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This research investigates the paraxial nonlinear Schrödinger equation commonly used in quantum 
mechanics, plasma physics, and nonlinear fiber optics. Employing the extended modified auxiliary 
equation mapping method, we obtained different soliton solutions, which were tested via Hamiltonian 
method of stability analysis. The dynamic behavior of the solutions was realized by making use of 
Stream Density graphs, 3D slice contour graphs, Linear graphs, Density linear graphs, and 2D graphs. 
The results obtained were tabulated systematically to ensure accuracy; therefore, this research 
would be of practical use in soliton dynamics and nonlinear wave propagation and can be useful in 
furtherance of mathematics and bio-mathematics as well as industrial research. The given model and 
soliton solutions can be efficaciously used to model pulse propagation in optical fibers, investigate 
energy localization in plasmas, and examine wave packet dynamics in quantum systems. Such uses 
highlight the practical relevance of paraxial nonlinear Schrödinger equation to promote technologies in 
telecommunications, fusion science, and nanoscale materials science.
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Nonlinear evolution equations (NLEEs) find widespread application in many areas of applied sciences and 
engineering because of their capability to describe numerous intricate physical processes. Closed-form analytical 
developments of NLEEs are as much of mathematical interest as they are of value in understanding nonlinear 
wave behaviors of those processes in real-world systems. Such behaviors span many disciplines such as fiber 
optics, sound wave propagation, oceanography, shallow water hydrodynamics, fluid mechanics, nonlinear optics, 
plasma dynamics, neural networks, chaos, diffusion and reaction processes, solid-state dynamics, quantum 
dynamics, biological mathematics, and electromagnetic fields. One notable case is propagation of ultra-short 
electromagnetic pulses in nonlinear media, an n-dimensional process controlled by the subtle interaction of 
material dispersion, diffraction, and nonlinear behavior. This dynamic interaction may result in solitons (or 
light bullets), i.e., pulses of light that preserve their profile because of an exact balancing of dispersive and 
nonlinear effects. Solitons find useful applications in areas ranging from optical microscopy to data storage, laser 
acceleration of particles, Bose-Einstein condensation, and high-resolution signal transmission.

Another basic idea in nonlinear wave theory is modulational instability (MI), arising due to interaction 
between linear dispersion or diffraction and nonlinear self-action of waves. MI is a widespread mechanism 
governing wave development in many nonlinear systems1–4.

With increasing curiosity about nonlinear dynamics in numerous areas of science, research into NLEEs has 
emerged as an overarching theme. The majority of nonlinear behaviors in physical systems can be represented 
by these types of equations. Consequently, there has arisen an imperative to develop efficient means to discover 
exact solutions of NLEEs, particularly traveling wave solutions (TWS) since they model such behaviors in many 
physical systems.

Exact nonlinear Schrödinger equation (NLSE) solutions have great significance in mathematical physics 
because of their capability of representing stable localized solitons of waves, known as optical solitons. Solitons 
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result by carefully balancing dispersion and nonlinearity, and as such, the NLSE became an elemental model of 
wave propagation in nonlinear dispersive media. Besides its standard form, NLSE acts as a master framework 
generating many extended and varied models to address specific physical effects or limitations in diverse 
systems5–9. The generalized forms of NLSE include the Gerdjikov-Ivanov equation to account for self-steepening 
and Raman effects, Manakov model to describe propagation in birefringent fibers, Gabitov-Turitsyn equation 
to simulate dispersion-managed systems, Kundu-Eckhaus and Chen-Lee-Liu equations to include higher-order 
nonlinearities, and complex Ginzburg-Landau equation and Biswas-Milovic equation to model dissipative 
regimes. Other well-known models that result from or relate to NLSE include the Maxwell-Bloch system, Schrö
dinger-Hirota equation to describe dispersive solitons, and integrable Sasa-Satsuma equation. Here, to gain 
insights about soliton propagation in different types of nonlinear wave guides, in this investigation, we consider 
an individual NLSE-based model and analyze its exact soliton solutions in specific physical regimes.

