consideration exhibit a specific association with glioma and 
lysine acetylation. Glioma, a malignant tumor, is linked to biological processes including axon development, cell 
leading edge formation, and the presence of a collagen-containing extracellular matrix. The cellular components 
predominantly influenced by the intersecting genes include the cell leading edge, collagen-containing 
extracellular matrix, nuclear speck, extrinsic component of the membrane, and postsynaptic specialization. 
The predominant molecular functions exhibited by the intersecting genes include GTPase regulator activity, 
nucleoside-triphosphatase regulator activity, ubiquitin-like protein transferase activity, ubiquitin-protein 
transferase activity, and molecular adaptor activity. These pathways are potentially implicated in the pathogenesis 
and progression of glioma. Furthermore, lysine acetylation—a key post-translational modification—exerted 
regulatory effects on glioma progression through pathways such as molecular adaptor activity and ubiquitin-
mediated protein degradation, which were directly associated with its dynamic modification of target proteins26.

Through the utilization of various statistical methods including univariate COX regression, LASSO 
regression, multivariate COX regression, and stepwise regression, a study identified five genes (CD79B, STXBP4, 
DDHD1, FKBP1B, and TRAM2) that are significantly correlated with survival outcomes in glioma patients. 
Specifically, CD79B, a key component of the B-cell receptor complex, is suggested to potentially impact immune 
system functionality27. Alterations in CD79B expression within glioma tumors may consequently influence the 
dynamic interplay between the tumor and the immune system, ultimately shaping tumor progression and patient 
prognosis. STXBP4, a constituent of the synaptotagmin-binding protein family, plays a role in neurotransmitter 
release. In the context of glioma, it may contribute to aberrant neural cell signaling, thereby impacting tumor 
proliferation and infiltration28. The gene DDHD1 is implicated in lipid metabolism and its role may be linked to 

Fig. 7.  Results of immune microenvironment analysis. (A) The difference between high and low risk risk 
groups. Risk scores were significantly correlated with various immune cells. (B) Heat map of correlation 
between immune cells and risk score prognostic genes. (C) Scatter plot of correlation between immune cells 
and risk score. (D) The enrichment scores of immune function pathways were different between high and 
low risk groups. (E) Volcanic map of TIDE analysis of immune checkpoint results. A total of 28 immune 
checkpoints were significant. (F) Volcanic map of TIDE analysis of chemokine results. There were 29 
significant results for chemokines.
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the maintenance of cell membrane integrity and signal transduction. Alterations in DDHD1 within glioma cells 
could impact tumor cell metabolic pathways, thereby influencing their proliferation and viability29. FKBP1B, a 
member of the FK506-binding protein family, is commonly associated with immune modulation and cellular 
stress responses. In the context of glioma, FKBP1B may play a role in modulating the stress response of tumor 
cells or affecting their responsiveness to therapeutic interventions30. TRAM2 is recognized to play a role in 
immune system functions. In the context of glioma, TRAM2 may modulate immune evasion strategies employed 
by tumor cells or impact the interaction between immune cells and tumor cells. Research has demonstrated that 
TRAM2 enhances the cancerous advancement of glioma via the PI3K/AKT/mTOR pathway31. The findings 

Fig. 9.  Regulatory network and ceRNA network analysis of prognosis genes. (A) The ceRNA regulatory 
network was built using the relationships between lncRNA-miRNA-mRNA in the miRNet database. (B) TF-
mRNA regulatory network. TRRUST database was utilized to predict regulatory biomarker TFs and identify 
TF-biomarker relationships.

 

