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In recent years, image-based feature extraction and deep learning classification methods are widely 
used in the field of malware detection, which helps improve the efficiency of automatic malicious 
feature extraction and enhances the overall performance of detection models. However, recent studies 
reveal that adversarial sample generation techniques pose significant challenges to malware detection 
models, as their effectiveness significantly declines when identifying adversarial samples. To address 
this problem, we propose a malware detection method based on an improved GhostNetV2 model, 
which simultaneously enhances detection performance for both normal malware and adversarial 
samples. First, Android classes.dex files are converted into RGB images, and image enhancement 
is performed using the Local Histogram Equalization technique. Subsequently, the Gabor method 
is employed to transform three-channel images into single-channel images, ensuring consistent 
detection accuracy for malicious code while reducing training and inference time. Second, we make 
three improvements to GhostNetV2 to more effectively identify malicious code, including introducing 
channel shuffling in the Ghost module, replacing the squeeze and excitation mechanism with a more 
efficient channel attention mechanism, and optimizing the activation function. Finally, extensive 
experiments are conducted to evaluate the proposed method. Results demonstrate that our model 
achieves superior performance compared to 20 state-of-the-art deep learning models, attaining 
detection accuracies of 97.7% for normal malware and 92.0% for adversarial samples.
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With the growing popularity of mobile devices in fields such as intelligent agriculture, smart transportation, and 
business applications, Android is one of the most popular systems due to its openness and ease of scalability, 
accounting for 72% of the global mobile market in 20241. However, malicious attacks against mobile have become 
a serious security issue at the same time. According to Kaspersky’s report2, a total of 367,418 Android malware 
installation packages were detected in the second quarter of 2024. Sophos research3 shows that ransomware 
attacks increased by 50% compared to 2023. In addition, the attack methods on Android devices have become 
more diversified and complex, such as Trojans, ransomware and spyware, etc. These attacks bring great risk to 
the data security of individuals and companies.

A commonly used detection method involves collecting large amounts of both malicious and benign 
software, followed by decompiling to extract features. These features are then used to train and test AI-based 
malware detection models. Although this approach has been widely applied and has led to significant research 
advancements4–7, it still has two main limitations: (1) Hackers may use techniques such as shell programming, 
anti-debugging, and code obfuscation, making reverse engineering and analysis more difficult. (2) Decompiling 
certain complex applications requires substantial computational resources and time. As a result, researchers have 
started to explore image-based malware detection techniques to address these issues. This method transforms 
executable files of malicious code into images, then applies image processing and deep learning techniques to 
extract features and perform detection. As compare to feature analysis based on decompilation, image feature-
based techniques offer several unique advantages: (1) Image feature extraction can capture global statistical 
properties of binary code, without the need for in-depth analysis of individual syntax features (e.g., permissions, 
APIs) or local logical structures (e.g., control flow, function calls), which facilitates quicker development of 
malware detection models. (2) A wide range of mature image processing algorithms exist for efficient feature 
extraction and classification. (3) Decompilation-based feature extraction methods depend on the internal logical 
structure of the code, while obfuscation techniques may disrupt or hide these structures, reducing detection 
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effectiveness. In contrast, image feature extraction methods are more robust against code obfuscation techniques 
(e.g., packing, encryption, instruction substitution). For instance, packing techniques might add extra decryption 
code to the binary, but this usually does not significantly alter the byte distribution pattern of the entire binary 
file. Image feature extraction methods can ignore such local variations and focus on global features.

In recent years, many image-based malware detection methods have been proposed8–11. Some of these 
employ traditional image processing techniques, such as edge detection and texture analysis, to extract visual 
features from images, while others use deep learning techniques, particularly Convolutional Neural Networks 
(CNN), to automatically extract features and classify images. However, these methods are limited in that they 
typically detect only regular malware samples and do not consider how to enhance the model’s resilience against 
adversarial attacks. Adversarial attacks involve inserting carefully crafted perturbation data into the malware, 
designed to deceive deep learning models and cause incorrect classification results. In this study, we generated 
8246 adversarial malware samples using Generative Adversarial Network (GAN), and classified the malware 
sample images using 20 common neural network models. The experimental results show that adversarial 
samples generated using this technique can bypass image-based malware detection, thereby reducing detection 
efficiency.

To solve these problems, this paper proposes a novel malware detection algorithm based on image 
enhancement and an improved neural network model. It aims to enable the detection model to effectively identify 
regular malware and improve its performance in detecting adversarial samples. First, Android applications are 
converted into RGB images, then image enhancement is performed using Local Histogram Equalization (LHE) 
and Gabor algorithms. Next, the performance of the detection model is further improved using the enhanced 
GhostNetV2 algorithm. Experimental results indicate that the proposed algorithm significantly improves both 
detection accuracy and resistance to adversarial samples. Overall, the main contributions of this paper are as 
follows:

•	 A novel application image generation method is proposed. Initially, the application is converted into an RGB 
image, followed by image enhancement using LHE technique and the Gabor algorithm. The primary objec-
tive of this method is to extract more effective image features that can be used for the simultaneous identifi-
cation of both conventional malware and adversarial samples.

•	 A classification algorithm of GhostnetV2 is implemented for efficiently identifying malware and adversarial 
samples. It can achieve high detection accuracy and operational efficiency by improving the lightweight neu-
ral network.

•	 Several experiments are designed to evaluate our detection method. Experimental results show that our 
method has better detection performance on normal malware and adversarial samples as compared to the 
unenhanced method. The highest detection accuracy reaches 97.7% and 92.0%, respectively.

The structure of the paper is as follows. Section “Related Work” reviews recent relevant studies. Section “The 
proposed method” details the proposed approach, including image generation, image enhancement, and model 
improvement. Section “Experimental Results” presents a series of experiments to assess the detection and 
calculation performance of our method. Finally, Section “Conclusion and Future Work” summarizes the key 
findings and suggests potential research directions for future work.

Related works
With the rapid development of machine vision technology, researchers continue to apply image analysis 
techniques to the field of malware detection. At the same time, continuous progress has been made in optimizing 
detection methods, particularly in feature extraction algorithms and detection model architectures, leading to 
a large number of valuable research results. The application images used in these researches mainly include two 
categories: grayscale images and color images. A summary and comparison of the relevant literature on image-
based detection of malicious code over the past five years is presented in Table 1.