The paraxial nonlinear Schrödinger equation has been the target of many investigations by using integration 
strategies, analytical methods, and numerical schemes. Some other new methods which can be applied recently 
to the paraxial nonlinear schrödinger equation are the semi-inverse variational principle10, Lie symmetry 
analysis11, conservation law methods12, techniques for integrable nonlocal LPD equations13,14, improved 
Adomian decomposition method15, tanh expansion method16, modified simple equation method17, modified 
extended direct algebraic method18, undetermined coefficients method19, Riccati equation approach20. Nonlinear 
partial differential equations (NLPDEs) are fundamental across numerous scientific fields.

To accurately describe the physical processes represented by these equations, robust methodologies are 
required to obtain precise solutions. Selecting an appropriate approach for applying and interpreting PDEs 
is crucial in this research. Given that each PDE has unique characteristics, various effective approaches have 
been developed; however, no universal method suits all types of PDEs. Well-known techniques include the tanh 
expansion21, modified extended tanh expansion22, Adomian’s decomposition23, Bäcklund transformation24, 
Painlevé expansion25, fractional homotopy analysis method26, Kudryashov’s method27,28, and the exponential 
rational function method29. Also noteworthy are the Khater approach30 and the enhanced generalized Riccati 
equation mapping method31. This study revisits the generalized auxiliary equation mapping technique, originally 
developed by Sirendaoreji32. Employing an appropriate auxiliary equation simplifies computations and facilitates 
the discovery of various types of exact solutions.

Recent scientific developments in nonlinear science have revealed the power of different analytical approaches 
to find exact analytical solutions of nonlinear evolution equations (NLEEs) in numerous physical models. Some 
examples include applications of exact analytical schemes to solitons in optics and nonlinear waves, fluid flow, 
fractional-order models, and geophysical models of waves, illustrating the accuracy and flexibility of such 
approaches33–39. Such studies greatly advance understanding of waves and represent powerful mathematics to 
describe intricate nonlinear processes.

The Extended Modified Auxiliary Equation Mapping (EMAMEM) method has some main advantages when 
compared to standard algorithms for computing soliton solutions. The method is capable of extracting a broader 
class of exact solutions, such as hybrid and complex solitons, by virtue of its flexible mapping mechanism. The 
technique is computational and reduces nonlinear PDEs to simpler lower-dimensional ODEs systematically, 
making it effective and applicable to both integrable and non-integrable systems. Furthermore, there is 
consistency between EMAMEM and tools for carrying out stability analysis, such that physically sound and 
mathematically exact solutions can be obtained. Its flexibility allows it to be an effective tool in the analysis of 
nonlinear wave dynamics in different scientific disciplines.

The paraxial nonlinear Schrödinger equation (PNLSE) is considered in this research since it describes 
light-wave propagation in nonlinear media with paraxial approximation. The equation describes both linear 
diffraction and nonlinear processes like self-focusing and defocusing depending on medium properties. The 
more details and variations of this model can be found in40–45 The EMAMEM approach is used as an efficient 
tool to find soliton solutions and study how they behave when subject to stochastic perturbations. Stability of 
resulting solitary wave solutions is investigated with the Hamiltonian method, and findings are presented in 
tabular form to provide clarity and consistency. Consider the equation

	
iQy + α

2 Qxx + β

2 Qtt − γ|Q|2Q = 0.� (1.1)

This is the general paraxial nonlinear Schrödinger equation that takes into consideration both temporal dispersion 
and spatial variation, as well as nonlinear interaction between fields. It controls evolution of the complex envelope 
q(x, y, t) as it travels along the direction of propagation, y, considering spatial and temporal dispersive effects. 
The real parameters α, β, and γ in Eq. (1.1) refer to diffraction, dispersion, and Kerr nonlinearity, respectively. 
Eq. (1.1) takes the form of the elliptic NLSE when αβ > 0, and becomes the hyperbolic NLSE when αβ < 0
46,47. This equation can remarkably model (2+1)-dimensional spatial dynamics in cubic Kerr media when group-
velocity dispersion is neglected; when this occurs, x and t refer to transversal spatial coordinates, and y refers 
to longitudal propagation coordinate, and we assume α = β > 0. The organization of the article is as follows:

Section “Introduction” provides a brief overview of the paraxial nonlinear schrödinger equation. The 
algorithm used in the proposed method is explained in detail in Section “Methodology of extended modified 
AEM method”. Section “Stability analysis” demonstrates the stability of paraxial nonlinear schrödinger equation. 
Graphical visualization of the solutions are presented in Section “Graph-based data visualization”. Section 
“Discussions and results” offer results and discussion along with concluding remark.
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Methodology of extended modified AEM method
We here apply newly formulated Extended Modified Auxiliary Equation Mapping Method (EMAMEM) by 
Seadawy48 to the paraxial nonlinear Schrödinger equation. The advanced analytical algorithm is employed 
to find a larger group of general and new traveling wave solutions. With the flexibility of EMAMEM, we can 
construct systematically exact solutions that uncover complex nonlinear wave dynamics of the system resulting 
from interaction of diffraction, dispersion, and Kerr nonlinearity.

The nonlinear partial differential equation is given as

	 M(w, wt, wx, wy, wxx, . . .) = 0,� (2.1)

where M  is a polynomial in w(x, y, t). To obtain the exact traveling wave solution, apply the traveling wave 
transformation in the following form:

	
w(x, y, t) = w(ξ), ξ =

m∑
i=0

κixi,� (2.2)

where κi, i = 0, 1, 2, . . . , m are constants. Applying this transformation, Eq. (2.1) is simplified to a nonlinear 
ODE of the given form.

	 N(w, w′, w′′, w′′′, . . .) = 0,� (2.3)

We have a nonlinear ordinary differential equation (NLODE), where N  denotes a polynomial in w(ξ) along 
with its associated total derivatives w′, w′′, w′′′, . . .. Next, we assume that w(ξ) satisfies a general solution 
expressed as a series in terms of ψ(ξ). Accordingly, we propose that the solution of the equation can be written 
in the following form:

	
w = w(ξ) =

n∑
j=0

ajψj(ξ) +
−n∑

j=−1

b−jψj(ξ) +
n∑

j=2

cjψj−2(ξ)ψ
′
(ξ) +

n∑
j=1

dj

(
ψ

′
(ξ)

ψ(ξ)

)j

,� (2.4)

where ak , bk , ck , and dk  are arbitrary constants that will be determined later. In this framework, ψ(ξ) is assumed 
to satisfy the following generalized auxiliary equation:

	
ψ

′2
= (dψ

dξ
)2 = β1ψ2(ξ) + β2ψ3(ξ) + β3ψ4(ξ),� (2.5)

where β1, β2, β3 are constants to be determined.
The transformation is given by:

	 z(x, y, t) = Q(η)eiϕ,� (2.6)

where

	 η = x + y − νt, ϕ = κx + θy − νt.� (2.7)

Put Eq. (2.6) and Eq. (2.7) in Eq. (1.1), we get this,

	 AQ′′(η) + BQ(η) − 2γκQ(η)3,� (2.8)

where A = α(κ − 1)ν2 − 1 and B = κ
(
α(κ − 1)ν2 − 2θ + κ

)
. Using the homogeneous balance principle, 

the non-linear term Q3 with higher order derivative term Q then give M + 2 = 3M, which implies M = 1. 
Therefore, we assume the solution takes the following form:

	
Q = a1ψ(η) + a0 + b1

ψ(η) + d1ψ′(η)
ψ(η) ,� (2.9)

where a0, a1, b1, and d1 are constants to be determined.
Family 1:
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a0 =0, a1 = −
√

h
√

ακν2 − αν2 − 1
2√

γ
√

κ
, b1 = 0,

d1 = − i
√

−ακν2 + αν2 + 1
2√

γ
√

κ
.

z1(x, y, t) =

(
1
4e(−iϕ)

( 4
√

hκ(j tanh(E(η+η0))+1)2(α(κ−1)ν2−2θ+κ)
g
√

α(κ−1)ν2−1
− iEjsech (E (η + η0))2 √

2 − 2α(κ − 1)ν2

√
γ

√
κ (j tanh (E (η + η0)) + 1)

))
,

where η =x + y − νt,

E =
√

κ (α(κ − 1)ν2 − 2θ + κ)
α(κ − 1)ν2 − 1 .

z2(x, y, t) =

(
e(−iϕ)

(
−

√
h

√
f
h

√
ακν2 − αν2 − 1

(
F j

G+ρ
+ 1

)