Fig. 8.  Analysis results of mutant genes expression. (A) Mutations of the top10 gene in the GBM high risk 
group. In the high-risk group, PTEN and TTN genes had mutation frequencies of 43% and 34%, respectively. 
(B) Mutations of the top10 gene in the GBM low risk group. In the low-risk group, PTEN and TTN genes 
had mutation frequencies of 39% and 27%, respectively. Highly mutated genes PTEN and TTN had higher 
mutation frequencies in the high-risk group compared to the low-risk group, while TP53 and EGFR had 
higher mutation frequencies in the low-risk group compared to the high-risk group, showing a correlation 
between risk score and gene mutation frequency. (C) KM analysis of different risk-mutation groups. The 
KM curve shows survival time and probability on the upper part, with total survival time on the x-axis and 
survival probability on the y-axis. The lower part shows the number of samples remaining in different groups 
at different survival times. C1. KM analysis found a significant correlation between TMB score and patient 
prognosis. C2. Survival rates differed significantly among the HighRisk_HTMB, HighRisk_LTMB, LowRisk_
HTMB, and LowRisk_LTMB groups, with the HighRisk_LTMB group having the lowest survival rate. (D) 
Differences in TIDE, Dysfunction and Exclusion scores between high and low risk groups. (E) Variations in 
drug sensitivity between high and low risk groups. (F) By analyzing four drugs (PAC-1, OSI-906, WH-4.023, 
BMS-536924), genes associated with risk scores and drugs showed significant correlations above 0.3. (G) Heat 
map of the correlation between risk scores, prognostic genes, and drug response.
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from the Kaplan–Meier and receiver operating characteristic analyses were statistically significant and indicated 
robust predictive capabilities. Furthermore, the validation results from an external dataset were deemed 
satisfactory, underscoring the prognostic relevance of the identified five genes in glioma. The study utilized 
univariate COX regression analysis to determine the association between risk score and survival prognosis in 
patients, leading to the development of a prognostic correlation model. Subsequent Kaplan–Meier (KM) and 
receiver operating characteristic (ROC) tests were conducted, followed by validation through a calibrated model.

To elucidate the mechanisms contributing to survival disparities, a functional enrichment analysis was 
conducted on cohorts categorized as high and low risk. This analysis elucidated the molecular pathways impacted, 
offering insight into potential therapeutic targets and bolstering the rationale for drug development. The findings 
revealed disparities in molecular pathways between high and low risk groups, including glycolipid biosynthesis 
ganglion series, cytokines interacting with cytokine receptors, ubiquitin-mediated protein degradation, propionic 
acid metabolism, and lysine degradation. Researchers have recently studied the role of various biological 
processes in glioma, including glucolipid biosynthesis, cytokine and receptor interaction, protein degradation, 

Fig. 11.  The expression level of corresponding protein of prognostic gene was detected by IHC. The 
corresponding protein staining intensity of prognostic genes (CD79B, STXBP4, DDHD1, FKBP1B and 
TRAM2) in tumor tissues was significantly higher than that in normal tissues.

 

Fig. 10.  Prognosis genes were highly expressed in GBM. (A) Expression of prognostic genes in training sets. 
(B) Immunohistochemical expression of CD79B corresponding protein. (C) Immunohistochemical expression 
of STXBP4 corresponding protein. (D) Immunohistochemical expression of DDHD1 corresponding 
protein. (E) Immunohistochemical expression of FKBP1B corresponding protein. (F) Immunohistochemical 
expression of TRAM2 corresponding protein. CD79B, STXBP4, and FKBP1B proteins show varying staining 
intensity in glioma samples, with STXBP4 having the highest intensity. CD79B and STXBP4 exhibit nuclear 
detection signals, while DDHD1 and TRAM2 show no protein level signal in glioma.

 

Scientific Reports |        (2025) 15:20762 10| https://doi.org/10.1038/s41598-025-07738-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


propionic acid metabolism, and lysine degradation. Glycolipid is crucial for cell membrane function and plays 
a key role in glioma cell growth, differentiation, and signaling. Abnormal activation of glycolipid synthesis in 
glioma cells is linked to tumor progression, invasion, and blood vessel formation32. Cytokine and receptor 
interactions are important in gliomas, impacting tumor growth, invasion, and immune escape. Understanding 
these mechanisms can improve glioma treatment strategies33. The ubiquitin mediated protein degradation 
pathway is crucial in glioma, as abnormalities can cause tumor cell malignancy and drug resistance34. Propionic 
acid metabolism is disrupted in glioma, impacting energy supply and tumor cell growth and invasion35. Lysine 
degradation is disrupted in gliomas, potentially causing metabolic disorders and promoting tumor growth, 
ultimately advancing the disease36. Overall, glioma development is linked to glucolipid biosynthesis, cytokine 
interactions, protein degradation, propionic acid metabolism, lysine degradation, and other processes.