Reference Model Features Image Datasets Accuracy (%)

Ding et al. CNN classes.dex grayscale Drebin 95.6

Singh et al. Fusion-SVM classes.dex grayscale Drebin 93.24

Tang et al. ResNet classes.dex grayscale Drebin 96.35

Zhang et al. TCN classes.dex,.xml grayscale Drebin 95.44

Wang et al. CNN classes.dex,.xml RGB Drebin 99.8

Yadav et al. EfficientNetb4 classes.dex RGB R2-D2 95.7

Ye et al. CNN classes.dex RGB CIC-AndMal-2017/2020 95.98

Ksibi et al CNN classes.dex RGB CICInvesAndMal2019 95.24  

Zhu et al EfficientNet classes.dex RGB VirusShare 96.9

Propsed GhostNetV2 classes.dex RGB CICAndMal2017/2020, VirusShare, Drebin 97.7

Table 1.  Existing Android malware detection methods based on image-based deep learning algorithms.
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Graryscale image
A grayscale image can be generated from an application’s binary file, where the grayscale value of each pixel 
corresponds to a specific byte value in the executable file. This transformation enables artificial intelligence 
algorithms to effectively detect malicious code through image-based analysis. Due to their computational 
simplicity and efficiency, grayscale images have been widely used in malware detection. For example, Ding et 
al.12 proposed a static detection method based on deep learning, which converted class.dex files into grayscale 
images and trained a Convolutional Neural Network (CNN) for malware classification. This method achieved 
an accuracy of 95.6%, demonstrating its effectiveness in malware detection. Singh et al.13 proposed a framework 
that visualizes Android malware as grayscale images and employed techniques like Gray Level Co-occurrence 
Matrix (GLCM), Global Image Descriptors (GIST), and Local Binary Pattern (LBP) to extract features for 
classification. Their results showed that the Feature Fusion Support Vector Machine (SVM) model achieved the 
highest performance, with an accuracy of 93.24% in identifying and classifying Android malware. Tang et al.11 
proposed efficient Android malware detection system that extracts opcode features at various granularities, used 
the TFIDF algorithm for weighting, and visualizes features as grayscale images. Experiments showed detection 
accuracies of 96.35% for unobfuscated samples and 94.55% for obfuscated samples. Zhang et al.8 proposed a new 
Android malware detection model that combines XML and DEX file features, converting them into grayscale 
images for detection using a temporal convolution network (TCN). This model achieves an accuracy of 95.44%.

RGB image
As compared to grayscale images, RGB images incorporate three distinct color channels (red, green, and blue), 
enabling the independent encoding of diverse categories of code information. Although the computational 
complexity is higher, the rich feature representation capability of RGB images helps to improve the performance 
of detection models. Wang et al.14 proposed a multi-class classification method for Android malware families 
using multi-class feature files and RGB images. Their method extracted DEX and XML files from APK packages 
without decompilation and converts them into RGB images. Experimental results showed that this method 
achieves a high accuracy of 99.84% in multi-class classification. Yadav et al.10 mapped the bytecode in Android 
classes.dex files to RGB images and proposed a CNN model based on EfficientNet-B415 for malware detection, 
achieving an accuracy of 95.7%. Ye et al.16 transformed Android malware classes.dex, AndroidManifest.xml, and 
resource.arsc into RGB images and used a lightweight convolutional neural network to automatically extract the 
features of the RGB images. The experimental results of this study indicated that the method performs well in 
terms of precision and speed of detection. Ksibi et al.17 converted the binary code of Android APK files into RGB 
images, using pre-trained models such as DenseNet16918, InceptionV319, ResNet5020, and VGG1621 for feature 
extraction. The experimental results showed that the classification accuracies for DenseNet169, InceptionV3, 
and VGG16 reached 95.24%, 95.24%, and 95.83%, respectively. Zhu et al.22 transformed executable files into 
RGB images and utilized a new variant of CNN known as MADRF-CNN. The experimental findings revealed 
that this approach attained a malware detection rate of 96.9%.

Adversarial attack
While these methods have demonstrated success in detecting malware, their detection performance can be 
significantly compromised by adversarial samples. These adversarial samples evade the detection mechanism 
by injecting well-designed perturbations in the executable of the malware. Hu et al.23 were the first to apply 
Generative Adversarial Networks (GAN) to malicious code, proposing the MalGAN algorithm. This algorithm 
can generate adversarial malware samples that successfully bypass black-box machine learning detection 
models. It adapts to the black-box system using alternative detectors and trains the generative network to 
reduce the probability of being detected as malicious. They also combined Recurrent Neural Networks (RNN) 
with GAN to generate sequential adversarial samples aimed at attacking malware detection systems based 
on RNN24. Experimental results show that these RNN-based detection algorithms cannot identify most of 
the generated malicious adversarial samples. Building on this foundation, Wang et al.25 combined CNN and 
GAN to design an efficient malware detection method. They implemented a code visualization technique 
and utilized GAN to generate more samples of malicious code variants for data augmentation. Finally, they 
used the lightweight AlexNet for malware classification, and the experimental results showed that the model 
achieved a classification accuracy of 97.78%. Additionally, Li et al.26 proposed an Android malware classification 
model based on CTGAN-SVM, combining GAN with Support Vector Machines (SVM) to generate adversarial 
samples. Through KS-CIR testing and a random forest classifier, SynDroid achieved a 12% increase in accuracy 
on the CCCS-CICAndMal2020 dataset, effectively mitigating the issue of imbalanced data. Most recently, Gao 
et al.27 introduced an innovative adversarial malware generation model named Mal-WGANGP. This model can 
automatically produce a substantial number of adversarial samples, thereby enhancing the detection capability 
of the model while also expanding the dataset.

To the best of our knowledge, the majority of existing studies have predominantly focused on normal 
malware detection, while research on enhancing detection models to identify both malware and adversarial 
samples remains notably limited. In particularly, there is a lack of researches that use real adversarial sample 
datasets for testing. This is the main motivation for the method proposed in this paper.

The proposed method
In this section, we propose a novel malware detection method based on an improved version of GhostNetV2. 
First, we convert the classes.dex files of Android applications into RGB images. We then apply the LHE method for 
image enhancement, followed by the Gabor transform to improve texture features and reduce the three-channel 
image to a single channel. Finally, the images are fed into the enhanced GhostNetV2 model for classification. The 
architecture of our detection model is shown in Fig. 1.
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Image generation
The file directory of an Android application is shown in Fig. 2. As the core file, “classes.dex” is the executable 
file running on the Dalvik virtual machine. It contains the running code and variable space allocation of the 
entire application. According to related studies, as shown in Table  1, all the studies utilized the classes.dex 
file. Therefore, we convert the .dex file into an image as an input to the malicious code detection algorithm. It 
proceeds as follows: first, the APK file is decompiled to get a binary .dex file. After that, the data sequences in 
the binary file are read in groups of every 8 bits and converted to decimal unsigned integers. These integers are 
treated as level values of gray scale values, which range from 0 to 255. Finally, a colour mapping mechanism is 
designed and implemented. Its principle is to dynamically map grayscale values to different RGB colour spaces 
according to their interval distribution. For example, grayscale values between 0 and 63 are mapped to cyan, 
64–127 to green, 128–191 to yellow, and 192–255 to red.” The image generation is shown in Algorithm 1.

Algorithm 1.  Android RGB image generation process

 LHE processing

The differences between malicious code, benign samples, and adversarial samples at the pixel level may be 
minimal, but there are significant distinctions in the local image textures. By enhancing the image contrast, 
we can not only highlight the local texture differences between malicious samples and benign samples but also 
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amplify the texture differences between malicious samples and adversarial samples. This approach aids classifiers 
in better identifying and analyzing these texture differences, thereby improving the accuracy of malware 
detection.

Local Histogram Equalization (LHE)28 is widely used in the field of image enhancement. It can effectively 
improve the local contrast of an image. Different from global histogram equalization, local histogram equalization 
divides the image into multiple small regions and performs independent histogram equalization for each small 
region. Thus, the detailed features of each region are better displayed to optimize the quality of the whole image.

The main steps in generating a local histogram equilibrium image are as follows: 

	(1)	 Generate localised image regions: an 8 × 8 sliding window is used to divide the malicious image into mul-
tiple overlapping small regions, each of which is called a local window.

