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Artificial intelligence (AI) has emerged as a transformative tool in ophthalmology for disease diagnosis 
and prognosis. However, use of AI for assessing corneal damage due to chemical injury in live rabbits 
remains lacking. This study aimed to develop an AI-derived clinical classification model for an objective 
grading of corneal injury and opacity levels in live rabbits following ocular exposure of sulfur mustard 
(SM). An automated method to grade corneal injury minimizes diagnostic errors and enhances 
translational application of preclinical research in better human eyecare. SM induced corneal injury 
and opacity from 401 in-house rabbit corneal images captured with a clinical stereomicroscope were 
used. Three independent subject matter specialists classified corneal images into four health grades: 
healthy, mild, moderate, and severe. Mask-RCNN was employed for precise corneal segmentation and 
extraction, followed by classification using baseline convolutional neural network and transfer learning 
algorithms, including VGG16, ResNet101, DenseNet121, InceptionV3, and ResNet50. The ResNet50-
based model demonstrated the best performance, achieving 87% training accuracy, and 85% and 83% 
prediction accuracies on two independent test sets. This deep learning framework, combining Mask-
RCNN with ResNet50 allows reliable and uniform grading of SM-induced corneal injury and opacity 
levels in affected eyes.
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Recent advancements in deep learning algorithms, especially convolutional neural networks (CNNs), have 
significantly advanced ophthalmology care, particularly in the diagnosis and grading of various ocular 
diseases. Cutting-edge applications of CNNs in ophthalmology span diverse areas: SCINet, a segmentation 
and classification interaction network, has demonstrated efficacy in grading arteriosclerotic retinopathy with 
enhanced accuracy and robustness1. Similarly, CNN-long short-term memory (LSTM) models incorporating 
longitudinal visual field data have shown promise in predicting primary open-angle glaucoma progression2. 
The use of CNNs with longitudinal macular optical coherence tomography angiography (OCTA) imaging has 
provided a novel approach to detecting glaucoma progression, further emphases the importance of temporal 
data integration3. High diagnostic accuracy has also been achieved in identifying glaucoma in highly myopic 
populations through tailored CNN architectures4. Hybrid models combining CNNs, and recurrent neural 
networks (RNNs) have advanced diabetic macular edema screening, leveraging complementary strengths of 
feature extraction and sequential data analysis5. ResNet50, VGG19, and InceptionV3 CNN architectures have 
been applied for retinal vein occlusion diagnosis using fundus fluorescein angiography6. Additionally, CNN-
based approaches have enabled precise fungal keratitis diagnosis via in vivo confocal microscopy for rapid and 
accurate infectious disease detection7. Machine learning models integrating CNNs have also been employed 
to establish links between retinal biomarkers and ischemic stroke subtypes and thereby providing insights into 
systemic disease pathophysiology8. Comprehensive frameworks using CNNs have facilitated multi-disease 
detection from fundus images9, while deep learning methods have successfully identified hard exudates and 
retinal inner layer disorganization in diabetic macular edema for more targeted clinical interventions10.

The application of deep learning algorithms for the classification and prediction of corneal pathologies 
remains underexplored. Sulfur mustard gas (SM) induced corneal injury and opacity presents unique diagnostic 
challenges and requires reliable grading systems for clinical assessment11–13. In this study, we report development 
of an CNN-based classification system for grading SM-induced corneal injury and opacity in live rabbits 
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using corneal images taken from stereomicroscope. Further, we evaluated the diagnostic performance of the 
developed model on independent sets of SM-exposed corneas. We investigated the transfer learning method 
with the highest performance in the classification of SM-injured corneal pathologies, with a focus on diagnosing 
and detecting the corneal pathology grades. Furthermore, we examined whether it is possible to achieve reliable 
diagnostic outcomes via a skewed/severely injured corneal image dataset. This work addresses the unmet need 
for an objective, image-based classification system, gauging SM-induced corneal damage. An overarching goal 
of the present study is to develop a clinically translatable AI model that supports development of diagnostic tools 
and medical countermeasures through standardized grading of ocular chemical injury.