4√
γ

√
κ

−
i
√

−ακν2 + αν2 + 1
(√

fGj

G+ρ
−

√
fF 2j

(G+ρ)2

)

2√
γ

√
κ

(
F j

G+ρ
+ 1

)
))

,

where η =x + y − νt,

F = sinh
(√

f (η + η0)
)

G = cosh
(√

f (η + η0)
)

.

z3(x, y, t) =

(
e(−iϕ)

(
f

√
hH

√
ακν2 − αν2 − 1

2√
γg

√
κ

+
i
√

fj
√

−ακν2 + αν2 + 1
(
−F σ + Gρ

√
σ2 + 1 + 1

)
2√

γH
√

κ(F + σ)2

))
,

where η =x + y − νt,

F = sinh
(√

f (η + η0)
)

,

G = cosh
(√

f (η + η0)
)

,

H =
j

(
cosh

(√
f (η + η0)

)
+ ρ

√
σ2 + 1

)

sinh
(√

f (η + η0)
)

+ σ
+ 1.

� (2.10)

Family 2:

	

a0 =1
2

( √
2κ2

√
−γκ2(2θ − κ)

− 2
√

2θκ√
−γκ2(2θ − κ)

)
, a1 = − g

2
√

2
√

γκ3 − 2γθκ2
,

b1 =0, d1 = 0.

z4(x, y, t) =

(
e(−iϕ)

(
1
2

( √
2κ2

√
−γκ2(2θ − κ)

− 2
√

2θκ√
−γκ2(2θ − κ)

)
+ f(jK + 1)

2
√

2
√

γκ3 − 2γθκ2

))
,

where η =x + y − νt,

K = tanh
(1

2
√

f (η + η0)
)

.

z5(x, y, t) =

(
e(−iϕ)

(
1
2

( √
2κ2

√
−γκ2(2θ − κ)

− 2
√

2θκ√
−γκ2(2θ − κ)

)
−

gH

√
f
h

4
√

2
√

γκ3 − 2γθκ2

))
,

where η =x + y − νt,

H =
j

(
cosh

(√
f (η + η0)

)
+ ρ

√
σ2 + 1

)

sinh
(√

f (η + η0)
)

+ σ
+ 1.

z6(x, y, t) =

(
e(−iϕ)

(
1
2

( √
2κ2

√
−γκ2(2θ − κ)

− 2
√

2θκ√
−γκ2(2θ − κ)

)
+ fL

2
√

2
√

γκ3 − 2γθκ2

))
,

where η =x + y − νt,

L =
j

(
cosh

(√
f (η + η0)

)
+ ρ

√
σ2 + 1

)

sinh
(√

f (η + η0)
)

+ σ
+ 1.

� (2.11)

Family 3:
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a0 =0, a1 = i
√

h

2√
γ

√
κ

, b1 = 0, d1 = i

2√
γ

√
κ

.

z7(x, y, t) =

(
e(−iϕ)

(
i
√

fjM2

4√
γ

√
κN

− if
√

hN

2√
γg

√
κ

))
,

where η =x + y − νt,

M =sech
(1

2
√

f (η + η0)
)

,

N =j tanh
(1

2
√

f (η + η0)
)

+ 1.

z8(x, y, t) =

(
e(−iϕ)

( i
(√

fGj

G+ρ
−

√
fF 2j

(G+ρ)2

)

2√
γ

√
κ

(
F j

G+ρ
+ 1

) +
i
√

h

√
f
h

(
F j

G+ρ
+ 1

)

4√
γ

√
κ

))
,

where η =x + y − νt,

F = sinh
(√

f (η + η0)
)

,

G = cosh
(√

f (η + η0)
)

.

z9(x, y, t) =

(
e(−iϕ)

(
−

if
√

h

(
j
(

G+ρ
√

σ2+1
)

F +σ
+ 1

)

2√
γg

√
κ

−
i
√

fj
(
−F σ + Gρ

√
σ2 + 1 + 1

)

2√
γ

√
κ(F + σ)2

(
j
(

G+ρ
√

σ2+1
)

F +σ
+ 1

)
))

,

where η =x + y − νt,

F = sinh
(√

f (η + η0)
)

,

G = cosh
(√

f (η + η0)
)

.