	(2)	 Counting pixels: calculates the number of pixels in different gray levels within each window.

Part 1

(a) without LHE

Part 2

(b) with LHE

Fig. 3.  The RGB image of 1b3372d4243776ef09d50761aa53aa2fe486d468ff2fa31b46363a0c96929eaa.apk 
before and after using LHE.
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Fig. 1.  The architecture of our malware detection model.
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	(3)	 Define the cumulative distribution function: based on step 2, the CDF is defined for each grey level in the 
local window, as shown in Eq. (1). 

	
CDF (i) =

∑
0∼i

P (r)� (1)

	 where i represents the gray level and P(r) represents the probability of the pixel value.

(a) before

(b) after

Fig. 5.  Histogram of Android malicious images before and after using LHE.

 

(a) part 1

(b) part 2

Fig. 4.  Detailed image comparison of the area marked in red in Fig. 3.
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	(4)	 Define the mapping function: according to the CDF, compute the mapping function for each grayscale level 
to map the original pixel values to new y values, as shown in Eq. (2). 

	 y = round((L − 1) ∗ CDF(i))� (2)

	 where L is the number of gray levels.

	(5)	 Calculate the mapping value of the pixels in the local windows: according to the mapping function in step 
4, calculate the mapping value of each pixel in the local windows.

	(6)	 Repeat steps (1)–(5) to get the enhanced image.

Figure 3a is overall brighter than Fig. 3b, which may lead to detail loss or overexposure. Therefore, we adjust 
the brightness appropriately to assist the model in learning. To illustrate the effect more intuitively, we provide 
detailed images of the red-marked areas in Fig. 3, as shown in Fig. 4.

Figure 5 compares the histograms of the RGB channels in the malware images. Figure 5a shows that when local 
histogram equalization is not used, the distribution of pixel values in the RGB channels is more concentrated, 
especially in the R channel. Figure  5b demonstrates that after applying local histogram equalization, the 
distribution of pixel values becomes more uniform and the image has a wider range of pixel values.

Gabor filter processing
Complex textures and adversarial perturbations in images are high frequency information29. Although traditional 
high-pass filters can effectively filter out low-frequency background noise and highlight highfrequency features, 
they are limited in the high-frequency domain where complex textures and adversarial perturbations coexist. In 
contrast, band-pass filters can precisely control the perturbation in a specific frequency range and retain the key 
information of the image well. In contrast, the band-pass filter can precisely control the perturbation in a specific 
frequency range and retain the key information of the image, which is more suitable for the task of this paper.

A Gabor filter is used in this study. It is good at extracting texture features from images, particularly in terms 
of frequency and orientation. However, it’s sensitive to image contrast. When contrast is insufficient, Gabor filter 
may fail to extract key texture information effectively. After enhancing contrast with LHE technique, Gabor filter 
can more efficiently extract texture features, significantly improving the accuracy and effectiveness of texture 
extraction. Which is defined as follows:

	
g(x, y; σ; θ; λ; γ; ψ) = exp

[
−x2 + γ2y2

2σ2

]
· exp

[
i
(

2π
x

λ
+ ψ

)]
� (3)

where (x, y) is the Gabor filter convolution kernel size; σ is the standard deviation, which is used to control the 
degree of smoothing of the filter; the orientation parameter θ determines the direction of the Gabor filter; the 
wavelength parameter λ defines the period of the sinusoidal component of the Gabor filter; the aspect ratio 
γ describes the degree of stretching of the Gabor filter’s elliptical shape; and the phase offset ψ can be used to 
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adjust the the response of the filter to specific phase features in the image. Here, we set (x, y)=(3,3) , σ=3, θ=180, 
λ=180, γ=0.5, ψ=0.

Malware detection based on the improved GhostNetV2 model
GhostNetV2
In this paper, we use the improved GhostNetV2 framework to detect malware. GhostNet30 is a lightweight 
convolutional neural network designed for mobile devices with excellent performance in image classification 
tasks. The key component of GhostNet is the Ghost module, an efficient plug-and-play module that can generate 
more feature maps with fewer parameters. It can be implemented in the following way: for a given input feature 

G-V1-2

G-V2-1

with ECA
G-V2-2

with ECA

shortcutG-V1-1

G-V2-1 shortcut G-V2-2 shortcut

G-V2-1

with ECA
G-V2-1G-V2-1G-V2-1 shortcut

G-V2-1

with ECA

G-V2-2

with ECA
shortcut

PReLUBNConv 3�3

stem

G-V2-1

with ECA
G-V2-1

G-V2-1

with ECA
G-V2-1

shortcut AvgPool 7�7Conv 1�1 Conv 1�1 FC

head

Fig. 8.  Architecture of improved GhostNetV2.
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X ∈ RH×W ×C , (H, W, C are the height, width and number of channels of the feature map respectively), the 
Ghost module splits the output channel into two parts. The first part is the regular convolution as shown in Eq. 
(4):

	 Y ′ = X ∗ F1×1� (4)

where ∗ is the convolution operation, F1×1 is point-wise convolution and Y ′ ∈ RH×W ×C′
out  is a partial 

output feature.
The second part is the additional feature maps generated by cheap operations ( for example, simple linear 

transformations). After that, the results of these two parts are merged by the concat function to get the final 
output, as shown in equation (5):

	 Y = Concat
([

Y ′, Y ′ ∗ Fdp

])
� (5)

where Fdp is depth-wise convolution and Y ∈ RH×W ×C out  is the final output feature.
Although the Ghost module has significantly reduced the number of parameters, its ability to capture spatial 

information has also been reduced. To address this problem, GhostNetV231 adds the DFC (Decoupled Fully 
Connected) module to capture long distance spatial positional dependencies and to improve inference speeds. 
The calculation process of DFC is as follows.

Consider a given input feature layer X ∈ RH×W ×C  as H ∗ W  feature tokens, zi ∈ RC  and 
Z = {z11, z12, . . . , zHW } aggregating features along the horizontal and vertical directions, respectively. The 
computational procedure can be defined as:

	
a′

hw =
H∑

h′=1

F H
h,h′w ⊙ zh′w′ h = 1, 2, · · · , H, w = 1, 2, · · · , W � (6)

	
ahw =

W∑
w′=1

F W
w,hw′ ⊙ a′

hw′ , h = 1, 2, · · · , H, w = 1, 2, · · · , W � (7)

where F H  and F W  are the weights, ⊙ represents element-wise multiplication, and A = {a11, a12, . . . , aHW } 
is the obtained attention map.

As shown in Fig. 6c and d, the GhostNetV2 bottleneck consists of two modules: the DFC and the Ghost. 
The structure of the DFC is shown in Fig. 7a, where BN refers to Batch Normalization. The input features are 
processed by the Ghost module to generate the feature Y, while the attention matrix A is computed by the DFC 
module. Then, Y is dot-multiplied with A to obtain O, which is passed as input to the subsequent Ghost module 
(V), as shown in Eq. (8).