Methods
SM vapor exposure and corneal imaging
All SM vapor exposures were performed at MRI Global (Kansas City, MO, United States) as previously 
described14,15. Rabbits were anesthetized via intramuscular administration of ketamine (up to 60 mg/kg) and 
xylazine (up to 5 mg/kg) and given buprenorphine HCl (0.05–0.1 mg/kg) for pain management. After anesthesia, 
custom goggle was secured around the animals’ head, and eye was exposed to SM vapor inside a chemical hood 
at a target concentration of 200 mg-min/m³ for 8 min. Following exposure, the goggles were removed after a 
2-minute washout period, and both eyes were rinsed with balanced salt solution (BSS) for decontamination. 
Animals were recovered from anesthesia inside the chemical hood and subsequently transported to a separate 
facility for long-term monitoring. All animals were monitored for up to 12 months post-exposure to assess the 
progression of corneal injury. Corneal imaging was performed at day 7, day 14, day 21, and subsequently once 
every month from 1 to 12 months post-exposure to monitor injury progression.

Rabbit corneal images were captured over this period using a stereomicroscope (Leica MZ16F, Leica 
Microsystems Inc., Buffalo Grove, IL) equipped with a SpotCam RT KE digital camera system (Diagnostic 
Instruments Inc., Sterling Heights, MI) to document corneal and ocular damage. Additionally, corneal 
examinations were performed using a single portable slit-lamp microscope (Kowa SL-15, Torrance, CA) for 
ocular health and corneal haze assessment16.

Imaging was performed by trained research personnel under standardized protocols, with consistent machine 
settings across all imaging sessions to minimize inter-observer variability. A total of 401 corneal images were 
collected, including 94 healthy/naïve images, which were subsequently utilized for masking and classification 
using deep learning algorithms. The animal ethics committee of the University of Missouri, Veterinary Medicine, 
approved the study, which was conducted in accordance with ARRIVE and ARVO guidelines for the use of 
animals in research.

Subjective grading of corneal images
Three ophthalmology researchers graded the images in a blinded manner. This subjective grading/classification 
was performed based on corneal clinical features listed in Table 1. Representative corneal images corresponding 
to each severity grade are provided in Supplementary information S1.

Image preprocessing and augmentation
The training process starts with preprocessing the image data, which involves resizing and augmenting the images. 
The training images were utilized to develop various CNN models via nested k-fold cross-validation (k = 3, 5, 7, 
10) with class-stratified folds. In this approach, the training set was divided into k subsets, with the model being 
trained iteratively using all but one subset, which was held out for validation to assess the model’s performance17. 
A single imaging setup with consistent magnification setting was used. A minor resolution variability occurred 
due to unavoidable clinical artifacts such as tear film irregularities, motion blur, and focal adjustments during 
live animal imaging. All captured images were subsequently resized to 240 × 240 pixels to ensure standardized 
input dimensions for model training. Image augmentation was then applied, including random zooms of up to 
10% and both vertical and horizontal flips, to effectively train and validate the CNN models18,19.

Corneal extraction
The mask region-based CNN (Mask R-CNN) algorithm20 was used to train graded corneal images with their 
corresponding JavaScript object notation (JSON) files. The masks for each image were first drawn manually and 
saved as JSON files. These were then converted into a readable (binary) format and combined into one under the 

Clinical feature

Severity of the disease

Healthy Mild Moderate Severe

Iris visible ✔ ✔ Partial ✖
Corneal haze ✖ ✔ ✔ ✔
Blood vessels- 1–2 mm not reaching the central cornea ✖ ✖ ✔ ✔
Blood vessels- more than 4 mm reaching the central cornea ✖ ✖ ✖ ✔
Epithelial defect ✖ ✖ ✔ ✔

Table 1.  Subjective classification of SM-induced corneal injury based on clinical features. The grading was 
performed based on the iris visible/not visible, corneal haze, extent of blood vessel invasion (categorized by 
proximity to the central cornea), and epithelial defects were noted as either absent (✖), partial or present (✔).
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name using the online labeling tool makesense.ai21–23. This training allows the algorithm to accurately identify 
and segment the region of interest in each image24. Once the Mask-R-CNN algorithm was trained, it was applied 
to mask each image, isolating the corneal area while excluding surrounding or irrelevant regions (noncorneal 
regions, e.g., eyelids, eyelashes, and specula). After masking, the images were cropped to remove any unwanted 
black areas, ensuring that only the relevant portion of the image remained for further analysis.

