Table 29 Extended benchmarking with transformer-based and lightweight models.
Model | Accuracy | Precision | F1-score | Specificity | Sensitivity | NPV | MCC | FPR | FNR |
---|---|---|---|---|---|---|---|---|---|
CNN (baseline) | 0.912 | 0.8991 | 0.8905 | 0.9203 | 0.8707 | 0.9154 | 0.8644 | 0.0797 | 0.1293 |
SVM | 0.8945 | 0.879 | 0.8653 | 0.9024 | 0.8412 | 0.9007 | 0.8388 | 0.0976 | 0.1588 |
dResU-Net | 0.9367 | 0.9182 | 0.9121 | 0.9431 | 0.8998 | 0.934 | 0.896 | 0.0569 | 0.1002 |
EfficientNet-B3 | 0.9488 | 0.927 | 0.9199 | 0.9512 | 0.9107 | 0.9462 | 0.9104 | 0.0488 | 0.0893 |
MobileNetV3 | 0.9352 | 0.9064 | 0.9021 | 0.936 | 0.8891 | 0.9288 | 0.8917 | 0.064 | 0.1109 |
TransUNet | 0.9541 | 0.9367 | 0.9262 | 0.9577 | 0.9193 | 0.9524 | 0.9241 | 0.0423 | 0.0807 |
SwinUNet | 0.9608 | 0.9445 | 0.9368 | 0.9633 | 0.9284 | 0.96 | 0.9337 | 0.0367 | 0.0716 |
Proposed (HGBOA + ResNet + CapsuleNet) | 0.9907 | 0.9854 | 0.9955 | 0.9879 | 0.9982 | 0.9985 | 0.9762 | 0.0159 | 0.0091 |