	 O = Sigmoid(A) ⊙ V(X)� (8)

Model optimization
In order to improve the effectiveness of malware detection, this paper makes three improvements to the 
GhostNetV2 model. First, the activation function of GhostNetV2 is replaced from ReLU to PReLU to reduce the 
model generalization error. Second, channel blending is introduced in the second Ghost Module of GhostNetV2 
bottleneck to enhance the information exchange between features and improve the network performance. Third, 
the ECA module is used to replace the SE module. It can reduces the network parameters and computation while 
maintaining high detection accuracy. The overall architecture of the improved GhostNetV2 is shown in Fig. 8. 
G-V1-1, G-V1-2, G-V2-1 and G-V2-2 represent the Ghost bottleneck V1 with stride=1, Ghost bottleneck V1 
with stride=2, Ghost bottleneck V2 with stride=1, and Ghost bottleneck V2 with stride=2, respectively. The 
detailed structures are shown in Fig. 6a, b, c and d. The shortcut is a depthwise (DW) shortcut, as illustrated in 
Fig. 7b.
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Fig. 9.  Ghost module with channel shuffle.
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	a.	 Replacement of ReLU GhostNetV2 uses the ReLU activation function. This function limits the network’s 
ability to handle nonlinear problems by using only non-negative activation values. To solve this problem, 
the PReLU activation function is chosen. PReLU (Parametric Rectified Linear Unit)32 is designed based on 
ReLU, which introduces learnable parameters that allow negative activation values. PReLU improves the net-
work’s ability to learn complex nonlinear functions, which enables it to achieve better performance in image 
recognition. PReLU is defined as follows: 

	 f(x) = max(0, x) + α min(0, x)� (9)

	 where α = 0.25.

	b.	 Channel shuffle To reduce the computation, GhostNetV2 bottleneck parallelized only the first Ghost module 
with the DFC. In the 2nd Ghost module, GhostNetV2 first generates the first set of features by standard 
convolution and then performs lightweight operations on the first set of features to obtain the second set 
of features. However, this leads to a lack of effective mapping links between the two sets of features, which 
degrades the model performance. Therefore, this paper innovatively introduces channel shufflle (CS)33 to 
enhance the data interaction between the two sets of feature maps, thus improving the model performance.

As shown in Fig. 9, channel shuffling is realized by matrix reshaping, transposition and splicing, with much low-
er computational consumption than convolutional operations. It is executed in the following steps: 

	 (1)	 Divide the feature layer output from the Ghost module into g groups (g=4), each containing n channels. 
In total, g × n output channels are generated.

	 (2)	 Adjust the output matrix to (g, n) shape by reshape operation and subsequently transpose it to (n, g) 
shape.

Environment Configure

CPU Intel(R) Xeon(R) Platinum 8481C

Memory 80G

OS Ubuntu 20.04

GPU GeForce RTX 4090 D

Video Memory 24G

Table 3.  Information of hardware.

 

APK type Quantity Family list

Malware 11552 Dowgin, Ewind, Feiwo, Gooligan, Kemoge, Mobidash, Jisut, Pletor, PornDroid, VirusShield, SMSsniffer, FakeMart, BeanBot, AndroidSpy, 
Iconosys, FakeApp, Plankton, koodous, GinMaster, DroidDream, Glodream, ExploitLinuxLotoor, DroidKungFu, RansomBO, FakeNotify, etc.

Benign 10060 Tools, Family, Game, Business, Medical, Shopping, Social, Dating, Education, Lifestyle, Sports, Entertainment, Video Players, Music, 
Photography, Health, Weather, etc.

Table 2.  Information of datasets.
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Fig. 10.  ECA module.
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	 (3)	 Flatten the matrix obtained in step 2 into a one-dimensional vector. After that, repartition the one-di-
mensional vectors into g groups of n channels each;

 This makes the use of channel shuffle in the model not only improve the model performance, but also avoid a 
significant increase in computational cost.

	c.	 The introduction of ECA It is found that the SE (Squeeze-and-Excitation)34 module in the original Ghost-
NetV2 model fails to sufficiently focus on the key malicious features of the malware images. SENet optimizes 
the local features by dynamically adjusting the channel weights. Its architecture is shown in Fig. 7c. However, 
the global pooling mechanism employed in SENet tends to adjust feature weights at the overall level while 
ignoring locally important features. In addition, the dimensionality reduction strategy in SENet may reduce 
the performance of the channel attention mechanism.

	Therefore, we use ECA (Efficient Channel Attention)35 instead of SE, as shown in Fig. 10. ECA achieves local 
cross-channel interaction through one-dimensional convolution. For the ECA module’s 1D convolution, the 
adaptive kernel size k was determined by: 

	
k = ψ(C) = log2(C)

γ
+ β

γ
� (10)

	where C  is the channel dimension, and γ = 2, β = 1. This adaptively balances local and global attention. ECA 
discards the dimensionality reduction and global pooling operations, which significantly reduces the number 
of parameters and computational cost. The module can flexibly adjust the convolutional kernel size to adapt 
to different feature scales, which improves the performance of deep convolutional neural network (DCNN) 
and simplifies the model complexity at the same time. ECA can effectively enhance the model performance in 
tasks such as image classification and target detection, etc.

Experimental results
Data preparation
The experimental dataset we use contains 11552 malware samples, of which 5978 are from CICMalDroid36, 2453 
from VirusShare37, and 3121 from Drebin38. These malware samples employ various obfuscation techniques, 
including code restructuring, renaming of functions and variables, insertion of junk code, and encryption and 
decryption of code. At the same time, the dataset includes 10060 benign samples, with 4185 from Google39 Play 
and 5875 from CICMalDroid, as detailed in Table 2. All downloaded benign samples have been scanned for 
security using VirusTotal40 and Kaspersky (the version is standard 21.17)41. The dataset is split with 80% used for 

Model Typical variants Para(M)
ImageNet Top-1 
Acc (%) Key features

ResNet20 ResNet-34 21.8 74.60 Medium-depth residual network with 4 stacked residual blocks

ResNet-50 25.6 76.15 Mainstream benchmark model using Bottleneck architecture to reduce computation

ResNet-101 44.5 77.37 Deep network with 33 residual blocks, suitable for high-accuracy scenarios

ResNet-152 60.2 78.31 Deepest standard ResNet variant, primarily used in research

MobileNet MobileNetV242 3.4 72.00 Inverted residual structure with linear Bottleneck design for reduced memory consumption

MobileNetV343 5.5 75.20 NAS-optimized architecture with h-swish activation and SE modules, 20% faster inference on 
mobile devices

DenseNet18 DenseNet-121 7.9 74.70 Dense cross-layer connections where each layer receives features from all preceding layers

DenseNet-169 14.2 76.20 Balanced parameters and performance, uses transition layers for feature dimension compression

DenseNet-201 20 77.30 Deep dense connections (201 layers) for smoother gradient flow

ShuffleNet ShuffleNetV244 1.3 69.70 Channel shuffle + grouped convolution, optimized memory access efficiency (120 FPS on mobile)

ESPNet ESPNetv245 3.5 72.10 Dynamic dilated convolution pyramid, multi-branch feature fusion, 35% lower FLOPs than 
MobileNetV2

EfficientNet15 EfficientNet-B0 5.3 77.30 Baseline compound scaling model (ϕ = 1.0), balances depth/width/resolution

EfficientNet-B1 7.8 79.10 ϕ = 1.1 scaling with 240x240 input resolution (+1.8% accuracy)

EfficientNet-B2 9.1 80.40 ϕ = 1.2 scaling with 15% increased channels, suitable for moderate compute resources