Development of prediction models
The CNN algorithms were applied to the preprocessed data to create two categories of models: (a) baseline 
models, which were constructed from the ground up, and (b) models utilizing transfer learning, where pretrained 
network weights were used, followed by fine-tuning of parameters to enhance model performance. This study 
employed pretrained networks, namely, VGG16, ResNet101, DenseNet121, InceptionV3, and ResNet5025–28. For 
each architecture, grid-based hyperparameter tuning was conducted, generating multiple models with variations 
in the number of convolutional blocks, filters, dropout rates, learning rates, dense layers, and training epochs 
(Table 2). Adam (with weight decay: 1e-5) and stochastic gradient descent (SDG) were used as optimizers, and 
‘Rectified linear unit’ (ReLU) and SoftMax were used as the activation functions for the dense and output layers, 
respectively29–31. Final model training was limited to a maximum of 100 epochs with early stopping based on 
validation loss monitoring.

Statistical measures
Several performance parameters were evaluated to determine the best-performing model between the baseline 
and pretrained networks. These parameters included accuracy (Acc), precision (Pr), recall (R), the hamming 
distance (HD), the F1 score, the area under the receiver operating characteristic curve (ROC-AUC), and the 
area under the precision‒recall curve (PR-AUC). The accuracy, precision, and recall are calculated based on 
true positive (TP), true negative (TN), false positive (FP), and false negative (FN) values. TP occurs when the 
model correctly predicts a positive class, whereas TN occurs when the model correctly predicts a negative class. 
Incorrect predictions are represented by FPs and FNs. The hamming distance is used to compare two binary 
strings of equal length through XOR operations. The F1 score represents the harmonic mean of precision and 
recall. The ROC curve was used to assess a model’s ability to differentiate between classes, and the area under 
the ROC curve was used to plot the true positive rate (sensitivity) against the false positive rate (1-specificity) 
at various thresholds. The PR-AUC was calculated as an alternative metric which is particularly useful for 
imbalanced datasets. The PR curve plots precision against recall and used to evaluate the model’s performance 
in identifying the positive class. Equations (1–4) detail the calculations for these performance metrics, including 
sensitivity, specificity, precision, and recall, which are fundamental for understanding the classification model’s 
effectiveness.

	
Accuracy (Acc) = T P + T N

T P + T N + F P + F N
� (1)

	
Precision (Pr) = T P

T P + F P
� (2)

	
Recall (R) = T P

F P + F N
� (3)

	
F 1 score = 2 ∗ precision ∗ recall

precision + recall
� (4)

The classifier was developed using the hyperparameter combination that achieved the best performance 
across most statistical measures during k-fold cross-validation. The final model was selected by comparing the 
performance metrics of the top baseline-CNN model with those of pretrained networks (VGG16, ResNet101, 
DenseNet121, InceptionV3, and ResNet50). To evaluate the model’s effectiveness and robustness, it was tested 

Parameter Values

# convolutional blocks 1–5

# filters 32, 64, 128

Kernel size 1*1, 2*2, 3*3, 4*4

# dense layers 1–5

# neurons 10-1000

Learning rate 2 × 10− 4, 1 × 10− 4, 2 × 10− 3, 1 × 10− 3, 1 × 10− 2, 2 × 10− 2

Dropout ration 0.3, 0.5, 0.7

# epochs 50, 100

Optimizer Adam, Stochastic gradient descent

Table 2.  Values for hyperparameters investigated for training CNN models for SM-induced corneal pathology 
classification.
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on two independent test sets. Additionally, bootstrap modeling was conducted on the test set to estimate the 95% 
confidence intervals, ensuring the reliability of the final model.

Validation using Scheimpflug imaging
Pentacam HR (Oculus Optikgerate GmbH, Wetzlar, Germany), an advanced diagnostic tool that uses Scheimpflug 
imaging to capture precise measurements of corneal thickness, curvature, anterior chamber depth, and lens 
opacity, was used to validate randomly selected corneal pathology grades (predicted by the best-performing 
developed model)32.

