
Mobile malware detection method
using improved GhostNetV2 with
image enhancement technique
Yao Du1,2,3, CaiXia Gao1,3, Xi Chen1, MengTian Cui1, LiLi Xu1 & AoJi Ning1

In recent years, image-based feature extraction and deep learning classification methods are widely
used in the field of malware detection, which helps improve the efficiency of automatic malicious
feature extraction and enhances the overall performance of detection models. However, recent studies
reveal that adversarial sample generation techniques pose significant challenges to malware detection
models, as their effectiveness significantly declines when identifying adversarial samples. To address
this problem, we propose a malware detection method based on an improved GhostNetV2 model,
which simultaneously enhances detection performance for both normal malware and adversarial
samples. First, Android classes.dex files are converted into RGB images, and image enhancement
is performed using the Local Histogram Equalization technique. Subsequently, the Gabor method
is employed to transform three-channel images into single-channel images, ensuring consistent
detection accuracy for malicious code while reducing training and inference time. Second, we make
three improvements to GhostNetV2 to more effectively identify malicious code, including introducing
channel shuffling in the Ghost module, replacing the squeeze and excitation mechanism with a more
efficient channel attention mechanism, and optimizing the activation function. Finally, extensive
experiments are conducted to evaluate the proposed method. Results demonstrate that our model
achieves superior performance compared to 20 state-of-the-art deep learning models, attaining
detection accuracies of 97.7% for normal malware and 92.0% for adversarial samples.

Keywords  Malware detection, Image enhancement, Improved GhostNetV2, Adversarial samples

With the growing popularity of mobile devices in fields such as intelligent agriculture, smart transportation, and
business applications, Android is one of the most popular systems due to its openness and ease of scalability,
accounting for 72% of the global mobile market in 20241. However, malicious attacks against mobile have become
a serious security issue at the same time. According to Kaspersky’s report2, a total of 367,418 Android malware
installation packages were detected in the second quarter of 2024. Sophos research3 shows that ransomware
attacks increased by 50% compared to 2023. In addition, the attack methods on Android devices have become
more diversified and complex, such as Trojans, ransomware and spyware, etc. These attacks bring great risk to
the data security of individuals and companies.

A commonly used detection method involves collecting large amounts of both malicious and benign
software, followed by decompiling to extract features. These features are then used to train and test AI-based
malware detection models. Although this approach has been widely applied and has led to significant research
advancements4–7, it still has two main limitations: (1) Hackers may use techniques such as shell programming,
anti-debugging, and code obfuscation, making reverse engineering and analysis more difficult. (2) Decompiling
certain complex applications requires substantial computational resources and time. As a result, researchers have
started to explore image-based malware detection techniques to address these issues. This method transforms
executable files of malicious code into images, then applies image processing and deep learning techniques to
extract features and perform detection. As compare to feature analysis based on decompilation, image feature-
based techniques offer several unique advantages: (1) Image feature extraction can capture global statistical
properties of binary code, without the need for in-depth analysis of individual syntax features (e.g., permissions,
APIs) or local logical structures (e.g., control flow, function calls), which facilitates quicker development of
malware detection models. (2) A wide range of mature image processing algorithms exist for efficient feature
extraction and classification. (3) Decompilation-based feature extraction methods depend on the internal logical
structure of the code, while obfuscation techniques may disrupt or hide these structures, reducing detection

1College of Computer Science and Artificial Intelligence, Southwest Minzu University, Chengdu, China. 2Institute of
Qinghai-Tibetan Plateau, Chengdu, China. 3Yao Du and CaiXia Gao have contributed equally to this work. email:
cx@swun.edu.cn

OPEN

Scientific Reports | (2025) 15:25019 1| https://doi.org/10.1038/s41598-025-07742-8

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-07742-8&domain=pdf&date_stamp=2025-7-10

effectiveness. In contrast, image feature extraction methods are more robust against code obfuscation techniques
(e.g., packing, encryption, instruction substitution). For instance, packing techniques might add extra decryption
code to the binary, but this usually does not significantly alter the byte distribution pattern of the entire binary
file. Image feature extraction methods can ignore such local variations and focus on global features.

In recent years, many image-based malware detection methods have been proposed8–11. Some of these
employ traditional image processing techniques, such as edge detection and texture analysis, to extract visual
features from images, while others use deep learning techniques, particularly Convolutional Neural Networks
(CNN), to automatically extract features and classify images. However, these methods are limited in that they
typically detect only regular malware samples and do not consider how to enhance the model’s resilience against
adversarial attacks. Adversarial attacks involve inserting carefully crafted perturbation data into the malware,
designed to deceive deep learning models and cause incorrect classification results. In this study, we generated
8246 adversarial malware samples using Generative Adversarial Network (GAN), and classified the malware
sample images using 20 common neural network models. The experimental results show that adversarial
samples generated using this technique can bypass image-based malware detection, thereby reducing detection
efficiency.

To solve these problems, this paper proposes a novel malware detection algorithm based on image
enhancement and an improved neural network model. It aims to enable the detection model to effectively identify
regular malware and improve its performance in detecting adversarial samples. First, Android applications are
converted into RGB images, then image enhancement is performed using Local Histogram Equalization (LHE)
and Gabor algorithms. Next, the performance of the detection model is further improved using the enhanced
GhostNetV2 algorithm. Experimental results indicate that the proposed algorithm significantly improves both
detection accuracy and resistance to adversarial samples. Overall, the main contributions of this paper are as
follows:

•	 A novel application image generation method is proposed. Initially, the application is converted into an RGB
image, followed by image enhancement using LHE technique and the Gabor algorithm. The primary objec-
tive of this method is to extract more effective image features that can be used for the simultaneous identifi-
cation of both conventional malware and adversarial samples.

•	 A classification algorithm of GhostnetV2 is implemented for efficiently identifying malware and adversarial
samples. It can achieve high detection accuracy and operational efficiency by improving the lightweight neu-
ral network.

•	 Several experiments are designed to evaluate our detection method. Experimental results show that our
method has better detection performance on normal malware and adversarial samples as compared to the
unenhanced method. The highest detection accuracy reaches 97.7% and 92.0%, respectively.

The structure of the paper is as follows. Section “Related Work” reviews recent relevant studies. Section “The
proposed method” details the proposed approach, including image generation, image enhancement, and model
improvement. Section “Experimental Results” presents a series of experiments to assess the detection and
calculation performance of our method. Finally, Section “Conclusion and Future Work” summarizes the key
findings and suggests potential research directions for future work.

Related works
With the rapid development of machine vision technology, researchers continue to apply image analysis
techniques to the field of malware detection. At the same time, continuous progress has been made in optimizing
detection methods, particularly in feature extraction algorithms and detection model architectures, leading to
a large number of valuable research results. The application images used in these researches mainly include two
categories: grayscale images and color images. A summary and comparison of the relevant literature on image-
based detection of malicious code over the past five years is presented in Table 1.

Reference Model Features Image Datasets Accuracy (%)

Ding et al. CNN classes.dex grayscale Drebin 95.6

Singh et al. Fusion-SVM classes.dex grayscale Drebin 93.24

Tang et al. ResNet classes.dex grayscale Drebin 96.35

Zhang et al. TCN classes.dex,.xml grayscale Drebin 95.44

Wang et al. CNN classes.dex,.xml RGB Drebin 99.8

Yadav et al. EfficientNetb4 classes.dex RGB R2-D2 95.7

Ye et al. CNN classes.dex RGB CIC-AndMal-2017/2020 95.98

Ksibi et al CNN classes.dex RGB CICInvesAndMal2019 95.24

Zhu et al EfficientNet classes.dex RGB VirusShare 96.9

Propsed GhostNetV2 classes.dex RGB CICAndMal2017/2020, VirusShare, Drebin 97.7

Table 1.  Existing Android malware detection methods based on image-based deep learning algorithms.

Scientific Reports | (2025) 15:25019 2| https://doi.org/10.1038/s41598-025-07742-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Graryscale image
A grayscale image can be generated from an application’s binary file, where the grayscale value of each pixel
corresponds to a specific byte value in the executable file. This transformation enables artificial intelligence
algorithms to effectively detect malicious code through image-based analysis. Due to their computational
simplicity and efficiency, grayscale images have been widely used in malware detection. For example, Ding et
al.12 proposed a static detection method based on deep learning, which converted class.dex files into grayscale
images and trained a Convolutional Neural Network (CNN) for malware classification. This method achieved
an accuracy of 95.6%, demonstrating its effectiveness in malware detection. Singh et al.13 proposed a framework
that visualizes Android malware as grayscale images and employed techniques like Gray Level Co-occurrence
Matrix (GLCM), Global Image Descriptors (GIST), and Local Binary Pattern (LBP) to extract features for
classification. Their results showed that the Feature Fusion Support Vector Machine (SVM) model achieved the
highest performance, with an accuracy of 93.24% in identifying and classifying Android malware. Tang et al.11
proposed efficient Android malware detection system that extracts opcode features at various granularities, used
the TFIDF algorithm for weighting, and visualizes features as grayscale images. Experiments showed detection
accuracies of 96.35% for unobfuscated samples and 94.55% for obfuscated samples. Zhang et al.8 proposed a new
Android malware detection model that combines XML and DEX file features, converting them into grayscale
images for detection using a temporal convolution network (TCN). This model achieves an accuracy of 95.44%.