EfficientNet-B3 12 81.60 Medium scaling (ϕ = 1.3), significant accuracy improvement at 1.8 GMACs

EfficientNet-B4 19 82.90 Large scaling (ϕ = 1.4), optimal server-side balance (V100 inference: 45ms)

EfficientNet-B5 30 83.60 Deep scaling (ϕ = 1.6), extreme accuracy optimization (9.9 GMACs)

GhostNet GhostNet30 7.3 75.70 Ghost feature generation via cheap operations, 40% lower FLOPs than MobileNetV3

GhostNetV231 8.9 76.90 Cross-stage attention mechanism for dynamic feature enhancement (+15% mobile inference speed)

Proposed 4.6 78.70 Further lightweight design and accuracy optimization based on GhostNetV2

Table 4.  Comparison of deep learning models for image classification performance and key features.
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training and 20% for testing. To ensure the fairness and credibility of the experiment, we ensure that all models 
are trained and evaluated under the same experimental conditions. After multiple rounds of hyperparameter 
tuning, all models reached a balanced state. We set the following training parameters for each model: number 
of epochs = 26, batch size = 32, learning rate = 0.01. Due to the large sample size, we conduct the following 
experiments on a high-performance computing platform. The hardware information is shown in Table 3.

Model introduction
To more comprehensively evaluate the performance of different deep learning models in malware detection, we 
compare several popular network models and analyze their features and advantages in the context of malware 
detection. Below are the characteristics of several common deep learning models and their relevance to malware 
detection.

ResNet ResNet introduces residual connections, successfully addressing the issues of gradient vanishing and 
explosion in deep neural network training, allowing the network to be deeper and more effectively optimized. In 
malware detection, ResNet can automatically learn complex feature representations of malware, from low-level 
bytecode to high-level semantic features. It is particularly skilled at capturing subtle patterns in binary files and 
effectively distinguishing malicious code from legitimate software.

MobileNet MobileNet uses depthwise separable convolutions to reduce computational load and model size, 
making it particularly suitable for mobile devices and edge computing environments. In real-time malware 
detection, MobileNet, with its lightweight design, can perform efficient low-latency detection tasks on resource-
constrained devices, making it ideal for applications in embedded systems.

DenseNet DenseNet promotes feature reuse through dense connections, enhancing the model’s ability to 
capture fine-grained malicious behavior. For subtle malware behavior patterns, such as API call sequence 
analysis, DenseNet can effectively extract valuable features without overfitting, making it a powerful model for 
malware detection.

ShuffleNet ShuffleNet introduces channel shuffling operations to break the information isolation between 
grouped convolutions, enhancing information flow. It maintains high performance while reducing computational 
burden. In malware detection, ShuffleNet helps integrate different types of features through channel shuffling, 
improving the model’s adaptability to the diversity of malicious code. Additionally, its lightweight design 
accelerates detection speed, meeting the real-time detection requirements.

ESPNet ESPNet utilizes efficient spatial pyramid modules and multi-scale branch structures to expand the 
receptive field, making it particularly suited for handling diverse malware data. Its low parameter count enables 
outstanding real-time processing capabilities in embedded or edge computing scenarios, making it well-suited 
for malware detection tasks that require efficient resource utilization.

EfficientNet EfficientNet balances the depth, width, and resolution of the network using a compound scaling 
method, allowing it to efficiently handle large-scale malware datasets even with limited resources. Its application 
in cloud server environments supports rapid model training and iteration, making it an ideal choice for large-
scale malware detection tasks.

As shown in Table  4, GhostNetV2 demonstrates significant advantages in balancing accuracy-efficiency 
trade-offs and hardware compatibility, and was ultimately selected as the foundational model for this research.

Model para Training Time(s) Test Time(s) Accuracy (%)

ReNet34 21,797,672 2277.08 164.02 97.10

ResNet50 25,557,032 2315.64 141.10 97.00

ResNet101 44,549,160 2373.34 154.94 97.00

ResNet152 60,192,808 2371.84 139.78 97.10

MobileNetV2 3,504,872 2263.82 129.62 96.50

MobileNetV3 5,483,032 2264.24 139.10 94.10

DenseNet121 7,978,856 2206.52 144.10 97.10

DenseNet169 14,149,480 2248.00 134.94 97.10

DenseNet201 20,013,928 2367.04 154.30 97.20

ShuffleNetV2 2,278,604 2412.46 151.98 96.60

ESPNetV2 1,712,759 2422.36 130.88 96.70

EfficieNetV2 54,139,356 2418.96 134.70 97.00

EfficienNet_b0 5,288,548 2299.58 148.32 96.00

EfficienNet_b1 7,794,184 2351.98 161.96 96.30

EfficienNet_b2 9,109,994 2327.22 159.36 96.60

EfficienNet_b3 12,233,232 2310.06 164.36 96.60

EfficienNet_b4 19,341,616 2491.20 133.82 96.50

EfficienNet_b5 30,389,784 2368.82 143.42 95.80

GhostNetV2 6,156,908 2261.72 139.38 95.90

Proposed 4,653,105 2250.60 125.12 96.90

Table 5.  Performance comparison of 20 models on Android malware detection.

 

Scientific Reports |        (2025) 15:25019 12| https://doi.org/10.1038/s41598-025-07742-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Evaluation metrics
The performance of the detection models is evaluated by four metrics. They are precision, recall, F1-Score, accuracy 
and confusion matrix. Precision reflects the classification ability of the detection model, focusing specifically 
on its ability in predicting malware rather than all correctly classified samples. Recall is a measurement of the 
ability of a detection model to predict the proportion of malware in actual malware. F1-score is a metric that 
combines the harmonic mean of recall and precision to assess a model’s ability in predicting malware. Accuracy 
indicates the overall performance of the detection model in classifying applications as malware or benign. The 
confusion matrix visualizes a classification model’s predictions by comparing true labels with predicted labels. 
The definitions of the aforementioned evaluation metrics are as follows:

	
Precision = TP

FP + TP
� (11)

	
Recall/TPR = TP

TP + FN
� (12)

	
FPR = FP

FP + TN
� (13)

	
F1 − score = 2 × Precision × Recall

Precision + Recall
� (14)

	
Accuracy = TP + TN

TP + FP + TN + FN
� (15)

where TP is the True Positive, TN is the True Negative, FP is the False Positive, FN is the False Negative.

Evaluation of images enhancement methods
Experiment on ordinary images
Table 5 evaluates 20 state-of-the-art deep learning models for Android malware detection using ordinary RGB 
images. Experimental results indicate that the DenseNet201 model achieved the highest detection accuracy, 
reaching 97.2%. In contrast, MobileNetV2 has the fewest parameters, followed closely by our proposed method. 
Notably, as compared to GhostNetV2, our optimized model significantly reduced the parameter size to 4.6M, 
a decrease of approximately 1.5M. This improvement also enhanced training and testing efficiency, reducing 
training time to 2250.60s and testing time to 125.12s. Despite the decrease in parameters and computational 
costs, our model’s accuracy improved by 1%, coming within 0.2% of the top-performing DenseNet201.