The overall methodology, encompassing all key steps from data acquisition to classification, is comprehensively 
summarized in Fig. 1.

Results
Data distribution and augmentation
The image dataset includes four classes, namely, healthy, mild, moderate, and severe corneal pathologies, where 
each class/grade in the image dataset is represented by 94, 106, 105, and 96 images, respectively. The combined 
dataset of 401 corneal images was split into training (70%) and two test sets: Test set 1 (T1) and Test set 2 (T2) 
(15% each). Efforts were made to ensure that both the training and test sets had approximately equal numbers 
of corneal images across the four classes.

Optimization of hyperparameters
Various hyperparameter configurations were tested to train multiclass CNN models via 10-fold cross-validation. 
The hyperparameters used to construct the best-performing CNN models are given in Table 3.

Classification models for SM-induced corneal pathology
The performance metrics of the models developed using the baseline-CNN, VGG16, ResNet101, DenseNet121, 
InceptionV3, and ResNet50 methods are given in Table 4.

Baseline-CNN model
The CNN-based model achieved the lowest performance across both test sets, with overall accuracies of 0.64 
on T1 and 0.70 on T2. For the healthy class, the model performed better in Test 2, yielding a sensitivity of 0.87 
compared with 0.73 in Test (1) The specificity was also greater for Test (2) However, for the mild class, the 
sensitivity drastically decreased in Test 2 (0.43), but the specificity was high in both test sets (0.97 and 0.89). 
Similar trends were observed for the moderate and severe classes. The model’s F1 scores and HD reflected a 
balance between false positives and false negatives, with HD values of 0.40 indicating modest classification error 
rates. The micro- and macro-ROC-AUC scores were 0.88 and 0.90, respectively.

Fig. 1.  Workflow for the grading of SM-exposed corneas using CNN. The figure illustrates the end-to-end 
process of developing a deep learning model for grading corneal injury caused by SM exposure. The workflow 
consists of three main stages: (a) data acquisition and manual grading, (b) classification model development, 
and (c) SM-induced pathology grade prediction.
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VGG16
VGG16 demonstrated moderate classification performance, with accuracies of 0.75 on T1 and 0.80 on T2. For 
the healthy class, the sensitivity remained consistent between test sets (0.80 and 0.83), whereas the F1 score and 
specificity improved slightly in Test 2. The model was strong in classifying the severe class, with F1 scores of 0.87 
and 0.71 for T1 and T2, respectively, and a high specificity of 0.96. The ROC-AUC scores were consistently high 
(0.93 micro- and macrovalues). The PR-AUC scores were slightly better than those of the CNN-based model.

ResNet101
ResNet101 achieved similar accuracy on both test sets (0.75 and 0.77), with particularly strong performance 
in the severe class. The F1 score and specificity for severe cases were 0.96 and 0.81 in T1 and T2, respectively. 
For the healthy class, the sensitivity and specificity were balanced, with values exceeding 0.80 across both test 
sets. The ROC-AUC and PR-AUC scores indicate comparable performance to that of VGG16, with macro- and 
micro- ROC-AUC values of 0.92 and 0.93, respectively. The Hamming distance improved over that of the CNN-
based model, with an HD value of 0.29.

DenseNet121
DenseNet121 achieved accuracies of 0.80 on T1 and 0.85 on T2. The sensitivity for the healthy class was 
particularly high, reaching 0.92 at T2, and the specificity was consistently strong across all classes. Notably, 
DenseNet121 achieved perfect S-specificity (1.00) for the mild and severe classes in Test 2, along with good F1 
scores. HD was relatively low at 0.20. DenseNet121 also achieved the best ROC-AUC scores, with micro- and 
macrovalues of 0.97 and 0.94, respectively, and high PR-AUC scores (0.84 micro- and 0.89 macrovalues).

InceptionV3
InceptionV3 had a mixed performance, with accuracy values of 0.77 on T1 and 0.73 on T2. The sensitivity for the 
healthy class was comparable to that of DenseNet121, but the performance for the mild class was less consistent, 
with a sensitivity decrease from 0.39 in T1 to 0.40 in T2. The F1 scores for moderate cases were lower compared 
to other models. HD was slightly higher (0.28), but the ROC-AUC and PR-AUC scores were good but not as 
high as those of DenseNet121.