RGB image
As compared to grayscale images, RGB images incorporate three distinct color channels (red, green, and blue),
enabling the independent encoding of diverse categories of code information. Although the computational
complexity is higher, the rich feature representation capability of RGB images helps to improve the performance
of detection models. Wang et al.14 proposed a multi-class classification method for Android malware families
using multi-class feature files and RGB images. Their method extracted DEX and XML files from APK packages
without decompilation and converts them into RGB images. Experimental results showed that this method
achieves a high accuracy of 99.84% in multi-class classification. Yadav et al.10 mapped the bytecode in Android
classes.dex files to RGB images and proposed a CNN model based on EfficientNet-B415 for malware detection,
achieving an accuracy of 95.7%. Ye et al.16 transformed Android malware classes.dex, AndroidManifest.xml, and
resource.arsc into RGB images and used a lightweight convolutional neural network to automatically extract the
features of the RGB images. The experimental results of this study indicated that the method performs well in
terms of precision and speed of detection. Ksibi et al.17 converted the binary code of Android APK files into RGB
images, using pre-trained models such as DenseNet16918, InceptionV319, ResNet5020, and VGG1621 for feature
extraction. The experimental results showed that the classification accuracies for DenseNet169, InceptionV3,
and VGG16 reached 95.24%, 95.24%, and 95.83%, respectively. Zhu et al.22 transformed executable files into
RGB images and utilized a new variant of CNN known as MADRF-CNN. The experimental findings revealed
that this approach attained a malware detection rate of 96.9%.

Adversarial attack
While these methods have demonstrated success in detecting malware, their detection performance can be
significantly compromised by adversarial samples. These adversarial samples evade the detection mechanism
by injecting well-designed perturbations in the executable of the malware. Hu et al.23 were the first to apply
Generative Adversarial Networks (GAN) to malicious code, proposing the MalGAN algorithm. This algorithm
can generate adversarial malware samples that successfully bypass black-box machine learning detection
models. It adapts to the black-box system using alternative detectors and trains the generative network to
reduce the probability of being detected as malicious. They also combined Recurrent Neural Networks (RNN)
with GAN to generate sequential adversarial samples aimed at attacking malware detection systems based
on RNN24. Experimental results show that these RNN-based detection algorithms cannot identify most of
the generated malicious adversarial samples. Building on this foundation, Wang et al.25 combined CNN and
GAN to design an efficient malware detection method. They implemented a code visualization technique
and utilized GAN to generate more samples of malicious code variants for data augmentation. Finally, they
used the lightweight AlexNet for malware classification, and the experimental results showed that the model
achieved a classification accuracy of 97.78%. Additionally, Li et al.26 proposed an Android malware classification
model based on CTGAN-SVM, combining GAN with Support Vector Machines (SVM) to generate adversarial
samples. Through KS-CIR testing and a random forest classifier, SynDroid achieved a 12% increase in accuracy
on the CCCS-CICAndMal2020 dataset, effectively mitigating the issue of imbalanced data. Most recently, Gao
et al.27 introduced an innovative adversarial malware generation model named Mal-WGANGP. This model can
automatically produce a substantial number of adversarial samples, thereby enhancing the detection capability
of the model while also expanding the dataset.

To the best of our knowledge, the majority of existing studies have predominantly focused on normal
malware detection, while research on enhancing detection models to identify both malware and adversarial
samples remains notably limited. In particularly, there is a lack of researches that use real adversarial sample
datasets for testing. This is the main motivation for the method proposed in this paper.

The proposed method
In this section, we propose a novel malware detection method based on an improved version of GhostNetV2.
First, we convert the classes.dex files of Android applications into RGB images. We then apply the LHE method for
image enhancement, followed by the Gabor transform to improve texture features and reduce the three-channel
image to a single channel. Finally, the images are fed into the enhanced GhostNetV2 model for classification. The
architecture of our detection model is shown in Fig. 1.

Scientific Reports | (2025) 15:25019 3| https://doi.org/10.1038/s41598-025-07742-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Image generation
The file directory of an Android application is shown in Fig. 2. As the core file, “classes.dex” is the executable
file running on the Dalvik virtual machine. It contains the running code and variable space allocation of the
entire application. According to related studies, as shown in Table 1, all the studies utilized the classes.dex
file. Therefore, we convert the .dex file into an image as an input to the malicious code detection algorithm. It
proceeds as follows: first, the APK file is decompiled to get a binary .dex file. After that, the data sequences in
the binary file are read in groups of every 8 bits and converted to decimal unsigned integers. These integers are
treated as level values of gray scale values, which range from 0 to 255. Finally, a colour mapping mechanism is
designed and implemented. Its principle is to dynamically map grayscale values to different RGB colour spaces
according to their interval distribution. For example, grayscale values between 0 and 63 are mapped to cyan,
64–127 to green, 128–191 to yellow, and 192–255 to red.” The image generation is shown in Algorithm 1.

Algorithm 1.  Android RGB image generation process

 LHE processing

The differences between malicious code, benign samples, and adversarial samples at the pixel level may be
minimal, but there are significant distinctions in the local image textures. By enhancing the image contrast,
we can not only highlight the local texture differences between malicious samples and benign samples but also

Scientific Reports | (2025) 15:25019 4| https://doi.org/10.1038/s41598-025-07742-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

amplify the texture differences between malicious samples and adversarial samples. This approach aids classifiers
in better identifying and analyzing these texture differences, thereby improving the accuracy of malware
detection.

Local Histogram Equalization (LHE)28 is widely used in the field of image enhancement. It can effectively
improve the local contrast of an image. Different from global histogram equalization, local histogram equalization
divides the image into multiple small regions and performs independent histogram equalization for each small
region. Thus, the detailed features of each region are better displayed to optimize the quality of the whole image.

The main steps in generating a local histogram equilibrium image are as follows:

	(1)	 Generate localised image regions: an 8 × 8 sliding window is used to divide the malicious image into mul-
tiple overlapping small regions, each of which is called a local window.

	(2)	 Counting pixels: calculates the number of pixels in different gray levels within each window.

Part 1

(a) without LHE

Part 2

(b) with LHE

Fig. 3.  The RGB image of 1b3372d4243776ef09d50761aa53aa2fe486d468ff2fa31b46363a0c96929eaa.apk
before and after using LHE.

Goole Play

CICMalDroid

malware

Datasets

antivirus engin

CICMalDroid

VirusShare

Drebin

benign

Dex files

01010
10100
11010

LHE Gabor

Feature maps

Improved GhostNetV2

Fully connected

malware

benign

Fig. 1.  The architecture of our malware detection model.

assets

lib

res

META-INF

AndroiManifest.xml

classes.dex

resources.arsc

Fig. 2.  Directory of APK files.

Scientific Reports | (2025) 15:25019 5| https://doi.org/10.1038/s41598-025-07742-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	(3)	 Define the cumulative distribution function: based on step 2, the CDF is defined for each grey level in the
local window, as shown in Eq. (1).

	
CDF (i) =

∑
0∼i

P (r)� (1)

	 where i represents the gray level and P(r) represents the probability of the pixel value.

(a) before

(b) after

Fig. 5.  Histogram of Android malicious images before and after using LHE.

(a) part 1

(b) part 2

Fig. 4.  Detailed image comparison of the area marked in red in Fig. 3.

Scientific Reports | (2025) 15:25019 6| https://doi.org/10.1038/s41598-025-07742-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	(4)	 Define the mapping function: according to the CDF, compute the mapping function for each grayscale level
to map the original pixel values to new y values, as shown in Eq. (2).

	 y = round((L − 1) ∗ CDF(i))� (2)

	 where L is the number of gray levels.

	(5)	 Calculate the mapping value of the pixels in the local windows: according to the mapping function in step
4, calculate the mapping value of each pixel in the local windows.

	(6)	 Repeat steps (1)–(5) to get the enhanced image.

Figure 3a is overall brighter than Fig. 3b, which may lead to detail loss or overexposure. Therefore, we adjust
the brightness appropriately to assist the model in learning. To illustrate the effect more intuitively, we provide
detailed images of the red-marked areas in Fig. 3, as shown in Fig. 4.

Figure 5 compares the histograms of the RGB channels in the malware images. Figure 5a shows that when local
histogram equalization is not used, the distribution of pixel values in the RGB channels is more concentrated,
especially in the R channel. Figure 5b demonstrates that after applying local histogram equalization, the
distribution of pixel values becomes more uniform and the image has a wider range of pixel values.

Gabor filter processing
Complex textures and adversarial perturbations in images are high frequency information29. Although traditional
high-pass filters can effectively filter out low-frequency background noise and highlight highfrequency features,
they are limited in the high-frequency domain where complex textures and adversarial perturbations coexist. In
contrast, band-pass filters can precisely control the perturbation in a specific frequency range and retain the key
information of the image well. In contrast, the band-pass filter can precisely control the perturbation in a specific
frequency range and retain the key information of the image, which is more suitable for the task of this paper.