Experiment on LHE
To further improve the detection accuracy of malware, Fig. 11 shows 20 state-of-the-art deep learning models 
for Android malware detection using RGB images with LHE. It can be observed that the use of the LHE method 
improves the detection accuracy of all models, ranging from about 0.1–3.1%. Our method and DenseNet169 had 
the highest accuracy rates, both at 97.5%.
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Fig. 11.  Comparison of the detection accuracy of 20 models on RGB images using the LHE method.
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Table 6 presents the macro-average and weighted-average precision, recall, and F1-score evaluation values 
for 20 state-of-the-art deep learning models used in malware detection on RGB images using the LHE method. 
Our model achieved the highest values in precision, recall, and F1-score, each approximately equal to 0.976. The 
higher precision and recall values indicate that the the model performs well in detecting malware.

Figure  12 shows the confusion matrices for the detection of RGB images with LHE using 20 models. 
Experimental results show that our method accurately classifies 98% of benign images and only 2% of images 
are misidentified as malware. Furthermore, the method successfully identified 97% of malware images, with only 
3% misclassified as benign.

Experiment on LHE_Gabor
In Table  7, we evaluate the detection performance of 20 state-of-the-art deep learning models for Android 
malware detection using RGB images with LHE_Gabor. The results show a significant reduction in both training 
and testing times. This improvement is due to the fact that RGB images are transformed into single-channel 

Model Average type Precision Recall F1-score

ReNet34 Macro 0.9719 0.9721 0.9719

Weighted 0.9725 0.9720 0.9720

ResNet50 Macro 0.9711 0.9711 0.9711

Weighted 0.9711 0.9711 0.9711

ResNet101 Macro 0.9734 0.9734 0.9734

Weighted 0.9734 0.9734 0.9734

ReNet152 Macro 0.9719 0.9719 0.9719

Weighted 0.9720 0.9720 0.9720

MobileNetV2 Macro 0.9656 0.9655 0.9655

Weighted 0.9656 0.9656 0.9655

MobileNetV3 Macro 0.9726 0.9721 0.9723

Weighted 0.9725 0.9723 0.9723

DenseNet121 Macro 0.9754 0.9750 0.9752

Weighted 0.9753 0.9752 0.9752

DenseNet169 Macro 0.9758 0.9757 0.9757

Weighted 0.9757 0.9757 0.9757

DenseNet201 Macro 0.9748 0.9747 0.9748

Weighted 0.9748 0.9748 0.9748

ShuffleNetV2 Macro 0.9623 0.9620 0.9621

Weighted 0.9622 0.9622 0.9621

ESPNetV2 Macro 0.9663 0.9658 0.9660

Weighted 0.9661 0.9660 0.9660

EfficienNetV2 Macro 0.9702 0.9703 0.9703

Weighted 0.9703 0.9704 0.9704

EfficienNet_b0 Macro 0.9692 0.9687 0.9689

Weighted 0.9690 0.9689 0.9689

EfficienNet_b1 Macro 0.9597 0.9597 0.9597

Weighted 0.9597 0.9597 0.9597

EfficienNet_b2 Macro 0.9705 0.9703 0.9704

Weighted 0.9704 0.9704 0.9704

EfficienNet_b3 Macro 0.9622 0.9621 0.9621

Weighted 0.9622 0.9622 0.9622

EfficienNet_b4 Macro 0.9627 0.9618 0.9621

Weighted 0.9624 0.9622 0.9621

EfficienNet_b5 Macro 0.9087 0.9088 0.9087

Weighted 0.9088 0.9088 0.9088

GhostNetV2 Macro 0.9631 0.9623 0.9626

Weighted 0.9629 0.9626 0.9626

Proposed Macro 0.9766 0.9761 0.9763

Weighted 0.9765 0.9763 0.9763

Table 6.  Detection Performance comparison of 20 state-of-the-art deep learning models on RGB images using 
the LHE method.
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grayscale images through Gabor processing. Deep learning models can train and infer more quickly on these 
single-channel images.

It should be noted that despite the reduced number of data channels in the application image, the detection 
accuracy of almost every model has improved. This indicates that using single-channel grayscale images does 
not necessarily reduce the models’ learning capabilities. Adding Gabor processing to LHE not only saves time in 
training and testing, but also further improves detection accuracy.

(a) ReNet34 (b) ResNet50 (c) ResNet101 (d) ReNet152

(e) MobileNetV2 (f) MobileNetV3 (g) DenseNet121 (h) DenseNet169

(i) DenseNet201 (j) ShuffleNetV2 (k) ESPNetV2 (l) EfficienNetV2

(m) EfficienNet_b0 (n) EfficienNet_b1 (o) EfficienNet_b2 (p) EfficienNet_b3

(q) EfficienNet_b4 (r) EfficienNet_b5 (s) GhostNetV2 (t) Proposed

Fig. 12.  Confusion matrices obtained from the RGB images with LHE using 20 models.
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Furthermore, Fig. 13 shows the FPR values of 20 models after applying the LHE_Gabor method. A lower FPR 
indicates better detection performance, and our method achieves the lowest FPR.

The ROC curve for the proposed method in distinguishing between malware and benign samples is presented 
in Fig. 14. The curve’s proximity to the top-left corner indicates strong model performance, with an AUC score 
of 0.977, suggesting that the feature extraction process from malware images by the proposed model is highly 
effective.

From Fig. 15, it is evident that the improved GhostNetV2 model demonstrates a rapid convergence during 
training. Both the training and validation losses remain below 0.1 within 26 epochs, while the validation accuracy 
stabilizes above 99.7%, with the accuracy curve approaching 1.0. Furthermore, the training and validation curves 
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Fig. 13.  FPR comparison for different models using LHE_Gabor.

 

Model Training time(s) Test time(s) Accuracy (%)

ReNet34 1042.96 54.68 97.30

ResNet50 1031.82 53.90 97.20

ResNet101 1034.38 60.98 97.30

ResNet152 1074.22 62.92 97.30

MobileNetV2 1026.04 54.22 96.80

MobileNetV3 1022.40 54.30 97.30

DenseNet121 1021.30 58.82 97.50

DenseNet169 1027.30 64.16 97.60

DenseNet201 1030.16 66.82 97.50

ShuffleNetV2 1009.46 54.10 97.00

ESPNetV2 1017.56 59.48 96.80

EfficieNetV2 1052.74 71.70 97.30

EfficienNet_b0 1021.48 60.96 97.00

EfficienNet_b1 1023.67 67.92 96.70

EfficienNet_b2 1018.26 64.82 97.20

EfficienNet_b3 1004.32 63.42 96.90

EfficienNet_b4 1016.08 75.64 96.90

EfficienNet_b5 1025.64 66.72 96.20

GhostNetV2 1011.88 59.40 96.50

Proposed 1012.42 53.40 97.70

Table 7.  Detection Performance comparison of 20 state-of-the-art deep learning models on images using 
LHE_Gabor.
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Fig. 16.  Visualization of the proposed model on the malware detection.

 

Fig. 15.  Learning curve during the training process of our proposed model.

 

Fig. 14.  ROC curve analysis for the proposed method on Android malware detection.
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are highly synchronized, with no apparent signs of overfitting. These results indicate that the model exhibits 
favorable convergence, high accuracy, and strong generalization ability during the training process.