ResNet50
ResNet50 achieved the highest accuracy among all the models, with 0.87 on T1 and 0.85 on T2. This model 
excelled in classifying healthy and severe cases, achieving perfect sensitivity and specificity for healthy cases in 
T2 (1.00), and a high F1 score for severe cases (0.94 in T1 and 0.92 in T2). The HD was the lowest among all the 
models (0.17), which indicates the fewest misclassifications. The model’s ROC-AUC (micro = 0.94; macro = 0.95) 
and PR-AUC scores (micro = 0.80; macro = 0.84) were also satisfactory (Fig. 2).

Figure  3 presents confusion matrices for the multiclass classification task on test sets T1 and T2 using 
Baseline-CNN, VGG16, ResNet101, DenseNet121, InceptionV3, and ResNet50. The Baseline-CNN achieved 
39/61 correct classifications in T1 (12 healthy, 9 mild, 9 moderate, and 9 severe) and 39/62 in T2 (11 healthy, 
10 mild, 8 moderate, and 10 severe). VGG16 correctly classified 45/61 images in T1 (16 healthy, 9 mild, 10 
moderate, and 10 severe) and 43/62 in T2 (15 healthy, 8 mild, 9 moderate, and 11 severe). ResNet101 reached 
41/61 in T1 (16 healthy, 5 mild, 10 moderate, and 10 severe) and 46/62 in T2 (12 healthy, 14 mild, 9 moderate, 
and 11 severe). DenseNet121 accurately classified 48/61 corneas in T1 (17 healthy, 6 mild, 13 moderate, and 12 

Parameters Baseline Model VGG16 ResNet101 DenseNet121 InceptionV3 ResNet50

Convolutional Blocks 3 (with 2 convolutional layers)

Predefined Predefined Predefined Predefined Predefined
Filters

First block: 32

Second block: 64

Third block: 128

Kernel size 3 × 3

MaxPooling 2 × 2

Zero Padding No Yes Yes Yes Yes Yes

Dense Layers 2 2 2 2 2 2

Neurons in Dense Layers 1024,4 1024,4 1024,4 1024,4 1024,4 1024,4

Dropout Ratio 0.5 0.5 0.5 0.5 0.5 0.5

Learning Rate 1.00E-03 1.00E-02 1.00E-04 1.00E-04 2.00E-03 1.00E-04

Epochs 100 100 100 100 100 100

Batch Size 64 64 64 64 64 64

Optimizer Adam (weight decay: 1e-5) Adam (weight 
decay: 1e-5)

Adam (weight 
decay: 1e-5)

Adam (weight decay: 
1e-5)

Adam (weight decay: 
1e-5)

Adam 
(weight 
decay: 
1e-5)

Table 3.  Architectural configurations and training hyperparameters across various trained models, including 
a custom baseline-CNN model and pretrained architectures (VGG16, ResNet101, DenseNet121, InceptionV3, 
and ResNet50).
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severe) and 50/62 corneas in T2 (13 each in healthy, mild, moderate, and 11 severe). Inception v3 recorded 42/61 
in T1 (17 healthy, 6 mild, 10 moderate, and 9 severe) and 45/62 in T2 (17 healthy, 5 mild, 10 moderate, and 13 
severe). ResNet50 demonstrated the highest accuracy, with 52/61 in T1 (19 healthy, 14 mild, 12 moderate, and 
7 severe) and 50/62 in T2 (12 healthy, 11 mild, 15 moderate, and 12 severe), outperforming the other models. 
Overall, the performance of ResNet50 was superior to that of the other algorithms used in this study.

The representative examples of accurately classified corneal pathology grades by ResNet50 across independent 
test sets are shown in Fig. 4. Whereas Fig. 5. Depicts the examples of misclassified corneal grades. Furthermore, 
randomly selected images (one from each grade) with classes predicted by ResNet50 were used to further 
validate the results via Scheimpflug imaging (using Pentacam HR), as shown in Fig. 6.