� (2.12)

Family 4:

	

a0 =0, a1 = 0, b1 = 0, d1 =
√

−2θ + κ + 1√
2γf − γκ

, α = 2f − 2θκ + κ2

(κ − 1)ν2(2f − κ) .

z10(x, y, t) =

(
e−iϕ

( √
fj

√
−2θ + κ + 1 sech

(
1
2
√

f (η + η0)
)2

2
√

2γf − γκ
(
j tanh

(
1
2
√

f (η + η0)
)

+ 1
)

))
,

where η =x + y − νt.

z11(x, y, t) =

(
e−iϕ

(√
−2θ + κ + 1

(√
fGj

G+ρ
−

√
fF 2j

(G+ρ)2

)
√

2γf − γκ
(

F j
G+ρ

+ 1
)

))
,

where η =x + y − νt,

F = sinh
(√

f (η + η0)
)

,

G = cosh
(√

f (η + η0)
)

.

z12(x, y, t) =

(
e−iϕ

(
−

√
fj

√
−2θ + κ + 1

(
−F σ + Gρ

√
σ2 + 1 + 1

)

(F + σ)2
√

2γf − γκ

(
j
(

G+ρ
√

σ2+1
)

F +σ
+ 1

)
))

,

where η =x + y − νt,

F = sinh
(√

f (η + η0)
)

,

G = cosh
(√

f (η + η0)
)

.

� (2.13)

Stability analysis
We investigated the stability of traveling wave solutions to Eq. (2.8) by using the Hamiltonian method where 
Hamiltonian-system (HS) momentum is given by
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U =

∫ ∞

−∞

z(x)2

2 dx,� (3.1)

with z(x, y, t) denoting the traveling wave solution. The condition of stability mandates that

	
∂ U

∂ ν
> 0,� (3.2)

where ν represents the velocity of waves. The Eqs. (3.1) and (3.2) are used to establish specific regimes and ranges 
of parameters where the traveling waves of the HS behave in a stable manner. By using these requirements of 
stability in their corresponding valid ranges, we identified the stability behavior of resulting solutions as given 
in Table 1.

Graph-based data visualization
Using Mathematica 14.0, this part presents graphical representations of our recently discovered solutions in 
several dimensions (various kinds of rational, trigonometric, mixed, and hyperbolic functions). The objective is 
to have a deeper understanding of the physical interpretation of the model presented by Eq. (2.8). Figs. 1, 2, 3, 4, 
5, 6, 7, 8, 9, 10, 11 and 12 give 2D graph, 3D slice contour, density linear, stream density and linear plots which 
describes the behaviour of the system and types of the family of soliton solutions presented by Eq. (2.10)–Eq. 
(2.13).

The Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 depict varieties of soliton profiles obtained as exact solutions of 
nonlinear evolution equations zi(x, y, t). From them, we can see bright, dark, and singular solitons, visualized as 

Fig.  1.  Graphic representation of z1(x, y, t) in various dimensions with 
θ = 1.9, α = 1.7, ν = 1.6, κ = 1.5, j = 1, η0 = 1.3, h = 1.1, g = 1.2, x, t ε [−3, 3].

 

No Solution Stability Values of the variables

1 z1(x, y, t) Stable θ = 1.9, α = 1.7, ν = 1.6, κ = 1.5, j = 1, η0 = 1.3, h = 1.1, g = 1.2, x, t ε [−3, 3]

2 z2(x, y, t) Stable η0 = 1.3, h = 1.1, g = 1.2, γ = 1.4, ρ = 1, f = 1.8, y = 2, k = 1, x, t ε [−3, 3]

3 z3(x, y, t) Stable j = 1, η0 = 1.3, h = 1.1, g = 1.2, γ = 1.4, ρ = 1, f = 1.8, σ = 1, y = 2, k = −1, x, t ε [−3, 3]

4 z4(x, y, t) Stable α = 1.7, ν = 1.6, κ = 1.5, j = 1, η0 = 1.3, h = 1.1, g = 1.2, γ = 1.4, x, t ε [−3, 3]

5 z5(x, y, t) Stable α = 1.7, ν = 1.9, κ = 1.5, j = 1, η0 = 1.5, h = 1.1, g = 1.2, ρ = 1, f = 1.8, x, t ε [−3, 3]