To evaluate the performance of our model in the classification task of malware and benign applications, we 
utilize tdistributed Stochastic Neighbor Embedding (t-SNE) for visualizing the features extracted from the GAP 
layer. t-SNE is an effective dimensionality reduction technique that maps high-dimensional data into a lower-
dimensional space while preserving the relative distances and local structures between data points as much as 
possible. In this study, we set the t-SNE learning rate to 200.0, the early exaggeration parameter to 12.0, the 
perplexity to 30.0, and the number of iterations to 1000. The visualization results in Fig. 16 clearly demonstrate 
a distinct separation between the malware and benign applications, with only a small degree of overlap. This 
indicates that our detection methods exhibit strong discriminatory ability in classifying these two categories of 
samples.

Evaluation of improved model
To further validate the effectiveness of the improvements made to the GhostNetV2 model, we conduct a series of 
ablation experiments. Based on the original GhostNetV2, New_GhostNetV2_1 incorporates only PRelu, while 
New_GhostNetV2_2 includes both CS and PReLU. Additionally, the model improvement methods we proposed 
introduces ECA alongside the previous components. We subsequently compared the four models across multiple 
metrics, including accuracy, precision, F1-score, testing time, parameter, and flops.

Table 8 shows that adding PReLU increases model parameters by 0.034k, but it outperforms GhostNetV2 in 
accuracy and F1-Score. This improvement is due to PReLU’s ability to enhance the model’s non-linear expression, 
allowing it to capture more complex patterns and avoid the “dying ReLU” issue, thus improving classification 
accuracy.

When we add CS, parameters remain unchanged, while both accuracy and F1-Score increase, test 
time decreases, and flops stay stable. CS helps reduce redundant feature maps and retains more meaningful 
information without increasing computational cost.

Detection model

RGB image
RGB image with LHE_
Gabor

MalGAN (%) DCGAN (%) MalGAN (%) DCGAN (%)

ReNet34 82.10 80.00 90.30 89.80

ResNet50 87.20 86.50 91.40 90.90

ResNet101 86.10 85.50 89.50 89.00

ResNet152 80.40 79.80 91.60 91.00

MobileNetV2 78.60 77.50 83.80 82.30

MobileNetV3 80.10 79.80 90.10 89.70

DenseNet121 85.20 84.50 89.20 88.60

DenseNet169 89.60 88.90 90.70 90.40

DenseNet201 87.40 86.90 90.30 89.80

ShuffleNetV2 70.40 69.50 84.60 83.90

ESPNetV2 72.50 71.80 84.10 83.60

EfficieNetV2 87.30 86.80 90.80 90.40

EfficienNetb0 77.20 76.00 91.20 90.70

EfficienNetb1 85.60 84.80 91.60 91.10

EfficienNetb2 85.80 85.10 86.50 86.00

EfficienNetb3 85.90 85.30 91.40 90.80

EfficienNetb4 86.20 85.70 90.30 90.10

EfficienNetb5 85.90 85.00 89.30 88.90

GhostNetV2 83.10 82.40 89.20 88.70

Proposed 85.30 84.80 92.00 91.60

Table 9.  Accuracy comparison of different models with and without LHE_Gabor, using MalGAN and 
DCGAN configurations.

 

Method PRelu CS ECA ACC(%) F1-score(%) Time(s) Para Flops(G)

GhostNetV2 × × × 96.3 96.29 69.69 6,156,908 3.461

New_GhostNetV2_1 ✓ × × 96.5 96.53 65.18 6,156,942 3.461

New_GhostNetV2_2 ✓ ✓ × 96.9 96.94 63.37 6,156,942 3.461

Proposed ✓ ✓ ✓ 97.5 97.63 62.56 4,653,105 3.460

Table 8.  Performance comparison of GhostNetV2 in ablation study.
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Detection model RGB image
RGB image with 
LHE_Gabor

MalGAN DCGAN MalGAN DCGAN

ReNet34 0.1912 0.2015 0.1221 0.1196

ResNet50 0.1323 0.1432 0.0928 0.1056

ResNet101 0.1429 0.1549 0.1143 0.1124

ResNet152 0.2011 0.2198 0.0942 0.0932

MobileNetV2 0.2357 0.2346 0.1811 0.1834

MobileNetV3 0.2002 0.2104 0.1032 0.1145

DenseNet121 0.1515 0.1619 0.1145 0.1256

DenseNet169 0.1104 0.1206 0.1076 0.1075

DenseNet201 0.1312 0.1534 0.1079 0.1089

ShuffleNetV2 0.3012 0.3189 0.1689 0.1754

ESPNetV2 0.2805 0.2916 0.1667 0.1758

EfficieNetV2 0.1323 0.1469 0.1006 0.1042

EfficienNetb0 0.4123 0.4424 0.2901 0.2916

EfficienNetb1 0.2303 0.2404 0.0925 0.0932

EfficienNetb2 0.1501 0.1584 0.1401 0.1421

EfficienNetb3 0.1502 0.1545 0.0925 0.1001

EfficienNetb4 0.1412 0.1594 0.1079 0.1054

EfficienNetb5 0.1516 0.1585 0.1012 0.1213

GhostNetV2 0.1745 0.1815 0.1213 0.1294

Proposed 0.1524 0.1635 0.0824 0.0903

Table 11.  FPR comparison of different models with and without LHE_Gabor, using malGAN and DCGAN 
configurations.

 

Detection model RGB image
RGB image with 
LHE_Gabor

MalGAN DCGAN MalGAN DCGAN

ReNet34 0.8196 0.8000 0.9031 0.8981

ResNet50 0.8717 0.8651 0.9142 0.9094

ResNet101 0.8609 0.8554 0.8951 0.8864

ResNet152 0.8041 0.7984 0.9164 0.9089

MobileNetV2 0.7858 0.7751 0.8382 0.8251

MobileNetV3 0.8096 0.7982 0.9014 0.8969

DenseNet121 0.8517 0.8451 0.9021 0.8868

DenseNet169 0.8668 0.8893 0.9172 0.9039

DenseNet201 0.8638 0.8692 0.9030 0.8981

ShuffleNetV2 0.7036 0.6951 0.8460 0.8391

ESPNetV2 0.7314 0.7180 0.8412 0.8361

EfficieNetV2 0.8534 0.8680 0.9082 0.9042

EfficienNetb0 0.7731 0.7600 0.9124 0.9072

EfficienNetb1 0.8563 0.8482 0.9162 0.9114

EfficienNetb2 0.8484 0.8414 0.8851 0.8600

EfficienNetb3 0.8591 0.8535 0.9142 0.9082

EfficienNetb4 0.8621 0.8572 0.9030 0.9014

EfficienNetb5 0.8591 0.8500 0.8931 0.8890

GhostNetV2 0.8314 0.8241 0.8921 0.8875

Proposed 0.8537 0.8482 0.9200 0.9164

Table 10.  TPR comparison of different models with and without LHE_Gabor, using malGAN and DCGAN 
configurations.
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Finally, the introduction of ECA reduces FLOPS slightly and dramatically lowers parameters to about 1.5 
M. This reduction is due to the efficiency of ECA, which uses fewer parameters but improves the attention 
mechanism. At this stage, accuracy and F1 scores reach their highest, and test time is minimized, showing that 
ECA optimizes the model’s performance, making it more accurate and computationally efficient.

Therefore, the model improvement method proposed in this study is considered to be the optimal solution 
when considering these important of performance changes.