A Gabor filter is used in this study. It is good at extracting texture features from images, particularly in terms
of frequency and orientation. However, it’s sensitive to image contrast. When contrast is insufficient, Gabor filter
may fail to extract key texture information effectively. After enhancing contrast with LHE technique, Gabor filter
can more efficiently extract texture features, significantly improving the accuracy and effectiveness of texture
extraction. Which is defined as follows:

	
g(x, y; σ; θ; λ; γ; ψ) = exp

[
−x2 + γ2y2

2σ2

]
· exp

[
i
(

2π
x

λ
+ ψ

)]
� (3)

where (x, y) is the Gabor filter convolution kernel size; σ is the standard deviation, which is used to control the
degree of smoothing of the filter; the orientation parameter θ determines the direction of the Gabor filter; the
wavelength parameter λ defines the period of the sinusoidal component of the Gabor filter; the aspect ratio
γ describes the degree of stretching of the Gabor filter’s elliptical shape; and the phase offset ψ can be used to

Ghost Module

BN

Ghost Module

Add

BN PRelu

DWConv Stride=2

BN

Ghost Module

Add

BN PRelu

Ghost Module

BN

Ghost module Mul

Ghost Module

Add

BN PRelu

BN

DFC attention

Ghost Module DWConv Stride=2

Ghost Module Mul

Ghost Module

Add

BN PRelu

BN

DFC attention

Ghost Module

(a) Ghost bottleneckV1

Stride=1 (G-V1-1)

(b) Ghost bottleneckV1

Stride=2 (G-V1-2)

(c) Ghost bottleneckV2

Stride=1 (G-V2-1)
(d) Ghost bottleneckV2

Stride=2 (G-V2-2)

Fig. 6.  GhostNetV1 and GhostNetV2 bottleneck.

Scientific Reports | (2025) 15:25019 7| https://doi.org/10.1038/s41598-025-07742-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

adjust the the response of the filter to specific phase features in the image. Here, we set (x, y)=(3,3) , σ=3, θ=180,
λ=180, γ=0.5, ψ=0.

Malware detection based on the improved GhostNetV2 model
GhostNetV2
In this paper, we use the improved GhostNetV2 framework to detect malware. GhostNet30 is a lightweight
convolutional neural network designed for mobile devices with excellent performance in image classification
tasks. The key component of GhostNet is the Ghost module, an efficient plug-and-play module that can generate
more feature maps with fewer parameters. It can be implemented in the following way: for a given input feature

G-V1-2

G-V2-1

with ECA
G-V2-2

with ECA

shortcutG-V1-1

G-V2-1 shortcut G-V2-2 shortcut

G-V2-1

with ECA
G-V2-1G-V2-1G-V2-1 shortcut

G-V2-1

with ECA

G-V2-2

with ECA
shortcut

PReLUBNConv 3�3

stem

G-V2-1

with ECA
G-V2-1

G-V2-1

with ECA
G-V2-1

shortcut AvgPool 7�7Conv 1�1 Conv 1�1 FC

head

Fig. 8.  Architecture of improved GhostNetV2.

Conv 1�1

Global Pooling

Conv 1�1

ReLU

Reshape

Sigmoid

Scale

(c) SE module

BN

Sigmoid

Down-sample

1�1 Convolution

Horizontal FC

Vertical FC

BN

(a) DFC attention module

BN

Zero Padding

BN

Conv 1�1

DW Conv d�d

(b) Depthwise shortcut module

Fig. 7.  The structure of the DFC attention module, Depthwise shortcut module and SE module.

Scientific Reports | (2025) 15:25019 8| https://doi.org/10.1038/s41598-025-07742-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

X ∈ RH×W ×C , (H, W, C are the height, width and number of channels of the feature map respectively), the
Ghost module splits the output channel into two parts. The first part is the regular convolution as shown in Eq.
(4):

	 Y ′ = X ∗ F1×1� (4)

where ∗ is the convolution operation, F1×1 is point-wise convolution and Y ′ ∈ RH×W ×C′
out is a partial

output feature.
The second part is the additional feature maps generated by cheap operations (for example, simple linear

transformations). After that, the results of these two parts are merged by the concat function to get the final
output, as shown in equation (5):

	 Y = Concat
([

Y ′, Y ′ ∗ Fdp

])
� (5)

where Fdp is depth-wise convolution and Y ∈ RH×W ×C out is the final output feature.
Although the Ghost module has significantly reduced the number of parameters, its ability to capture spatial

information has also been reduced. To address this problem, GhostNetV231 adds the DFC (Decoupled Fully
Connected) module to capture long distance spatial positional dependencies and to improve inference speeds.
The calculation process of DFC is as follows.

Consider a given input feature layer X ∈ RH×W ×C as H ∗ W feature tokens, zi ∈ RC and
Z = {z11, z12, . . . , zHW } aggregating features along the horizontal and vertical directions, respectively. The
computational procedure can be defined as:

	
a′

hw =
H∑

h′=1

F H
h,h′w ⊙ zh′w′ h = 1, 2, · · · , H, w = 1, 2, · · · , W � (6)

	
ahw =

W∑
w′=1

F W
w,hw′ ⊙ a′

hw′ , h = 1, 2, · · · , H, w = 1, 2, · · · , W � (7)

where F H and F W are the weights, ⊙ represents element-wise multiplication, and A = {a11, a12, . . . , aHW }
is the obtained attention map.

As shown in Fig. 6c and d, the GhostNetV2 bottleneck consists of two modules: the DFC and the Ghost.
The structure of the DFC is shown in Fig. 7a, where BN refers to Batch Normalization. The input features are
processed by the Ghost module to generate the feature Y, while the attention matrix A is computed by the DFC
module. Then, Y is dot-multiplied with A to obtain O, which is passed as input to the subsequent Ghost module
(V), as shown in Eq. (8).

	 O = Sigmoid(A) ⊙ V(X)� (8)

Model optimization
In order to improve the effectiveness of malware detection, this paper makes three improvements to the
GhostNetV2 model. First, the activation function of GhostNetV2 is replaced from ReLU to PReLU to reduce the
model generalization error. Second, channel blending is introduced in the second Ghost Module of GhostNetV2
bottleneck to enhance the information exchange between features and improve the network performance. Third,
the ECA module is used to replace the SE module. It can reduces the network parameters and computation while
maintaining high detection accuracy. The overall architecture of the improved GhostNetV2 is shown in Fig. 8.
G-V1-1, G-V1-2, G-V2-1 and G-V2-2 represent the Ghost bottleneck V1 with stride=1, Ghost bottleneck V1
with stride=2, Ghost bottleneck V2 with stride=1, and Ghost bottleneck V2 with stride=2, respectively. The
detailed structures are shown in Fig. 6a, b, c and d. The shortcut is a depthwise (DW) shortcut, as illustrated in
Fig. 7b.

Input

Conv ...

Identity

Output

Ghost module

channel shuffle

Linear

Fig. 9.  Ghost module with channel shuffle.

Scientific Reports | (2025) 15:25019 9| https://doi.org/10.1038/s41598-025-07742-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	a.	 Replacement of ReLU GhostNetV2 uses the ReLU activation function. This function limits the network’s
ability to handle nonlinear problems by using only non-negative activation values. To solve this problem,
the PReLU activation function is chosen. PReLU (Parametric Rectified Linear Unit)32 is designed based on
ReLU, which introduces learnable parameters that allow negative activation values. PReLU improves the net-
work’s ability to learn complex nonlinear functions, which enables it to achieve better performance in image
recognition. PReLU is defined as follows:

	 f(x) = max(0, x) + α min(0, x)� (9)

	 where α = 0.25.

	b.	 Channel shuffle To reduce the computation, GhostNetV2 bottleneck parallelized only the first Ghost module
with the DFC. In the 2nd Ghost module, GhostNetV2 first generates the first set of features by standard
convolution and then performs lightweight operations on the first set of features to obtain the second set
of features. However, this leads to a lack of effective mapping links between the two sets of features, which
degrades the model performance. Therefore, this paper innovatively introduces channel shufflle (CS)33 to
enhance the data interaction between the two sets of feature maps, thus improving the model performance.

As shown in Fig. 9, channel shuffling is realized by matrix reshaping, transposition and splicing, with much low-
er computational consumption than convolutional operations. It is executed in the following steps:

	 (1)	 Divide the feature layer output from the Ghost module into g groups (g=4), each containing n channels.
In total, g × n output channels are generated.

	 (2)	 Adjust the output matrix to (g, n) shape by reshape operation and subsequently transpose it to (n, g)
shape.

Environment Configure

CPU Intel(R) Xeon(R) Platinum 8481C

Memory 80G

OS Ubuntu 20.04

GPU GeForce RTX 4090 D

Video Memory 24G

Table 3.  Information of hardware.

APK type Quantity Family list

Malware 11552 Dowgin, Ewind, Feiwo, Gooligan, Kemoge, Mobidash, Jisut, Pletor, PornDroid, VirusShield, SMSsniffer, FakeMart, BeanBot, AndroidSpy,
Iconosys, FakeApp, Plankton, koodous, GinMaster, DroidDream, Glodream, ExploitLinuxLotoor, DroidKungFu, RansomBO, FakeNotify, etc.

Benign 10060 Tools, Family, Game, Business, Medical, Shopping, Social, Dating, Education, Lifestyle, Sports, Entertainment, Video Players, Music,
Photography, Health, Weather, etc.

Table 2.  Information of datasets.

W

GAP

1�1�C 1�1�C

C
C

H

W

k=ψ(c)

б

Fig. 10.  ECA module.

Scientific Reports | (2025) 15:25019 10| https://doi.org/10.1038/s41598-025-07742-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	 (3)	 Flatten the matrix obtained in step 2 into a one-dimensional vector. After that, repartition the one-di-
mensional vectors into g groups of n channels each;

 This makes the use of channel shuffle in the model not only improve the model performance, but also avoid a
significant increase in computational cost.

	c.	 The introduction of ECA It is found that the SE (Squeeze-and-Excitation)34 module in the original Ghost-
NetV2 model fails to sufficiently focus on the key malicious features of the malware images. SENet optimizes
the local features by dynamically adjusting the channel weights. Its architecture is shown in Fig. 7c. However,
the global pooling mechanism employed in SENet tends to adjust feature weights at the overall level while
ignoring locally important features. In addition, the dimensionality reduction strategy in SENet may reduce
the performance of the channel attention mechanism.