6 z6(x, y, t) Unstable Singular solution

7 z7(x, y, t) Stable ν = 1.5, κ = 1.5, j = 1, η0 = 1.9, h = 1.1, g = 1.2, γ = 1.4, f = 1.3, x, t ε [−3, 3]

8 z8(x, y, t) Stable η0 = 1.5, h = 1.1, g = 1.2, γ = 1.4, ρ = 1, f = 1.8, y = 2, k = −1, x, t ε [−2, 2]

9 z9(x, y, t) Stable θ = 1.9, α = 1.7, ν = 1.2, κ = 1.5, j = 1, η0 = 1.9, h = 1.1, g = 1.2, x, t ε [−2, 2]

10 z10(x, y, t) Stable ν = 1.2, κ = 1.5, j = 1, η0 = 1.1, h = 1.6, g = 1.2, γ = 1.4, f = 1.8, x, t ε [−2, 2]

11 z11(x, y, t) Stable η0 = 1.3, h = 1.1, g = 1.2, γ = 1.4, ρ = 1, f = 1.8, y = 2, k = −1, x, t ε [−2, 2]

12 z12(x, y, t) Stable θ = 1.9, α = 1.7, ν = 1.6, κ = 1.5, j = 1, η0 = 1.3, h = 1.1, g = 1.2, x, t ε [−3, 3]

Table 1.  Stability Analysis of zi(x, y, t) i = 1, 2, 3, . . . , 12..
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Fig. 4.  Graphic representation of z4(x, y, t) in various dimensions with 
α = 1.7, ν = 1.6, κ = 1.5, j = 1, η0 = 1.3, h = 1.1, g = 1.2, γ = 1.4, x, t ε [−3, 3].

 

Fig. 3.  Graphic representation of z3(x, y, t) in various dimensions 
withj = 1, η0 = 1.3, h = 1.1, g = 1.2, γ = 1.4, ρ = 1, f = 1.8, σ = 1, y = 2, k = −1, x, t ε [−3, 3].

 

Fig. 2.  Graphic representation of z2(x, y, t) in various dimensions with 
η0 = 1.3, h = 1.1, g = 1.2, γ = 1.4, ρ = 1, f = 1.8, y = 2, k = 1, x, t ε [−3, 3].
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2D line graphs, 3D surface plots, density plots, and stream flow plots. Each figure depicts unique spatiotemporal 
dynamics within different regimes of parameters, exhibiting localized maxima, intensity minima, and steep 
wavefronts-illustrating the soliton solution’s capability to capture intricate nonlinear dynamics.

Moreover, Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 can be clearly classified by analysis to reflect soliton types 
according to their graphical characteristics. Bright solitons, as depicted by localized peaks or humps against flat 
or zero backgrounds, can be seen in Figs. 1, 2, 3, 7, 9, 11 and 12, where energy concentration and maxima of 
wave amplitude stand out. On the other hand, dark solitons, indicated by localized minima of intensity or by a 
notch in an otherwise continuous wave background, can be seen in Figs.  4, 5, 6, 8, and 10 and can be determined 
by depressions in amplitude or in density, highlighting differences in soliton nature between different solutions. 
This analysis can be verified using the following condition on the families of solutions, bright solitons arise when 
γ > 0 and α(κ − 1)ν2 < 1, typically featuring a sech2(...) profile. In contrast, dark solitons occur for γ < 0 
with α(κ − 1)ν2 > 1, characterized by a tanh(...) profile.

Discussions and results
This section identifies and emphasizes the differences and commonalities between the recently obtained sets of 
solutions and those already reported in the literature by using traditional analytical approaches to the paraxial 
nonlinear Schrödinger equation.

Fig. 6.  Graphic representation of z6(x, y, t) in various dimensions with 
h = 1.1, g = 1.2, γ = 1.4, ρ = 1, f = 1.8, σ = 1, y = 2, k = 1, x, t ε [−3, 3].