Studying the tumor microenvironment is crucial for understanding tumor development, immune escape, 
drug resistance, prognosis, and treatment strategies. It can provide insights into the pathological mechanisms 
of tumors and offer new approaches for treatment and prognosis assessment. Different algorithms were used 
to analyze the tumor microenvironment, including ESTIMATE, immune cell differences, immune functional 
pathways, TIDE and other aspects, and obtained significant results. There were significant differences in 23 
immune cells. By constructing the correlation of prognostic genes, risk scores and different immune cells among 
sample groups, the results showed that risk scores and different immune cells were positively correlated and 
significant. Immune cells are integral to the pathogenesis, progression, and therapeutic interventions of glioma. 
The findings of this study demonstrate the involvement of specific immune cell types in the lysine acetylation 
process within glioma. Activated B cells, known for their role in antibody production and humoral immunity, 
have been identified as potential contributors to anti-tumor immune responses in gliomas by generating 
antibodies against tumor-associated antigens37. Nevertheless, gliomas may employ mechanisms to evade immune 
surveillance by impairing the functionality of activated B cells. Activated CD8 T cells can directly kill tumor 
cells, including glioma cells, but gliomas can evade immune attack by downregulating immune checkpoints 
or releasing immunosuppressive factors38. Activated dendritic cells play a crucial role in initiating anti-tumor 
immune responses in gliomas by presenting tumor antigens to T cells. CD56dim NK cell: An important immune 
cell that can directly kill tumor and virus-infected cells, potentially playing a role in anti-tumor immune response 
in glioma39. Central memory CD4 and CD8 T cells have long-lasting memory capabilities, quickly activating 
and mounting a robust immune response upon re-encountering antigens40. In gliomas, they may play a role in 
ongoing immune surveillance and targeting of glioma cells. Effector memory T cells can quickly kill tumor cells 
or release cytokines to regulate the immune response in gliomas41. Macrophages play a dual role in the glioma 
microenvironment by removing tumor debris and potentially aiding in immune evasion42.

Studying the connection between immune checkpoints and gliomas is a complex and evolving field. Some 
immune checkpoint molecules have been well-studied, while others are still being explored. Upregulated 
immune checkpoints like CD70 in gliomas may enhance T cell and NK cell activation, potentially boosting 
immune response against tumors43. Additionally, elevated levels of CD44 in gliomas have been linked to 
increased aggressiveness and migration, making it a potential therapeutic target44. Further research is needed to 
fully understand their roles in glioma development. Upregulation of PD-1 in gliomas inhibits T cell activation 
and cytotoxic effects, contributing to immune escape. Targeting PD-1 with immunotherapy may be effective in 
treating glioma. PD-L1 expression in gliomas is linked to immune escape. Blocking PD-L1 and PD-1 interaction 
can restore T cell antitumor activity, offering a new treatment approach for glioma45. Down-regulation of 
TNFRSF25 and CD244 in gliomas may impact immune response and tumor progression by affecting TNF 
signaling pathways and T cell activation, respectively46,47.

Chemokines are significant contributors to the pathogenesis, progression, and therapeutic strategies of 
glioma. Through their ability to orchestrate the migration of immune and non-immune cells to the tumor 
microenvironment, chemokines exert a profound influence on the immune response within the glioma. The 
findings of this study underscore the pivotal role of chemokines in glioma biology. Chemokines in glioma: CXCL13 
promotes B cell migration, CXCL10 is elevated in higher grade tumors and associated with poor prognosis, 
and CXCL9 attracts T cells and natural killer cells to enhance anti-tumor immune response48. In gliomas, up-
regulation of CXCL9 activates the immune system to fight the tumor, while up-regulation of chemokines like 
CCL23, CCL24, and CCL20 recruits tumor-associated macrophages and enhances tumor angiogenesis and 
aggressiveness. Up-regulation of receptors like CXCR2, CCR2, and CXCR4 increases sensitivity to chemokines 
and promotes cell migration and invasion in glioma cells. Reduced levels of chemokines like CX3CL1 in glioma 
can hinder immune cell interactions, impacting immune surveillance and anti-tumor response. Downregulation 
of CCL28, CCR9, and CCL1 may also decrease the recruitment of specific immune cells to glioma cells, affecting 
the immune balance in the tumor microenvironment. The relationship between chemokines and glioma was 
complex and multifaceted, with different chemokines having unique mechanisms and potential interactions49. 
Studying the relationship between chemokines and glioma can help us understand the disease better and find 
new treatment targets. Future research should focus on how chemokines affect the progression and prognosis 
of glioma.