Discussion
This study demonstrates the effectiveness of AI models, particularly CNN-based architectures, in classifying 
corneal pathology grades following SM exposure. ResNet50 demonstrated robust performance in classifying 
corneal pathology grades across independent test datasets. The model was validated using two test sets, 
encompassing a diverse range of corneal health statuses: Healthy, Mild, Moderate, and Severe. Examples of 
correctly classified cases are shown in Fig. 4, with true labels and model predictions provided for comparison. The 
results show ResNet50’s superior performance among the models tested, achieving the highest accuracy across 
two independent test sets, with 52/61 correct classifications in T1 and 50/62 in T2 (Fig. 3). The misclassified 
corneal pathology grades are shown in Fig.  5. The misclassification was predominantly limited to adjacent 
pathology grades. This may indicate that the model encountered some challenges in distinguishing subtle 
morphological differences between neighboring grades, likely due to overlaps in feature space or variations in 
image quality, such as lighting, glare, or corneal texture. Additionally, a few training images exhibited some 
epithelial defects, which may likely have contributed to occasional underestimation of severity. Expanding the 

Model

Performance metrics

Accuracy Sn Sp F1

HD (Avg.)

ROC-AUC PR-AUC

Train T1 T2 Class T1 T2 T1 T2 T1 T2 Micro Macro Micro Macro

Baseline-CNN

0.64 0.70 0.63 H 0.73 0.87 0.93 0.82 0.76 0.67 0.40 0.88 0.90 0.65 0.72

M 0.75 0.43 0.97 0.89 0.80 0.52

MO 0.50 0.40 0.79 0.84 0.50 0.42

S 0.60 0.67 0.81 0.88 0.55 0.63

VGG16

0.75 0.80 0.74 H 0.80 0.83 0.85 0.91 0.76 0.81 0.29 0.93 0.93 0.82 0.80

M 0.60 057 0.87 0.90 0.60 0.59

MO 0.67 0.50 0.96 0.95 0.74 0.62

S 0.91 0.92 0.96 0.84 0.87 0.71

ResNet 101

0.75 0.77 0.80 H 0.84 0.86 0.93 0.90 0.84 0.77 0.29 0.92 0.93 0.79 0.80

M 0.45 0.67 0.90 0.88 0.48 0.70

MO 0.56 0.69 0.84 0.92 0.57 0.69

S 0.77 0.79 0.90 0.96 0.71 0.81

DenseNet121

0.80 0.81 0.85 H 0.89 0.92 0.95 0.91 0.89 0.84 0.20 0.94 0.97 0.84 0.89

M 0.55 0.62 0.90 0.95 0.55 0.72

MO 0.72 1.00 0.91 0.88 0.74 0.81

S 0.92 0.79 0.96 1.00 0.89 0.88

InceptionV3

0.77 0.73 0.77 H 0.79 0.89 0.88 0.88 0.77 0.83 0.28 0.90 0.91 0.76 0.78

M 0.39 0.40 0.86 0.94 0.45 0.50

MO 0.69 0.67 0.92 0.89 0.69 0.67

S 1.00 0.92 0.92 0.92 0.85 0.83

ResNet50

0.87 0.85 0.83 H 0.90 0.78 1.00 0.98 0.95 0.80 0.17 0.94 0.95 0.80 0.84

M 0.88 0.79 0.96 0.87 0.88 0.79

MO 0.80 0.88 0.91 0.91 0.77 0.83

S 0.78 0.92 0.94 0.98 0.74 0.92

Table 4.  Performance metrics of deep learning algorithms (CNN-Base, VGG16, ResNet101, DenseNet121, 
inception v3, and ResNet50) across two test sets (T1, T2) for classifying four severity levels of corneal 
pathology: healthy (H), mild (M), moderate (MO), and severe (S). The performance metrics include the 
accuracy, sensitivity (Sn), specificity (Sp), F1 score, hamming distance (HD), receiver operating characteristic 
(ROC)-AUC (area under the curve), and precision recall-area under the curve (PR-AUC). Micro- and 
Macroaverages for the ROC-AUC and PR-AUC are provided for overall model evaluation. T1 = Test set 1; 
T2 = Test set 2; H = Healthy; M = Mild; MO = Moderate; S = Severe; Sn = Sensitivity; Sp = Specificity; f1 = Fi score; 
HD*=Hamming distance (average of T1 and T2); ROC-AUC; Receiver operating characteristic-Area under 
curve; PR-AUC = Precision recall- Area under curve.