	Therefore, we use ECA (Efficient Channel Attention)35 instead of SE, as shown in Fig. 10. ECA achieves local
cross-channel interaction through one-dimensional convolution. For the ECA module’s 1D convolution, the
adaptive kernel size k was determined by:

	
k = ψ(C) = log2(C)

γ
+ β

γ
� (10)

	where C is the channel dimension, and γ = 2, β = 1. This adaptively balances local and global attention. ECA
discards the dimensionality reduction and global pooling operations, which significantly reduces the number
of parameters and computational cost. The module can flexibly adjust the convolutional kernel size to adapt
to different feature scales, which improves the performance of deep convolutional neural network (DCNN)
and simplifies the model complexity at the same time. ECA can effectively enhance the model performance in
tasks such as image classification and target detection, etc.

Experimental results
Data preparation
The experimental dataset we use contains 11552 malware samples, of which 5978 are from CICMalDroid36, 2453
from VirusShare37, and 3121 from Drebin38. These malware samples employ various obfuscation techniques,
including code restructuring, renaming of functions and variables, insertion of junk code, and encryption and
decryption of code. At the same time, the dataset includes 10060 benign samples, with 4185 from Google39 Play
and 5875 from CICMalDroid, as detailed in Table 2. All downloaded benign samples have been scanned for
security using VirusTotal40 and Kaspersky (the version is standard 21.17)41. The dataset is split with 80% used for

Model Typical variants Para(M)
ImageNet Top-1
Acc (%) Key features

ResNet20 ResNet-34 21.8 74.60 Medium-depth residual network with 4 stacked residual blocks

ResNet-50 25.6 76.15 Mainstream benchmark model using Bottleneck architecture to reduce computation

ResNet-101 44.5 77.37 Deep network with 33 residual blocks, suitable for high-accuracy scenarios

ResNet-152 60.2 78.31 Deepest standard ResNet variant, primarily used in research

MobileNet MobileNetV242 3.4 72.00 Inverted residual structure with linear Bottleneck design for reduced memory consumption

MobileNetV343 5.5 75.20 NAS-optimized architecture with h-swish activation and SE modules, 20% faster inference on
mobile devices

DenseNet18 DenseNet-121 7.9 74.70 Dense cross-layer connections where each layer receives features from all preceding layers

DenseNet-169 14.2 76.20 Balanced parameters and performance, uses transition layers for feature dimension compression

DenseNet-201 20 77.30 Deep dense connections (201 layers) for smoother gradient flow

ShuffleNet ShuffleNetV244 1.3 69.70 Channel shuffle + grouped convolution, optimized memory access efficiency (120 FPS on mobile)

ESPNet ESPNetv245 3.5 72.10 Dynamic dilated convolution pyramid, multi-branch feature fusion, 35% lower FLOPs than
MobileNetV2

EfficientNet15 EfficientNet-B0 5.3 77.30 Baseline compound scaling model (ϕ = 1.0), balances depth/width/resolution

EfficientNet-B1 7.8 79.10 ϕ = 1.1 scaling with 240x240 input resolution (+1.8% accuracy)

EfficientNet-B2 9.1 80.40 ϕ = 1.2 scaling with 15% increased channels, suitable for moderate compute resources

EfficientNet-B3 12 81.60 Medium scaling (ϕ = 1.3), significant accuracy improvement at 1.8 GMACs

EfficientNet-B4 19 82.90 Large scaling (ϕ = 1.4), optimal server-side balance (V100 inference: 45ms)

EfficientNet-B5 30 83.60 Deep scaling (ϕ = 1.6), extreme accuracy optimization (9.9 GMACs)

GhostNet GhostNet30 7.3 75.70 Ghost feature generation via cheap operations, 40% lower FLOPs than MobileNetV3

GhostNetV231 8.9 76.90 Cross-stage attention mechanism for dynamic feature enhancement (+15% mobile inference speed)

Proposed 4.6 78.70 Further lightweight design and accuracy optimization based on GhostNetV2

Table 4.  Comparison of deep learning models for image classification performance and key features.

Scientific Reports | (2025) 15:25019 11| https://doi.org/10.1038/s41598-025-07742-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

training and 20% for testing. To ensure the fairness and credibility of the experiment, we ensure that all models
are trained and evaluated under the same experimental conditions. After multiple rounds of hyperparameter
tuning, all models reached a balanced state. We set the following training parameters for each model: number
of epochs = 26, batch size = 32, learning rate = 0.01. Due to the large sample size, we conduct the following
experiments on a high-performance computing platform. The hardware information is shown in Table 3.

Model introduction
To more comprehensively evaluate the performance of different deep learning models in malware detection, we
compare several popular network models and analyze their features and advantages in the context of malware
detection. Below are the characteristics of several common deep learning models and their relevance to malware
detection.

ResNet ResNet introduces residual connections, successfully addressing the issues of gradient vanishing and
explosion in deep neural network training, allowing the network to be deeper and more effectively optimized. In
malware detection, ResNet can automatically learn complex feature representations of malware, from low-level
bytecode to high-level semantic features. It is particularly skilled at capturing subtle patterns in binary files and
effectively distinguishing malicious code from legitimate software.

MobileNet MobileNet uses depthwise separable convolutions to reduce computational load and model size,
making it particularly suitable for mobile devices and edge computing environments. In real-time malware
detection, MobileNet, with its lightweight design, can perform efficient low-latency detection tasks on resource-
constrained devices, making it ideal for applications in embedded systems.

DenseNet DenseNet promotes feature reuse through dense connections, enhancing the model’s ability to
capture fine-grained malicious behavior. For subtle malware behavior patterns, such as API call sequence
analysis, DenseNet can effectively extract valuable features without overfitting, making it a powerful model for
malware detection.

ShuffleNet ShuffleNet introduces channel shuffling operations to break the information isolation between
grouped convolutions, enhancing information flow. It maintains high performance while reducing computational
burden. In malware detection, ShuffleNet helps integrate different types of features through channel shuffling,
improving the model’s adaptability to the diversity of malicious code. Additionally, its lightweight design
accelerates detection speed, meeting the real-time detection requirements.

ESPNet ESPNet utilizes efficient spatial pyramid modules and multi-scale branch structures to expand the
receptive field, making it particularly suited for handling diverse malware data. Its low parameter count enables
outstanding real-time processing capabilities in embedded or edge computing scenarios, making it well-suited
for malware detection tasks that require efficient resource utilization.

EfficientNet EfficientNet balances the depth, width, and resolution of the network using a compound scaling
method, allowing it to efficiently handle large-scale malware datasets even with limited resources. Its application
in cloud server environments supports rapid model training and iteration, making it an ideal choice for large-
scale malware detection tasks.

As shown in Table 4, GhostNetV2 demonstrates significant advantages in balancing accuracy-efficiency
trade-offs and hardware compatibility, and was ultimately selected as the foundational model for this research.

Model para Training Time(s) Test Time(s) Accuracy (%)

ReNet34 21,797,672 2277.08 164.02 97.10

ResNet50 25,557,032 2315.64 141.10 97.00

ResNet101 44,549,160 2373.34 154.94 97.00

ResNet152 60,192,808 2371.84 139.78 97.10

MobileNetV2 3,504,872 2263.82 129.62 96.50

MobileNetV3 5,483,032 2264.24 139.10 94.10

DenseNet121 7,978,856 2206.52 144.10 97.10

DenseNet169 14,149,480 2248.00 134.94 97.10

DenseNet201 20,013,928 2367.04 154.30 97.20

ShuffleNetV2 2,278,604 2412.46 151.98 96.60

ESPNetV2 1,712,759 2422.36 130.88 96.70

EfficieNetV2 54,139,356 2418.96 134.70 97.00

EfficienNet_b0 5,288,548 2299.58 148.32 96.00

EfficienNet_b1 7,794,184 2351.98 161.96 96.30

EfficienNet_b2 9,109,994 2327.22 159.36 96.60

EfficienNet_b3 12,233,232 2310.06 164.36 96.60

EfficienNet_b4 19,341,616 2491.20 133.82 96.50

EfficienNet_b5 30,389,784 2368.82 143.42 95.80

GhostNetV2 6,156,908 2261.72 139.38 95.90

Proposed 4,653,105 2250.60 125.12 96.90

Table 5.  Performance comparison of 20 models on Android malware detection.

Scientific Reports | (2025) 15:25019 12| https://doi.org/10.1038/s41598-025-07742-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Evaluation metrics
The performance of the detection models is evaluated by four metrics. They are precision, recall, F1-Score, accuracy
and confusion matrix. Precision reflects the classification ability of the detection model, focusing specifically
on its ability in predicting malware rather than all correctly classified samples. Recall is a measurement of the
ability of a detection model to predict the proportion of malware in actual malware. F1-score is a metric that
combines the harmonic mean of recall and precision to assess a model’s ability in predicting malware. Accuracy
indicates the overall performance of the detection model in classifying applications as malware or benign. The
confusion matrix visualizes a classification model’s predictions by comparing true labels with predicted labels.
The definitions of the aforementioned evaluation metrics are as follows:

	
Precision = TP

FP + TP
� (11)

	
Recall/TPR = TP

TP + FN
� (12)

	
FPR = FP

FP + TN
� (13)

	
F1 − score = 2 × Precision × Recall

Precision + Recall
� (14)

	
Accuracy = TP + TN

TP + FP + TN + FN
� (15)

where TP is the True Positive, TN is the True Negative, FP is the False Positive, FN is the False Negative.