To investigate variances in immunochemotherapy drugs among high and low-risk groups and offer a basis 
for experimental research, we utilized the R package “pRRophetic” to identify the four drugs with the most 
significant distinctions between the aforementioned groups: PAC.1, OSI.906, WH.4.023, and BMS.536924. 
PAC-1 targets the PC-3 protein, which is abundant in cancer cells and plays a key role in apoptosis signaling. 
Clinical trials have shown PAC-1 to have anti-cancer effects on various types of cancer and to have synergies 
with approved anticancer drugs50. OSI.906 (Linsitinib) is a selective inhibitor of IGF-1R and dual inhibitor of 
IGF-1 and insulin receptor with oral activity. It inhibits the proliferation of various tumor cell lines, including 
non-small cell lung cancer and colorectal cancer cells51. WH.4.023 is a selective inhibitor of Lck and Src kinases 
with strong inhibitory activity52. BMS-536924 is a selective inhibitor of IGF-1R and IR kinases. BMS-536924 
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is a potent inhibitor of IGF-1R and IR with an IC50 value of 100 nM and 73 nM, respectively. It also shows 
moderate inhibitory activity against Mek, Fak, and Lck, but minimal activity against Akt1 and MAPK1/253. This 
compound has anticancer properties.

Glioma is a complex brain tumor that involves multiple molecular networks in its malignant progression. 
Studies have shown that miRNA and lncRNA play a crucial role in the growth and spread of glioma cells. 
Specifically, TRAM2 promotes glioma progression through the PI3K/AKT/mTOR pathway31, but more research 
is needed on the interaction between specific miRNAs, lncRNAs, and TRAM2 or its downstream genes. By 
utilizing bioinformatics tools such as miRNet and TRRUST databases, we predict the miRNAs, lncRNAs, and 
transcription factors (TFs) that interact with glioma-associated genes and construct interaction networks of 
these regulatory elements. These predictions provide important clues to reveal the molecular regulatory 
mechanisms of gliomas and may provide new targets for future diagnostic and therapeutic strategies. However, 
these predictions still need to be validated experimentally to confirm their accuracy and biological significance. 
Future studies will focus on validating the specific roles of these miRNAs, IncRNAs, and TFs in gliomas and 
exploring how their interactions affect glioma progression. These studies are expected to provide new ideas and 
methods for the diagnosis and treatment of glioma, and bring better treatment results and quality of life for 
patients.

In summary, this study comprehensively evaluated the expression levels and prognostic value of genes 
associated with lysine acetylation score in gliomas through bioinformatics analysis. We have successfully 
identified potential biomarkers and therapeutic targets, providing a new reference and basis for the prevention, 
diagnosis and treatment of glioma patients. However, we are also aware that there are still some limitations 
in this study, and further exploration of the function and regulatory mechanism of these genes is still needed 
in vitro experiments and clinical drug trials, in order to provide more accurate and effective strategies for the 
treatment and prognosis assessment of glioma.

Materials and methods
Samples were divided into disease and control groups based on TCGA cohort data. Differential expression 
analysis and WGCNA were sequentially performed to identify key modules and genes. Lysine acetylation-related 
differential genes were obtained, and GO and KEGG analyses were conducted. A PPI network was constructed, 
and univariate Cox analysis was performed. The Lasso regression was used to build a risk model, which was then 
validated to obtain prognostic genes. A series of analyses on key genes were conducted. The specific research 
process is shown in Fig. 12.

Data sources
TCGA-GBM dataset was downloaded as training set from University of California Santa Cruz (UCSC) database 
(https://xenabrowser.net/datapages/), involved 168 GBM and 5 control samples. Glioma related dataset was 

Fig. 12.  Schematic workflow of the study. IHC: Immunohistochemistry.
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obtained from Chinese Glioma Genome Atlas (CGGA) (http://www.cgga.org.cn/) as validation set. A total of 
137 GBM patients of gene expression profiles and clinical survival information were included. Lysine acetylation-
related genes (LARGs) was acquired from published literature54 (Supplementary Table 1).

Differentially expressed analysis
The differentially expresssed grenes (DEGs) between GBM and control samples were analyzed through DESeq2 
package (version 1.34.055) in TCGA-GBM. The screening criterias were p.adj < 0.05 and |log2FoldChangeFC|> 1. 
Then top 10 DEGs were displayed in volcanic map and heatmap through ggplot2 (version 3.3.556).