 

Scientific Reports |        (2025) 15:20359 6| https://doi.org/10.1038/s41598-025-08042-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


dataset to include a more balanced representation of injury-type may enhance model performance in future 
studies. Nevertheless, the overall performance of ResNet50 in identifying four corneal pathological grades 
(healthy, mild, moderate, and severe) with high accuracy demonstrates its ability to differentiate severity levels 
in eye. This will have a valuable clinical application in establishing SM-related corneal pathology.

In addition to ResNet50, DenseNet121 and InceptionV3 also displayed good performance, achieving 
accuracies of 48/61 and 42/61 in T1 and 50/62 and 45/62 in T2, respectively (Fig. 3). Although VGG16 and 
ResNet101 achieved moderate accuracy levels (75–80%), the baseline-CNN model performed lower overall, 
which was the deciding factor in this study to explore deeper and more sophisticated pretrained transfer learning 
CNN architectures for nuanced classification tasks. These findings provide a proof-of-concept that CNN-based 
architectures, particularly ResNet50, can be developed as supportive tools for standardized grading of corneal 
pathology levels in humans following SM injury, pending further validation in human clinical datasets.

The study’s approach is notable for applying transfer learning algorithms to analyze complex stereomicroscope 
images in an SM-induced corneal injury model. By utilizing clinically relevant parameters in a CNN-based 
pipeline for grading SM-exposed corneal images, this study not only enhances experimental design and 
outcome prediction in animal studies but also translates findings into a framework that aligns with human 
clinical standards. This approach leverages Mask-RCNN and CNN-based models, incorporating both baseline 
and transfer learning architectures to classify and grade the severity of corneal pathology. Importantly, the 
methodology encompasses analysis of the entire corneal image, including peripheral regions and the limbus, 
which enables detection of a broader range of corneal pathologies and enhances diagnostic comprehensiveness.

Compared with other models, performance of ResNet50 was distinguished by consistently high metrics 
across multiple evaluation measures in this study. With accuracy scores of 0.87 on T1, 0.85 on T2, and 0.83 
on the training set, ResNet50 showed exceptional ability to distinguish all four grades, with high specificity in 
both independent test sets (T1 = 91–100%; T2 = 87–98%) (Table 4). Additionally, ResNet50’s loss plot over the 
epochs, accuracy plots, and ROC-AUC (T1 = micro- ROC-AUC of 0.94, macro- ROC-AUC of 0.95; T2 = micro-
ROC-AUC of 0.95, macro- ROC-AUC of 0.95) scores (Fig. 2) demonstrate strong class discrimination, which is 
essential for severity classification tasks in clinical practice.

DenseNet121, while also demonstrated competitive performance, exhibited slightly higher HD (0.20) 
compared to ResNet50, which indicates more misclassifications. The HD of ResNet50 (0.17), which is the 
lowest among all the models, reflects fewer classification errors (Table 4). The robustness and adaptability of 
ResNet50 in maintaining high accuracy across various severity classes position it as a promising tool for practical 
deployment for conditions related to corneal injuries.

Fig. 2.  Training and evaluation performance of the ResNet50 model on independent Test Sets 1 (a–c) and 2 
(d–f). Panels (a, d) show the loss over epochs, with both training (black) and test set (red) losses decreasing 
and stabilizing, indicating effective model convergence. Panels (b, e) display the accuracy over epochs for 
training (black) and test sets (red), showing high and stable accuracy with minimal overfitting. Panels (c, f) 
present multiclass ROC curves for Test Set 1 and Test Set 2, with microaverage and macroaverage ROC-AUC 
values.
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The validation of ResNet50’s predictions using Scheimpflug imaging with Pentacam HR further supports 
the model’s clinical applicability (Fig.  6). The corneal density maps generated by Pentacam HR, reflecting 
structural changes and opacity, qualitatively aligned with the AI-predicted severity grades which support utility 
of a developed model in preclinical research. Corneal images collected from Pentacam HR were not utilized for 
model training but used to assess whether AI-based clinical predictions match with clinical conditions detected 
by the Pentacam HR technology which provides precise measurements of location and degree of corneal opacity 
in eyes of human patients in a color-coded manner.