Evaluation of images enhancement methods
Experiment on ordinary images
Table 5 evaluates 20 state-of-the-art deep learning models for Android malware detection using ordinary RGB
images. Experimental results indicate that the DenseNet201 model achieved the highest detection accuracy,
reaching 97.2%. In contrast, MobileNetV2 has the fewest parameters, followed closely by our proposed method.
Notably, as compared to GhostNetV2, our optimized model significantly reduced the parameter size to 4.6M,
a decrease of approximately 1.5M. This improvement also enhanced training and testing efficiency, reducing
training time to 2250.60s and testing time to 125.12s. Despite the decrease in parameters and computational
costs, our model’s accuracy improved by 1%, coming within 0.2% of the top-performing DenseNet201.

Experiment on LHE
To further improve the detection accuracy of malware, Fig. 11 shows 20 state-of-the-art deep learning models
for Android malware detection using RGB images with LHE. It can be observed that the use of the LHE method
improves the detection accuracy of all models, ranging from about 0.1–3.1%. Our method and DenseNet169 had
the highest accuracy rates, both at 97.5%.

9
7

.2
0

%

9
7

.1
0

%

9
7

.3
0

%

9
7

.2
0

%

9
6

.6
0

%

9
7

.2
0

%

9
7

.3
0

%

9
7

.5
0

%

9
7

.4
0

%

9
6

.8
0

%

9
6

.6
0

%

9
7

.1
0

%

9
6

.9
0

%

9
6

.4
0

%

9
7

.1
0

%

9
6

.7
0

%

9
6

.6
0

%

9
5

.9
0

% 9
6

.3
0

%

9
7

.5
0

%

0.95

0.955

0.96

0.965

0.97

0.975

0.98

R
eN

et
3
4

R
es

N
et

5
0

R
es

N
et

1
0

1

R
es

N
et

1
5

2

M
o
b
il

eN
et

V
2

M
o
b
il

eN
et

V
3

D
en

se
N

et
1
2

1

D
en

se
N

et
1
6

9

D
en

se
N

et
2
0

1

S
h

u
ff

le
N

et

E
E

S
P

N
et

V
2

E
ff

ic
ie

N
et

V
2

E
ff

ic
ie

n
N

et
_

b
0

E
ff

ic
ie

n
N

et
_

b
1

E
ff

ic
ie

n
N

et
_

b
2

E
ff

ic
ie

n
N

et
_

b
3

E
ff

ic
ie

n
N

et
_

b
4

E
ff

ic
ie

n
N

et
_

b
5

G
h

o
st

N
et

v
2

P
ro

p
o
se

d

)
%(

ycar
ucc

A

Fig. 11.  Comparison of the detection accuracy of 20 models on RGB images using the LHE method.

Scientific Reports | (2025) 15:25019 13| https://doi.org/10.1038/s41598-025-07742-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Table 6 presents the macro-average and weighted-average precision, recall, and F1-score evaluation values
for 20 state-of-the-art deep learning models used in malware detection on RGB images using the LHE method.
Our model achieved the highest values in precision, recall, and F1-score, each approximately equal to 0.976. The
higher precision and recall values indicate that the the model performs well in detecting malware.

Figure 12 shows the confusion matrices for the detection of RGB images with LHE using 20 models.
Experimental results show that our method accurately classifies 98% of benign images and only 2% of images
are misidentified as malware. Furthermore, the method successfully identified 97% of malware images, with only
3% misclassified as benign.

Experiment on LHE_Gabor
In Table 7, we evaluate the detection performance of 20 state-of-the-art deep learning models for Android
malware detection using RGB images with LHE_Gabor. The results show a significant reduction in both training
and testing times. This improvement is due to the fact that RGB images are transformed into single-channel

Model Average type Precision Recall F1-score

ReNet34 Macro 0.9719 0.9721 0.9719

Weighted 0.9725 0.9720 0.9720

ResNet50 Macro 0.9711 0.9711 0.9711

Weighted 0.9711 0.9711 0.9711

ResNet101 Macro 0.9734 0.9734 0.9734

Weighted 0.9734 0.9734 0.9734

ReNet152 Macro 0.9719 0.9719 0.9719

Weighted 0.9720 0.9720 0.9720

MobileNetV2 Macro 0.9656 0.9655 0.9655

Weighted 0.9656 0.9656 0.9655

MobileNetV3 Macro 0.9726 0.9721 0.9723

Weighted 0.9725 0.9723 0.9723

DenseNet121 Macro 0.9754 0.9750 0.9752

Weighted 0.9753 0.9752 0.9752

DenseNet169 Macro 0.9758 0.9757 0.9757

Weighted 0.9757 0.9757 0.9757

DenseNet201 Macro 0.9748 0.9747 0.9748

Weighted 0.9748 0.9748 0.9748

ShuffleNetV2 Macro 0.9623 0.9620 0.9621

Weighted 0.9622 0.9622 0.9621

ESPNetV2 Macro 0.9663 0.9658 0.9660

Weighted 0.9661 0.9660 0.9660

EfficienNetV2 Macro 0.9702 0.9703 0.9703

Weighted 0.9703 0.9704 0.9704

EfficienNet_b0 Macro 0.9692 0.9687 0.9689

Weighted 0.9690 0.9689 0.9689

EfficienNet_b1 Macro 0.9597 0.9597 0.9597

Weighted 0.9597 0.9597 0.9597

EfficienNet_b2 Macro 0.9705 0.9703 0.9704

Weighted 0.9704 0.9704 0.9704

EfficienNet_b3 Macro 0.9622 0.9621 0.9621

Weighted 0.9622 0.9622 0.9622

EfficienNet_b4 Macro 0.9627 0.9618 0.9621

Weighted 0.9624 0.9622 0.9621

EfficienNet_b5 Macro 0.9087 0.9088 0.9087

Weighted 0.9088 0.9088 0.9088

GhostNetV2 Macro 0.9631 0.9623 0.9626

Weighted 0.9629 0.9626 0.9626

Proposed Macro 0.9766 0.9761 0.9763

Weighted 0.9765 0.9763 0.9763

Table 6.  Detection Performance comparison of 20 state-of-the-art deep learning models on RGB images using
the LHE method.

Scientific Reports | (2025) 15:25019 14| https://doi.org/10.1038/s41598-025-07742-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

grayscale images through Gabor processing. Deep learning models can train and infer more quickly on these
single-channel images.

It should be noted that despite the reduced number of data channels in the application image, the detection
accuracy of almost every model has improved. This indicates that using single-channel grayscale images does
not necessarily reduce the models’ learning capabilities. Adding Gabor processing to LHE not only saves time in
training and testing, but also further improves detection accuracy.

(a) ReNet34 (b) ResNet50 (c) ResNet101 (d) ReNet152

(e) MobileNetV2 (f) MobileNetV3 (g) DenseNet121 (h) DenseNet169

(i) DenseNet201 (j) ShuffleNetV2 (k) ESPNetV2 (l) EfficienNetV2

(m) EfficienNet_b0 (n) EfficienNet_b1 (o) EfficienNet_b2 (p) EfficienNet_b3

(q) EfficienNet_b4 (r) EfficienNet_b5 (s) GhostNetV2 (t) Proposed

Fig. 12.  Confusion matrices obtained from the RGB images with LHE using 20 models.

Scientific Reports | (2025) 15:25019 15| https://doi.org/10.1038/s41598-025-07742-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Furthermore, Fig. 13 shows the FPR values of 20 models after applying the LHE_Gabor method. A lower FPR
indicates better detection performance, and our method achieves the lowest FPR.

The ROC curve for the proposed method in distinguishing between malware and benign samples is presented
in Fig. 14. The curve’s proximity to the top-left corner indicates strong model performance, with an AUC score
of 0.977, suggesting that the feature extraction process from malware images by the proposed model is highly
effective.

From Fig. 15, it is evident that the improved GhostNetV2 model demonstrates a rapid convergence during
training. Both the training and validation losses remain below 0.1 within 26 epochs, while the validation accuracy
stabilizes above 99.7%, with the accuracy curve approaching 1.0. Furthermore, the training and validation curves

0
.0

5
2

7

0
.0

4
0

8

0
.0

3
2

4

0
.0

5
1

5

0
.0

3
1

5 0
.0

4
0

4

0
.0

3
2

8 0
.0

4
1

3

0
.0

4
2

5

0
.0

3
1

4

0
.0

5
1

5

0
.0

4
0

7

0
.0

4
1

2

0
.0

4
0

6

0
.0

4
0

8

0
.0

3
0

9

0
.0

3
1

2
 0
.0

4
0

4
 0
.0

5
1

0

0
.0

3
0

3

0

0.01

0.02

0.03

0.04

0.05

0.06

R
eN

et
3
4

R
es

N
et

5
0

R
es

N
et

1
0

1

R
es

N
et

1
5

2

M
o

b
il

eN
et

V
2

M
o

b
il

eN
et

V
3

D
en

se
N

et
1
2

1

D
en

se
N

et
1
6

9

D
en

se
N

et
2
0

1

S
h

u
ff

le
N

et
V

2

E
S

P
N

et
V

2

E
ff

ic
ie

N
et

V
2

E
ff

ic
ie

n
N

et
_

b
0

E
ff

ic
ie

n
N

et
_
b
1

E
ff

ic
ie

n
N

et
_

b
2

E
ff

ic
ie

n
N

et
_

b
3

E
ff

ic
ie

n
N

et
_

b
4

E
ff

ic
ie

n
N

et
_

b
5

G
h

o
st

N
e
tv

2

P
ro

p
o
se

d

Fig. 13.  FPR comparison for different models using LHE_Gabor.