Weighted gene co-expression network analysis (WGCNA)
Initially, a hierarchical clustering tree is constructed to screen and identify outlier samples, ensuring the quality 
and consistency of the data. In the context of The Cancer Genome Atlas Glioblastoma Multiforme (TCGA-
GBM) dataset, single-sample Gene Set Enrichment Analysis (ssGSEA) scores for Large Abundance of Gene 
Sets (LARGs) are calculated, serving as the traits for analysis. Subsequently, the Weighted Gene Co-expression 
Network Analysis is conducted on all the samples using the WGCNA package (version 1.70-357). The selection of 
the soft threshold is crucial as it ensures that the gene interactions within the network are maximally consistent 
with scale-free network properties, which is a fundamental assumption of the WGCNA methodology. Following 
the construction of the gene co-expression network, Pearson correlation analysis is performed to explore the 
relationship between the ssGSEA scores and each of the identified modules. Genes that are found within modules 
that are significantly correlated with the LARGs traits are then considered as LARGs-related module genes, 
providing insights into the functional gene sets associated with the disease or biological process of interest.

Fnrichment analysis of intersection genes
Differentially expressed-LARGs (DE-LARGs) was obtained through taking the intersection of DEGs and WGCNA 
module genes. Next, DE-LARGs were processed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis to find out relative functions and pathways by clusterProfiler package 
(version 4.2.258). Interaction of DE-LARGs on protein level was predicted by STRING database ​(​​​h​t​t​p​s​:​/​/​c​n​.​s​t​r​i​
n​g​-​d​b​.​o​r​g​/​​​​​, confidence = 0.3). After removing genes with no interaction, the protein–protein interaction (PPI) 
network was visualized using Cytoscape (v 3.7.159) software. Additionally, the cytoHubba plugin for Cytoscape 
(v 3.7.1) was employed to perform key topological analysis, including degree centrality, betweenness centrality, 
closeness centrality, maximum clique centrality (MCC), and density of maximal neighborhood component 
(DMNC), to evaluate the importance of nodes in the network and identify key genes and subnetworks.

Construction and verification of risk model
Patients (overall survival) OS-associated genes from DE-LARGs were identified. Univariate Cox regression 
analysis was performed to find out hub genes in training set. Then LASSO regression analysis was to obtain 
crucial genes. After that the results of PH hypothesis test were used to construct multivariate Cox regression 
model. Finally, multiple stepwise regression analysis was carried out to find prognosis genes for forming risk 
model. Riskscore for each GBM patients was calculated by the formula: RiskScore =

∑n

i=1(Expi × Coei)( Expi 
indicated the expression level for each prognosis genes, and Coei indicated the corresponding Cox regression 
coefficient). Optimal cutoff was calculated by prognosis genes in training set. GBM patients were separated 
into high and low risk groups based on optimal cutoff. The accuracy of the model was appraised by Kaplan–
Meier (KM) survival analysis and receiver operating characteristic (ROC) curve. Finally, risk model verified in 
validation set by KM survival analysis and ROC curve.

Construction of predictive nomogram
Firstly, univariate Cox regression analysis of riskscore, age and gender was conducted to screen independent 
prognosis factors. Secondly, the nomogram was built based on prognosis genes. OS of GBM patients were 
predicted at 1, 2 and 3  years. Finally, accuracy was evaluated by ROC and Decision Curve Analysis (DCA) 
respectively.

Gene set variation analysis (GSVA) enrichment analysis
The c2.cp.kegg.v7.1.symbols.gmt dataset was downloaded from Molecular Signatures Database (MSigDB) as 
background genes. GSVA score of pathway in TGCA-GBM was calculated. Difference of biological functions 
from different groups were compared based on the GSVA score.

Estimation of tumor microenvironment (TME)
Stromal score and immune score were calculated by Single-sample gene set enrichment analysis (ssGSEA) 
respectively. Then these two scores were combined to predict the purity of tumor. Based on the RNA-seq of 
TCGA, Estimation of stromal and immune cells in malignant tumour tissues using expression data (ESTIMATE) 
algorithm was processed by IOBR package (version 0.99.960) to evaluate TME score in GBM. TME score was 
divided into two groups relied on immune score. Non-parametric tests were used to find out whether statistical 
difference was existed among these scores from different groups.

Immune function and tumor immune dysfunction and exclusion (TIDE)
Expression features among 28 immune cell types was calculated through ssGSEA algorithm by GSVA package 
(version 1.42.061). Differentially infiltrated level of immune cell was analyzed by Wilcoxon test. Relation of 
riskscore and prognosis genes with immune cells was calculated and analyzed.