The optimized AI-based model shows promise, its performance in predicting corneal opacity and damage 
from toxic agents beyond sulfur mustard is required to be validated in broader contexts. Assessing the 
performance of developed model across a broad spectrum of chemically-induced corneal injuries in patient’s 
demographics require additional and diverse clinical imaging dataset. Future studies involving larger and more 
heterogeneous corneal image dataset is essential to fully evaluate the model’s generalizability and robustness 
towards all chemically injured eyes. Nevertheless, this study addresses a clinical challenge through the corneal 
image augmentation, rigorous cross-validation, and transfer learning. Moreover, the manual grading process, 
conducted by three independent clinicians to establish baseline reliability, introduces a degree of subjectivity, 
which may lead to variability in the ground truth labels. Furthermore, the segmentation process for Mask-
RCNN training is labor intensive and susceptible to human error, especially given the potential for annotator 
fatigue when large image datasets are labeled.

The developed AI-based model achieved an accuracy of approximately 87%, which is comparable to 
performance benchmarks reported for other ocular diagnostic models33–40. This performance of ResNet50 
architecture reflects the inherent complexity of classifying subtle variations in corneal pathology. This study 
also provides a systematic evaluation of CNN-based approaches for grading corneal pathology severity, with 
ResNet50 emerging as the most effective architecture across independent test sets. Incorporating larger and more 
diverse corneal image datasets in future work may further enhance model performance and generalizability.

This study employed sulfur mustard-induced mustard gas keratopathy (MGK), characterized by pathological 
features such as ocular chronic inflammation, recurrent corneal epithelial erosions, stromal scarring, haze, 
corneal edema/swelling, corneal ulcer, and corneal neovascularization, which are also hallmarks of common 
corneal conditions seen in patients of infectious keratitis, keratoconus, and dry eye diseases. These clinical 

Fig. 3.  Confusion matrices for six models (Baseline-CNN, VGG16, ResNet101, DenseNet121, InceptionV3, 
and ResNet50) evaluated on two test sets (Test Set 1 and Test Set 2) for classifying four severity classes: healthy, 
mild, moderate, and severe. Each cell in the matrix represents the number of true instances (rows) classified 
as predicted classes (columns). The diagonal values indicate the correct predictions for each class, whereas 
the off-diagonal values indicate misclassification. The shading represents the relative frequency of correct and 
incorrect classifications, with darker shades indicating higher counts.
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parallels suggest that AI models trained on MGK features may have broader relevance particularly in preclinical 
translational research field. Nevertheless, additional studies are warranted to develop general and disease-
specific AI-based models for better clinical diagnosis and treatment.

Conclusions
By applying advanced CNN models to complex ocular images and focusing on corneal pathology in an animal 
model, this study may contribute to bridging preclinical research and clinical applicability. The ResNet50 
model’s robust metrics and adaptability make it a strong candidate for applications requiring precise multiclass 
classification, and its demonstrated success offers potential pathways to address SM-induced corneal pathology 
through early and reliable AI-assisted diagnosis.

Fig. 4.  Representative examples of correctly classified corneal pathology grades by ResNet50 across 
independent test sets. The images in Test Set 1 and Test Set 2 demonstrate the model’s ability to accurately 
predict corneal health status across various pathology grades, including Healthy, Mild, Moderate, and Severe. 
For each example, the true label (True) and predicted label (Pred) are shown which illustrates robustness and 
generalizability of developed model across different datasets. ‘True’ refers to the expert-assigned grade based 
on manual annotation, while ‘Pred’ indicates the severity grade predicted by the AI model.
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Fig. 5.  Examples of misclassified corneal pathology grades by ResNet50 across independent test sets. The 
figure illustrates cases where the model predictions (Pred) did not align with the true labels (True) for different 
corneal pathology grades in Test Set 1 and Test Set 2.
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Data availability
The data presented in this study are available on https://github.com/dsinha12345/CPC. The Raw data are ​a​v​a​i​l​a​
b​l​e from the corresponding author upon request.
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