Model Training time(s) Test time(s) Accuracy (%)

ReNet34 1042.96 54.68 97.30

ResNet50 1031.82 53.90 97.20

ResNet101 1034.38 60.98 97.30

ResNet152 1074.22 62.92 97.30

MobileNetV2 1026.04 54.22 96.80

MobileNetV3 1022.40 54.30 97.30

DenseNet121 1021.30 58.82 97.50

DenseNet169 1027.30 64.16 97.60

DenseNet201 1030.16 66.82 97.50

ShuffleNetV2 1009.46 54.10 97.00

ESPNetV2 1017.56 59.48 96.80

EfficieNetV2 1052.74 71.70 97.30

EfficienNet_b0 1021.48 60.96 97.00

EfficienNet_b1 1023.67 67.92 96.70

EfficienNet_b2 1018.26 64.82 97.20

EfficienNet_b3 1004.32 63.42 96.90

EfficienNet_b4 1016.08 75.64 96.90

EfficienNet_b5 1025.64 66.72 96.20

GhostNetV2 1011.88 59.40 96.50

Proposed 1012.42 53.40 97.70

Table 7.  Detection Performance comparison of 20 state-of-the-art deep learning models on images using
LHE_Gabor.

Scientific Reports | (2025) 15:25019 16| https://doi.org/10.1038/s41598-025-07742-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Fig. 16.  Visualization of the proposed model on the malware detection.

Fig. 15.  Learning curve during the training process of our proposed model.

Fig. 14.  ROC curve analysis for the proposed method on Android malware detection.

Scientific Reports | (2025) 15:25019 17| https://doi.org/10.1038/s41598-025-07742-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

are highly synchronized, with no apparent signs of overfitting. These results indicate that the model exhibits
favorable convergence, high accuracy, and strong generalization ability during the training process.

To evaluate the performance of our model in the classification task of malware and benign applications, we
utilize tdistributed Stochastic Neighbor Embedding (t-SNE) for visualizing the features extracted from the GAP
layer. t-SNE is an effective dimensionality reduction technique that maps high-dimensional data into a lower-
dimensional space while preserving the relative distances and local structures between data points as much as
possible. In this study, we set the t-SNE learning rate to 200.0, the early exaggeration parameter to 12.0, the
perplexity to 30.0, and the number of iterations to 1000. The visualization results in Fig. 16 clearly demonstrate
a distinct separation between the malware and benign applications, with only a small degree of overlap. This
indicates that our detection methods exhibit strong discriminatory ability in classifying these two categories of
samples.

Evaluation of improved model
To further validate the effectiveness of the improvements made to the GhostNetV2 model, we conduct a series of
ablation experiments. Based on the original GhostNetV2, New_GhostNetV2_1 incorporates only PRelu, while
New_GhostNetV2_2 includes both CS and PReLU. Additionally, the model improvement methods we proposed
introduces ECA alongside the previous components. We subsequently compared the four models across multiple
metrics, including accuracy, precision, F1-score, testing time, parameter, and flops.

Table 8 shows that adding PReLU increases model parameters by 0.034k, but it outperforms GhostNetV2 in
accuracy and F1-Score. This improvement is due to PReLU’s ability to enhance the model’s non-linear expression,
allowing it to capture more complex patterns and avoid the “dying ReLU” issue, thus improving classification
accuracy.

When we add CS, parameters remain unchanged, while both accuracy and F1-Score increase, test
time decreases, and flops stay stable. CS helps reduce redundant feature maps and retains more meaningful
information without increasing computational cost.

Detection model

RGB image
RGB image with LHE_
Gabor

MalGAN (%) DCGAN (%) MalGAN (%) DCGAN (%)

ReNet34 82.10 80.00 90.30 89.80

ResNet50 87.20 86.50 91.40 90.90

ResNet101 86.10 85.50 89.50 89.00

ResNet152 80.40 79.80 91.60 91.00

MobileNetV2 78.60 77.50 83.80 82.30

MobileNetV3 80.10 79.80 90.10 89.70

DenseNet121 85.20 84.50 89.20 88.60

DenseNet169 89.60 88.90 90.70 90.40

DenseNet201 87.40 86.90 90.30 89.80

ShuffleNetV2 70.40 69.50 84.60 83.90

ESPNetV2 72.50 71.80 84.10 83.60

EfficieNetV2 87.30 86.80 90.80 90.40

EfficienNetb0 77.20 76.00 91.20 90.70

EfficienNetb1 85.60 84.80 91.60 91.10

EfficienNetb2 85.80 85.10 86.50 86.00

EfficienNetb3 85.90 85.30 91.40 90.80

EfficienNetb4 86.20 85.70 90.30 90.10

EfficienNetb5 85.90 85.00 89.30 88.90

GhostNetV2 83.10 82.40 89.20 88.70

Proposed 85.30 84.80 92.00 91.60

Table 9.  Accuracy comparison of different models with and without LHE_Gabor, using MalGAN and
DCGAN configurations.

Method PRelu CS ECA ACC(%) F1-score(%) Time(s) Para Flops(G)

GhostNetV2 × × × 96.3 96.29 69.69 6,156,908 3.461

New_GhostNetV2_1 ✓ × × 96.5 96.53 65.18 6,156,942 3.461

New_GhostNetV2_2 ✓ ✓ × 96.9 96.94 63.37 6,156,942 3.461

Proposed ✓ ✓ ✓ 97.5 97.63 62.56 4,653,105 3.460

Table 8.  Performance comparison of GhostNetV2 in ablation study.

Scientific Reports | (2025) 15:25019 18| https://doi.org/10.1038/s41598-025-07742-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Detection model RGB image
RGB image with
LHE_Gabor

MalGAN DCGAN MalGAN DCGAN

ReNet34 0.1912 0.2015 0.1221 0.1196

ResNet50 0.1323 0.1432 0.0928 0.1056

ResNet101 0.1429 0.1549 0.1143 0.1124

ResNet152 0.2011 0.2198 0.0942 0.0932

MobileNetV2 0.2357 0.2346 0.1811 0.1834

MobileNetV3 0.2002 0.2104 0.1032 0.1145

DenseNet121 0.1515 0.1619 0.1145 0.1256

DenseNet169 0.1104 0.1206 0.1076 0.1075

DenseNet201 0.1312 0.1534 0.1079 0.1089

ShuffleNetV2 0.3012 0.3189 0.1689 0.1754

ESPNetV2 0.2805 0.2916 0.1667 0.1758

EfficieNetV2 0.1323 0.1469 0.1006 0.1042

EfficienNetb0 0.4123 0.4424 0.2901 0.2916

EfficienNetb1 0.2303 0.2404 0.0925 0.0932

EfficienNetb2 0.1501 0.1584 0.1401 0.1421

EfficienNetb3 0.1502 0.1545 0.0925 0.1001

EfficienNetb4 0.1412 0.1594 0.1079 0.1054

EfficienNetb5 0.1516 0.1585 0.1012 0.1213

GhostNetV2 0.1745 0.1815 0.1213 0.1294

Proposed 0.1524 0.1635 0.0824 0.0903

Table 11.  FPR comparison of different models with and without LHE_Gabor, using malGAN and DCGAN
configurations.

Detection model RGB image
RGB image with
LHE_Gabor

MalGAN DCGAN MalGAN DCGAN

ReNet34 0.8196 0.8000 0.9031 0.8981

ResNet50 0.8717 0.8651 0.9142 0.9094

ResNet101 0.8609 0.8554 0.8951 0.8864

ResNet152 0.8041 0.7984 0.9164 0.9089

MobileNetV2 0.7858 0.7751 0.8382 0.8251

MobileNetV3 0.8096 0.7982 0.9014 0.8969

DenseNet121 0.8517 0.8451 0.9021 0.8868

DenseNet169 0.8668 0.8893 0.9172 0.9039

DenseNet201 0.8638 0.8692 0.9030 0.8981

ShuffleNetV2 0.7036 0.6951 0.8460 0.8391

ESPNetV2 0.7314 0.7180 0.8412 0.8361

EfficieNetV2 0.8534 0.8680 0.9082 0.9042

EfficienNetb0 0.7731 0.7600 0.9124 0.9072

EfficienNetb1 0.8563 0.8482 0.9162 0.9114

EfficienNetb2 0.8484 0.8414 0.8851 0.8600

EfficienNetb3 0.8591 0.8535 0.9142 0.9082

EfficienNetb4 0.8621 0.8572 0.9030 0.9014

EfficienNetb5 0.8591 0.8500 0.8931 0.8890

GhostNetV2 0.8314 0.8241 0.8921 0.8875

Proposed 0.8537 0.8482 0.9200 0.9164

Table 10.  TPR comparison of different models with and without LHE_Gabor, using malGAN and DCGAN
configurations.