Scientific Reports |        (2025) 15:20762 13| https://doi.org/10.1038/s41598-025-07738-4

www.nature.com/scientificreports/

http://www.cgga.org.cn/
https://cn.string-db.org/
https://cn.string-db.org/
http://www.nature.com/scientificreports


Immune function pathways including checkpoint, parainflammation etc. Enrichment score of immune 
function pathway from different groups was evaluated by ssGSEA. Difference was then analyzed by wilcox test 
in training cohort.

TIDE score was calculated in training set. Wilcox test counted the difference of TIDE score between different 
groups. In order to evaluate potential influence of riskscore in immunetherapy response, immune checkpoints 
and chemokines were analyzed from different groups in training set.

The landscape of mutant
Somatic mutation data acquired from TCGA, and then analyzed by maftools package (version 2.6.0562). In 
TCGA-GBM, tumor mutation burden (TMB) score of each patient was calculated. GBM patients were divided 
into high and low TMB groups by median of TMB score. Then survival of GMB patients was analyzed by KM 
survival curve. Two different groups were combined. OS of GMB among HighRisk HTMB, HighRisk LTMB, 
LowRisk HTMB and LowRisk LTMB was analyzed.

Immunochemotherapeutic drugs analysis
The inhibitory concentration 50 (IC50) of 138 drugs in each tumor sample of TCGA-GBM in different groups 
was examined by “pRRophetic” package (version 0.563). The difference of IC50 between two groups was analyzed 
by Wilcoxon test. Finally, the correlation of riskscore and prognosis genes with drugs was analyzed.

Construction of regulatory network
The lncRNAs and miRNAs which regulated mRNAs was predicted in miRNet database. Then ceRNA regulatory 
network was built. Furthermore, this study used TRRUST database (http://www.grnpedia.org/trrust) to search 
transcription factors (TFs) which regulated mRNAs. Corresponding TF-mRNA interaction was obtained.

Expression analysis of prognosis genes
To identify the expression of prognosis genes between GBM and control samples in training set, differential 
expressed analysis was used. Moreover, corresponding protein of prognosis genes was retrieved by human protein 
atlas (HPA). Expression, location, intensity, distribution of protein in GBM tissues and cells were recognized.

Validation of the gene expression level by IHC
The samples from 10 glioma tissue and adjacent tissue were used for IHC to verify the expression level of 
prognosis genes. The written informed consent was obtained from all participants prior to enrollment into the 
study. And study protocols were approved by the Ethics Committee of the University of South China, based on 
the ethical principles for medical research involving human subjects of the Helsinki Declaration. All procedures 
complied with the Declaration of Helsinki. Experimental procedure: The tissues were embedded in paraffin 
wax and sectioned. Primary antibody incubation: Tissue sheet baked at 64℃ for 1 h, followed by dewaxing in 
xylene and hydration in alcohol series. Rinse with PBS three times for 5 min each. Antigen repair: Boil citric 
acid buffer in pressure cooker, add slide, cook for 3 min, cool to room temperature, rinse with PBS 3 times for 
5 min each. Blocking: Incubate with 3% H2O2 for 20 min at room temperature to deactivate peroxidase, rinse 
with PBS 3 times for 5 min each. Incubate 5% bovine serum albumin V at 37℃ for 30 min. Dilute primary 
antibody with 2% bovine serum albumin V according to instructions, add drops to slide, and refrigerate at 4℃ 
overnight. Secondary antibody incubation: The slides were rewarmed at 37℃ for 30 min, washed with PBS, and 
then treated with reaction enhancement solution and enzyme-labeled sheep anti-mouse/rabbit IgG polymer. 
Each step included 3 washes with PBS for 5 min each. DAB color development involves adding DAB dye drops 
to tissue blocks for staining and observing under a microscope. The dye solution is rinsed with PBS three times 
for 5 min each. Hematoxylin restaining includes dyeing the slide in hematoxylin for 5 min, rinsing with distilled 
water, differentiating in alcohol hydrochloric acid solution for 10–15 s, and returning to blue in tap water for at 
least 15 min. Dehydration process includes steps of 70% alcohol for 2 min, 80% alcohol for 3 min, 95% alcohol 
, 100% alcohol I for 5 min, and finally 100% alcohol II. Transparent: xylene I and xylene II for 10 min each, seal 
with neutral gum, then scan.

Statistical analysis
The R software was used to process and analyze the data. The P value < 0.05 was considered statistically significant.

Data availability
The datasets generated and analyzed during the current study are available from the first author, Min Zhou. 
Please contact the first author at 2015020049@usc.edu.cn for data access.
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