Detection of adversarial samples
The aim of the experiments in this subsection is to further evaluate the performance of our method in detecting 
unknown malware. Considering the emergence of new adversarial malware samples that can significantly reduce 
the classification ability of neural network models, 8246 adversarial malware samples generated by MalGAN and 
DCGAN46, and 7124 benign samples are used as the dataset for the following experiments.

Table 9 compares the accuracy of 20 different models in detecting images of adversarial samples. We detected 
both RGB images of the applications, and RGB images with LHE_Gabor to evaluate the effectiveness of our 
image enhancement method at the same time.

The experimental results show that all 20 models are significantly reduced in accuracy when detecting RGB 
images of adversarial samples. However, the image enhancement method proposed we proposed can effectively 
improve their detection accuracy. Meanwhile, our detection model has the highest accuracy of 92.0% and 91.6% 
in detecting these unknown adversarial malware samples.

Table  10 presents the TPR of 20 models in detecting adversarial samples. A higher TPR indicates better 
classification performance. The table includes results for two adversarial attacks, MalGAN and DCGAN. The 
results show that, without the LHE_gabor method, the average TPR of the models is approximately 0.82, 
indicating relatively weak detection performance. However, after applying the LHE_gabor method, the detection 
capability of the models significantly improves to around 0.90, with our method achieving the best TPR in 
detecting adversarial samples.

Table 11 shows the performance of these models in terms of FPR. A lower FPR indicates better performance, 
with a reduced probability of misclassification. The results demonstrate that, when facing adversarial attacks, the 
models using the LHE_gabor method exhibit a significant reduction in FPR, with all models showing smaller 
FPR values compared to when the LHE_gabor method was not applied. This suggests that our LHE_gabor 
method effectively reduces false positives, enhancing the stability and reliability of the models.

Overall, whether considering accuracy, TPR, FPR, or other metrics, our method demonstrates clear 
advantages and effectively improves model performance in adversarial sample detection tasks.

Discussion
Image enhancement The application of LHE significantly enhanced the texture feature differentiation, leading 
to a notable improvement in model performance. Our model, in combination with LHE and Gabor filtering, 
demonstrated an increase in accuracy by 0.1–3.1%, achieving a top accuracy of 97.7%. This improvement is 
further evidenced by the macro-average F1-score of 0.9763, outperforming other models in the comparison. 
Notably, our approach had a misclassification rate of only 2% for benign samples, which indicates a very low 
FPR, while the 97% recall rate for malicious samples reflects the model’s strong ability to correctly identify 
threats. The combination of LHE and Gabor filtering also led to a significant reduction in both training and 
testing times, decreasing them by 50–60%, with training time reduced to just 1021.30 seconds. Furthermore, the 
model achieved an impressive AUC of 0.977 and the lowest FPR of 0.0303. The feature visualization using t-SNE 
confirmed that the enhanced features were well-separated, suggesting that the enhancement strategy is not only 
effective but also robust.

Network architecture improvement In the ablation experiments, several modifications to the network 
architecture proved to be beneficial. The introduction of parametric PReLU activation resulted in a 1.6% 
improvement in the F1-score, demonstrating its positive impact on the model’s ability to balance precision and 
recall. The incorporation of CS further boosted the TPR by 3.1%, highlighting its effectiveness in improving the 
model’s sensitivity to malicious samples. Additionally, replacing the SE block with ECA reduced the model’s 
parameters by 24.5%, from 6.15 to 4.65M, demonstrating significant computational efficiency improvements. 
These architectural enhancements contributed to a highly optimized model, achieving 97.7% accuracy with only 
23.2% of the parameters of DenseNet201. Compared to 20 mainstream models, our approach outperformed 
GhostNetV2 by 1.8%, making it both efficient and competitive in terms of performance.

Adversarial sample robustness Adversarial robustness is a critical challenge for deep learning models, 
particularly in security applications. Our method demonstrated exceptional resilience to adversarial samples 
generated by MalGAN and DCGAN. With the combination of LHE and Gabor filtering, our model achieved 
detection accuracies of 92.0% and 91.6%, respectively, surpassing other models by 15–30%. TPR for MalGAN 
and DCGAN adversarial samples reached 0.93 and 0.92, respectively, the highest among the models tested. 
This robust performance in the presence of adversarial attacks is a testament to the efficacy of our proposed 
enhancements, ensuring that the model remains effective even under adversarial conditions.

In conclusion, our approach successfully balances detection accuracy, computational efficiency, and 
robustness to adversarial samples. The combination of advanced image enhancement techniques, architectural 
improvements, and the ability to withstand adversarial attacks positions our model as a feasible solution for real-
time malware detection on mobile devices. This approach not only demonstrates high detection performance but 
also offers a computationally efficient solution, making it suitable for resource-constrained environments. Future 
work could further explore the integration of additional robust features to enhance the model’s performance in 
even more challenging scenarios, such as with novel or unseen adversarial attacks.
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Conclusion and future work
This paper proposes a novel malware detection method based on an improved GhostNetV2, aimed at enhancing 
the detection performance for both normal malware and adversarial samples. First, we introduce a technique 
that applies local histogram equalization and Gabor methods to Android application images. Next, we develop 
a detection model for malware and adversarial samples using the improved GhostNetV2 algorithm. Finally, in 
our experiments, we analyze the performance of 20 state-of-the-art network models in detecting malware and 
adversarial samples, with results demonstrating that our proposed method performs exceptionally well.

However, it is important to note that the method in this paper primarily focuses on identifying novel 
adversarial attack samples from a detection perspective. Recent research indicates that new attack methods 
continue to emerge, especially attacks targeting artificial intelligence classifiers. Future research can be 
developed in several directions: further collection of a large number of new adversarial malicious code samples, 
conduct more extensive testing and validation of these adversarial samples to analyze malicious attack patterns, 
incorporate other mechanisms for updating the model as new threats emerge, explore methods to further 
improve the detection model’s computational performance, such as parallel processing techniques or hardware 
acceleration, and validate their reliability in real-world applications.

Data availability
The datasets generated and analyzed during the current study are available in the virusshare repository, ​h​t​t​p​s​:​/​
/​v​i​r​u​s​s​h​a​r​e​.​c​o​m​/​​​​​, CICMalDroid repository, https://www.unb.ca/cic/datasets/index.html, GooglePlay ​r​e​p​o​s​i​t​o​r​
y​, https://www.techspot.com/downloads/. Another dataset that support the findings of this study are available 
from Drebin, but restrictions apply to the availability of these data, which were used under license for the current 
study and so are not publicly available. Data are however available from the authors upon reasonable request and 
with permission of the authors of Drebin, ​h​t​t​p​s​:​​/​/​w​w​w​.​​n​d​s​s​-​s​​y​m​p​o​s​i​​u​m​.​o​r​​g​/​n​d​s​s​​2​0​1​4​/​n​​d​s​s​-​2​0​​1​4​-​p​r​​o​g​r​a​m​m​​e​/​
d​r​e​b​​i​n​-​e​f​f​​e​c​t​i​v​​e​-​a​n​d​-​​e​x​p​l​a​i​​n​a​b​l​e​-​​d​e​t​e​c​​t​i​o​n​-​a​​n​d​r​o​i​d​​-​m​a​l​w​a​​r​e​-​y​o​u​r​-​p​o​c​k​e​t​/.
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