Scientific Reports | (2025) 15:25019 19| https://doi.org/10.1038/s41598-025-07742-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Finally, the introduction of ECA reduces FLOPS slightly and dramatically lowers parameters to about 1.5
M. This reduction is due to the efficiency of ECA, which uses fewer parameters but improves the attention
mechanism. At this stage, accuracy and F1 scores reach their highest, and test time is minimized, showing that
ECA optimizes the model’s performance, making it more accurate and computationally efficient.

Therefore, the model improvement method proposed in this study is considered to be the optimal solution
when considering these important of performance changes.

Detection of adversarial samples
The aim of the experiments in this subsection is to further evaluate the performance of our method in detecting
unknown malware. Considering the emergence of new adversarial malware samples that can significantly reduce
the classification ability of neural network models, 8246 adversarial malware samples generated by MalGAN and
DCGAN46, and 7124 benign samples are used as the dataset for the following experiments.

Table 9 compares the accuracy of 20 different models in detecting images of adversarial samples. We detected
both RGB images of the applications, and RGB images with LHE_Gabor to evaluate the effectiveness of our
image enhancement method at the same time.

The experimental results show that all 20 models are significantly reduced in accuracy when detecting RGB
images of adversarial samples. However, the image enhancement method proposed we proposed can effectively
improve their detection accuracy. Meanwhile, our detection model has the highest accuracy of 92.0% and 91.6%
in detecting these unknown adversarial malware samples.

Table 10 presents the TPR of 20 models in detecting adversarial samples. A higher TPR indicates better
classification performance. The table includes results for two adversarial attacks, MalGAN and DCGAN. The
results show that, without the LHE_gabor method, the average TPR of the models is approximately 0.82,
indicating relatively weak detection performance. However, after applying the LHE_gabor method, the detection
capability of the models significantly improves to around 0.90, with our method achieving the best TPR in
detecting adversarial samples.

Table 11 shows the performance of these models in terms of FPR. A lower FPR indicates better performance,
with a reduced probability of misclassification. The results demonstrate that, when facing adversarial attacks, the
models using the LHE_gabor method exhibit a significant reduction in FPR, with all models showing smaller
FPR values compared to when the LHE_gabor method was not applied. This suggests that our LHE_gabor
method effectively reduces false positives, enhancing the stability and reliability of the models.

Overall, whether considering accuracy, TPR, FPR, or other metrics, our method demonstrates clear
advantages and effectively improves model performance in adversarial sample detection tasks.

Discussion
Image enhancement The application of LHE significantly enhanced the texture feature differentiation, leading
to a notable improvement in model performance. Our model, in combination with LHE and Gabor filtering,
demonstrated an increase in accuracy by 0.1–3.1%, achieving a top accuracy of 97.7%. This improvement is
further evidenced by the macro-average F1-score of 0.9763, outperforming other models in the comparison.
Notably, our approach had a misclassification rate of only 2% for benign samples, which indicates a very low
FPR, while the 97% recall rate for malicious samples reflects the model’s strong ability to correctly identify
threats. The combination of LHE and Gabor filtering also led to a significant reduction in both training and
testing times, decreasing them by 50–60%, with training time reduced to just 1021.30 seconds. Furthermore, the
model achieved an impressive AUC of 0.977 and the lowest FPR of 0.0303. The feature visualization using t-SNE
confirmed that the enhanced features were well-separated, suggesting that the enhancement strategy is not only
effective but also robust.

Network architecture improvement In the ablation experiments, several modifications to the network
architecture proved to be beneficial. The introduction of parametric PReLU activation resulted in a 1.6%
improvement in the F1-score, demonstrating its positive impact on the model’s ability to balance precision and
recall. The incorporation of CS further boosted the TPR by 3.1%, highlighting its effectiveness in improving the
model’s sensitivity to malicious samples. Additionally, replacing the SE block with ECA reduced the model’s
parameters by 24.5%, from 6.15 to 4.65M, demonstrating significant computational efficiency improvements.
These architectural enhancements contributed to a highly optimized model, achieving 97.7% accuracy with only
23.2% of the parameters of DenseNet201. Compared to 20 mainstream models, our approach outperformed
GhostNetV2 by 1.8%, making it both efficient and competitive in terms of performance.

Adversarial sample robustness Adversarial robustness is a critical challenge for deep learning models,
particularly in security applications. Our method demonstrated exceptional resilience to adversarial samples
generated by MalGAN and DCGAN. With the combination of LHE and Gabor filtering, our model achieved
detection accuracies of 92.0% and 91.6%, respectively, surpassing other models by 15–30%. TPR for MalGAN
and DCGAN adversarial samples reached 0.93 and 0.92, respectively, the highest among the models tested.
This robust performance in the presence of adversarial attacks is a testament to the efficacy of our proposed
enhancements, ensuring that the model remains effective even under adversarial conditions.

In conclusion, our approach successfully balances detection accuracy, computational efficiency, and
robustness to adversarial samples. The combination of advanced image enhancement techniques, architectural
improvements, and the ability to withstand adversarial attacks positions our model as a feasible solution for real-
time malware detection on mobile devices. This approach not only demonstrates high detection performance but
also offers a computationally efficient solution, making it suitable for resource-constrained environments. Future
work could further explore the integration of additional robust features to enhance the model’s performance in
even more challenging scenarios, such as with novel or unseen adversarial attacks.

Scientific Reports | (2025) 15:25019 20| https://doi.org/10.1038/s41598-025-07742-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Conclusion and future work
This paper proposes a novel malware detection method based on an improved GhostNetV2, aimed at enhancing
the detection performance for both normal malware and adversarial samples. First, we introduce a technique
that applies local histogram equalization and Gabor methods to Android application images. Next, we develop
a detection model for malware and adversarial samples using the improved GhostNetV2 algorithm. Finally, in
our experiments, we analyze the performance of 20 state-of-the-art network models in detecting malware and
adversarial samples, with results demonstrating that our proposed method performs exceptionally well.

However, it is important to note that the method in this paper primarily focuses on identifying novel
adversarial attack samples from a detection perspective. Recent research indicates that new attack methods
continue to emerge, especially attacks targeting artificial intelligence classifiers. Future research can be
developed in several directions: further collection of a large number of new adversarial malicious code samples,
conduct more extensive testing and validation of these adversarial samples to analyze malicious attack patterns,
incorporate other mechanisms for updating the model as new threats emerge, explore methods to further
improve the detection model’s computational performance, such as parallel processing techniques or hardware
acceleration, and validate their reliability in real-world applications.

Data availability
The datasets generated and analyzed during the current study are available in the virusshare repository, ​h​t​t​p​s​:​/​
/​v​i​r​u​s​s​h​a​r​e​.​c​o​m​/​​​​​, CICMalDroid repository, https://www.unb.ca/cic/datasets/index.html, GooglePlay ​r​e​p​o​s​i​t​o​r​
y​, https://www.techspot.com/downloads/. Another dataset that support the findings of this study are available
from Drebin, but restrictions apply to the availability of these data, which were used under license for the current
study and so are not publicly available. Data are however available from the authors upon reasonable request and
with permission of the authors of Drebin, ​h​t​t​p​s​:​​/​/​w​w​w​.​​n​d​s​s​-​s​​y​m​p​o​s​i​​u​m​.​o​r​​g​/​n​d​s​s​​2​0​1​4​/​n​​d​s​s​-​2​0​​1​4​-​p​r​​o​g​r​a​m​m​​e​/​
d​r​e​b​​i​n​-​e​f​f​​e​c​t​i​v​​e​-​a​n​d​-​​e​x​p​l​a​i​​n​a​b​l​e​-​​d​e​t​e​c​​t​i​o​n​-​a​​n​d​r​o​i​d​​-​m​a​l​w​a​​r​e​-​y​o​u​r​-​p​o​c​k​e​t​/.

Received: 26 December 2024; Accepted: 17 June 2025

References
	 1.	 StatCounter. Mobile vendor market share worldwide on Oct 2024 (2024). ​h​t​t​p​s​:​​/​/​g​s​.​s​​t​a​t​c​o​u​​n​t​e​r​.​c​​o​m​/​v​e​​n​d​o​r​-​m​​a​r​k​e​t​-​​s​h​a​r​e​/​​m​o​b​i​l​e​

/​w​o​r​l​d​w​i​d​e​/​2​0​2​4.
	 2.	 Kaspersky. IT threat evolution in Q2 2024. Mobile statistics (2024). ​h​t​t​p​s​:​​/​/​s​e​c​u​​r​e​l​i​s​t​​.​c​o​m​/​i​​t​-​t​h​r​​e​a​t​-​e​v​​o​l​u​t​i​o​​n​-​q​2​-​2​​0​2​4​-​m​o​b​i​l​e​-​s​t​a​

t​i​s​t​i​c​s​/​1​1​3​6​7​8​/.
	 3.	 Sophos. Sophos Threat Report: Ransomware and the rise of the data (2024). ​h​t​t​p​s​:​​​/​​/​n​e​w​​s​.​s​o​p​h​o​​s​.​c​​o​​m​/​​e​n​​-​​u​s​/​2​​0​​2​​4​/​0​​4​​/​3​​0​/​t​​h​e​-​​s​t​​a​t​

e​-​o​f​-​r​a​n​s​​o​m​w​a​r​e​-​2​0​2​4​/.
	 4.	 Pan, Y., Ge, X., Fang, C. & Fan, Y. A systematic literature review of android malware detection using static analysis. IEEE Access 8,

116363–116379 (2020).
	 5.	 Liu, K. et al. A review of android malware detection approaches based on machine learning. IEEE Access 8, 124579–124607 (2020).
	 6.	 Sasidharan, S. K. & Thomas, C. Prodroid-an android malware detection framework based on profile hidden Markov model.