 

Fig. 5.  Graphic representation of z5(x, y, t) in various dimensions with 
α = 1.7, ν = 1.9, κ = 1.5, j = 1, η0 = 1.5, h = 1.1, g = 1.2, ρ = 1, f = 1.8, x, t ε [−3, 3].
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Fig. 9.  Graphic representation of z9(x, y, t) in various dimensions with 
θ = 1.9, α = 1.7, ν = 1.2, κ = 1.5, j = 1, η0 = 1.9, h = 1.1, g = 1.2, x, t ε [−2, 2].

 

Fig. 8.  Graphic representation of z8(x, y, t) in various dimensions with 
η0 = 1.5, h = 1.1, g = 1.2, γ = 1.4, ρ = 1, f = 1.8, y = 2, k = −1, x, t ε [−2, 2].

 

Fig. 7.  Graphic representation of z7(x, y, t) in various dimensions with 
ν = 1.5, κ = 1.5, j = 1, η0 = 1.9, h = 1.1, g = 1.2, γ = 1.4, f = 1.3, x, t ε [−3, 3].
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Fig.  12.  Graphic representation of z12(x, y, t) in various dimensions with 
θ = 1.9, α = 1.7, ν = 1.6, κ = 1.5, j = 1, η0 = 1.3, h = 1.1, g = 1.2, x, t ε [−3, 3].

 

Fig. 11.  Graphic representation of z11(x, y, t) in various dimensions with 
η0 = 1.3, h = 1.1, g = 1.2, γ = 1.4, ρ = 1, f = 1.8, y = 2, k = −1, x, t ε [−2, 2].

 

Fig. 10.  Graphic representation of z10(x, y, t) in various dimensions with 
ν = 1.2, κ = 1.5, j = 1, η0 = 1.1, h = 1.6, g = 1.2, γ = 1.4, f = 1.8, x, t ε [−2, 2].
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•	 Firstly, our method as presented in Eq. (2.4) uses a set of three parameters and results in a structurally differ-
ent and new formulation. This structural difference is one of the most outstanding differences with previous 
efforts.

•	 Secondly, we use computational software like “Mathematica 14.0” to represent the multidimensional behav-
iors of the newly obtained solutions by specifying different sets of constant values aj , b−j , cj , and dj .

•	 Specifically, Eq. (2.4) can give rise to a rich variety of analytical solutions, such as rational, trigonometric, 
hyperbolic, and combination function types, embodying the flexibility and applicability of the presented 
method. Additionally, the results obtained by applying “extended trial equation method”, “modified auxil-
iary expansion method”, “modified extended mapping method”, “modified extended direct algebraic meth-
od”, “improved simple equation method”, and “modified extended auxiliary equation mapping scheme” differ 
sharply from results that we have recently obtained. The discrepancies can be observed by comparing with 
results presented in40–45.

Concluding remarks
This study was dedicated to the paraxial nonlinear Schrödinger equation, which describes the interaction of 
spatial diffraction, temporal dispersion, and Kerr nonlinearity in (2+1)-dimensional media. The parameters 
α, β, and γ signify these physical phenomena, respectively, and control soliton solution evolution along the 
propagation coordinate. With the aid of the Extended Modified Auxiliary Equation Mapping (EMAMEM) 
method, numerous exact bright and dark soliton solutions were obtained. The tradeoff between dispersion 
and nonlinearity in these solutions identifies dominating factors behind energy localization and stable pulse 
propagation in instances such as optical fibers, plasmas, and quantum media.

The Hamiltonian method was employed to confirm the stability of these solitons, and their dynamic evolution 
was realized with precise graphical analyses. In contrast to traditional approaches such as Inverse Scattering 
Transform or Hirota’s method, EMAMEM is more versatile and effective in generating varied and physically 
realistic solutions. The results do not just advance nonlinear wave equations mathematically, and they provide 
useful information for practical application in nonlinear quantum systems, plasma physics, and photonics as 
well.

The paraxial nonlinear Schrödinger model is an effective tool to study the evolution of wave packets subject 
to the joint action of dispersion, diffraction, and nonlinearity. Aside from exact solitons, dynamic behavior of 
the model can be investigated using advanced tools like sensitivity analysis, chaotic analysis, and Lyapunov 
exponents, measuring the system’s sensitivity to initial values. Such tools unveil deeper understanding of the 
system’s predictability and resilience and possible transition to complicated, unstable regimes.

Data availability
The data that support the findings of this study is within the manuscript.
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