Pervasive Mob. Comput. 72, 101336 (2021).
	 7.	 Qiu, J. et al. A survey of android malware detection with deep neural models. ACM Comput. Surveys (CSUR) 53, 1–36 (2020).
	 8.	 Zhang, W., Luktarhan, N., Ding, C. & Lu, B. Android malware detection using TCN with bytecode image. Symmetry 13, 1107

(2021).
	 9.	 Shen, L. et al. Self-attention based convolutional-LSTM for android malware detection using network traffics grayscale image.

Appl. Intell. 53, 683–705 (2023).
	10.	 Yadav, P., Menon, N., Ravi, V., Vishvanathan, S. & Pham, T. D. Efficientnet convolutional neural networks-based android malware

detection. Comput. & Secur. 115, 102622 (2022).
	11.	 Tang, J., Li, R., Jiang, Y., Gu, X. & Li, Y. Android malware obfuscation variants detection method based on multi-granularity

opcode features. Futur. Gener. Comput. Syst. 129, 141–151 (2022).
	12.	 Ding, Y., Zhang, X., Hu, J. & Xu, W. Android malware detection method based on bytecode image. J. Ambient Intell. Hum. Comput.

14(5), 6401–6410 (2020).
	13.	 Singh, J. et al. Classification and analysis of android malware images using feature fusion technique. IEEE Access 9, 90102–90117

(2021).
	14.	 Wang, Z., Liu, Q., Wang, Z. & Chi, Y. Deep learning-based multi-classification for malware detection in IoT. J. Circuits Syst.

Comput. 31, 2250297 (2022).
	15.	 Tan, M. & Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine

learning, 6105–6114 (PMLR, 2019).
	16.	 Ye, G., Zhang, J., Li, H., Tang, Z. & Lv, T. Android malware detection technology based on lightweight convolutional neural

networks. Secur. Commun. Netw. 2022, 8893764 (2022).
	17.	 Ksibi, A., Zakariah, M., Almuqren, L. & Alluhaidan, A. S. Efficient android malware identification with limited training data

utilizing multiple convolution neural network techniques. Eng. Appl. Artif. Intell. 127, 107390 (2024).
	18.	 Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition, 4700–4708 (2017).
	19.	 Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings

of the IEEE conference on computer vision and pattern recognition, 2818–2826 (2016).
	20.	 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, 770–778 (2016).
	21.	 Simonyan, K., Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

(2014).
	22.	 Zhu, H., Wei, H., Wang, L., Xu, Z. & Sheng, V. S. An effective end-to-end android malware detection method. Expert Syst. Appl.

218, 119593 (2023).
	23.	 Hu, W. & Tan, Y. Generating adversarial malware examples for black-box attacks based on gan. In International Conference on Data

Mining and Big Data, 409–423 (Springer, 2022).
	24.	 Hu, W. & Tan, Y. Black-box attacks against rnn based malware detection algorithms. In Workshops at the Thirty-Second AAAI

Conference on Artificial Intelligence (2018).

Scientific Reports | (2025) 15:25019 21| https://doi.org/10.1038/s41598-025-07742-8

www.nature.com/scientificreports/

https://virusshare.com/
https://virusshare.com/
https://www.unb.ca/cic/datasets/index.html
https://www.techspot.com/downloads/
https://www.ndss-symposium.org/ndss2014/ndss-2014-programme/drebin-effective-and-explainable-detection-android-malware-your-pocket/
https://www.ndss-symposium.org/ndss2014/ndss-2014-programme/drebin-effective-and-explainable-detection-android-malware-your-pocket/
https://gs.statcounter.com/vendor-market-share/mobile/worldwide/2024
https://gs.statcounter.com/vendor-market-share/mobile/worldwide/2024
https://securelist.com/it-threat-evolution-q2-2024-mobile-statistics/113678/
https://securelist.com/it-threat-evolution-q2-2024-mobile-statistics/113678/
https://news.sophos.com/en-us/2024/04/30/the-state-of-ransomware-2024/
https://news.sophos.com/en-us/2024/04/30/the-state-of-ransomware-2024/
http://arxiv.org/abs/1409.1556
http://www.nature.com/scientificreports

	25.	 Wang, Z. et al. CNN-and GAN-based classification of malicious code families: A code visualization approach. Int. J. Intell. Syst. 37,
12472–12489 (2022).

	26.	 Li, S. et al. Gmadv: An android malware variant generation and classification adversarial training framework. J. Inf. Secur. Appl. 84,
103800 (2024).

	27.	 Gao, C. et al. A new adversarial malware detection method based on enhanced lightweight neural network. Comput. Secur. 147,
104078 (2024).

	28.	 Yin, Z. et al. Adversarial examples detection with enhanced image difference features based on local histogram equalization. arXiv
preprint arXiv:2305.04436 (2023).

	29.	 Duan, R. et al. Advdrop: Adversarial attack to dnns by dropping information. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 7506–7515 (2021).

	30.	 Han, K. et al. Ghostnet: More features from cheap operations. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 1580–1589 (2020).

	31.	 Tang, Y. et al. Ghostnetv2: Enhance cheap operation with long-range attention. Adv. Neural. Inf. Process. Syst. 35, 9969–9982
(2022).

	32.	 He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE international conference on computer vision, 1026–1034 (2015).

	33.	 Zhang, X., Zhou, X., Lin, M. & Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In
Proceedings of the IEEE conference on computer vision and pattern recognition, 6848–6856 (2018).

	34.	 Hu, J., Shen, L. & Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, 7132–7141 (2018).

	35.	 Wang, Q. et al. Eca-net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 11534–11542 (2020).

	36.	 Lashkari, A. H., Kadir, A. F. A., Taheri, L. & Ghorbani, A. A. Toward developing a systematic approach to generate benchmark
android malware datasets and classification. In 2018 International Carnahan conference on security technology (ICCST), 1–7 (IEEE,
2018).

	37.	 VirusShare. A database that provides malicous code. https://virusshare.com/.
	38.	 Arp, D. et al. Drebin: Effective and explainable detection of android malware in your pocket. In Ndss 14, 23–26 (2014).
	39.	 Viennot, N., Garcia, E. & Nieh, J. A measurement study of google play. In The 2014 ACM international conference on Measurement

and modeling of computer systems, 221–233 (2014).
	40.	 VirusTotal. Virustotal-free online virus, malware and url scanner. https://www.virustotal.com/gui/home/upload.
	41.	 Kaspersky. Antivirus software and the version used in this study is standard 21.17. https://www.kaspersky.com/enterprise-security.
	42.	 Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In

Proceedings of the IEEE conference on computer vision and pattern recognition, 4510–4520 (2018).
	43.	 Howard, A. et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF international conference on computer vision, 1314–

1324 (2019).
	44.	 Ma, N., Zhang, X., Zheng, H. -T. & Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of

the European conference on computer vision (ECCV), 116–131 (2018).
	45.	 Mehta, S., Rastegari, M., Shapiro, L. & Hajishirzi, H. Espnetv2: A light-weight, power efficient, and general purpose convolutional

neural network. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 9190–9200 (2019).
	46.	 Radford, A. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint

arXiv:1511.06434 (2015).

Acknowledgements
This work was supported by the Scientific and Technological Innovation Team for Qinghai-Tibetan Plateau
Research in Southwest Minzu University (Grant No. 2024CXTD09). Sichuan Science and Technology Program
(2024ZHCG0194) and Sichuan Science and Technology Program (Grant No. 2025YFHZ0178).

Author contributions
Conceptualization: Y.D. and C.X.G.; Data curation: M.T.C., X.C, L.L.X. and A.J.N.; Methodology: Y.D., C.X.G.,
M.T.C., X.C., L.L.X., and A.J.N.; Writing original draft: Y.D., M.T.C, X.C., and C.X.G.; Visualization: Y.D. and
C.X.G.; Supervision: Y.D.

Declarations

 Competing interests
The authors declare that they have no competing interests.

Additional information
Correspondence and requests for materials should be addressed to X.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Scientific Reports | (2025) 15:25019 22| https://doi.org/10.1038/s41598-025-07742-8

www.nature.com/scientificreports/

http://arxiv.org/abs/2305.04436
https://virusshare.com/%20
https://www.virustotal.com/gui/home/upload
https://www.kaspersky.com/enterprise-security
http://arxiv.org/abs/1511.06434
http://www.nature.com/scientificreports

Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025

Scientific Reports | (2025) 15:25019 23| https://doi.org/10.1038/s41598-025-07742-8

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Mobile malware detection method using improved GhostNetV2 with image enhancement technique
	﻿Related works
	﻿Graryscale image
	﻿RGB image
	﻿Adversarial attack

	﻿The proposed method
	﻿Image generation
	﻿LHE processing
	﻿Gabor filter processing
	﻿Malware detection based on the improved GhostNetV2 model
	﻿GhostNetV2
	﻿Model optimization

	﻿Experimental results
	﻿Data preparation
	﻿Model introduction
	﻿Evaluation metrics
	﻿Evaluation of images enhancement methods
	﻿Experiment on ordinary images
	﻿Experiment on LHE
	﻿Experiment on LHE_Gabor

	﻿Evaluation of improved model
	﻿Detection of adversarial samples
	﻿Discussion
	﻿Conclusion and future work
	﻿References

