Table 3 Architectural configurations and training hyperparameters across various trained models, including a custom baseline-CNN model and pretrained architectures (VGG16, ResNet101, DenseNet121, InceptionV3, and ResNet50).

From: Artificial intelligence derived grading of mustard gas induced corneal injury and opacity

Parameters

Baseline Model

VGG16

ResNet101

DenseNet121

InceptionV3

ResNet50

Convolutional Blocks

3 (with 2 convolutional layers)

Predefined

Predefined

Predefined

Predefined

Predefined

Filters

First block: 32

Second block: 64

Third block: 128

Kernel size

3 × 3

MaxPooling

2 × 2

Zero Padding

No

Yes

Yes

Yes

Yes

Yes

Dense Layers

2

2

2

2

2

2

Neurons in Dense Layers

1024,4

1024,4

1024,4

1024,4

1024,4

1024,4

Dropout Ratio

0.5

0.5

0.5

0.5

0.5

0.5

Learning Rate

1.00E-03

1.00E-02

1.00E-04

1.00E-04

2.00E-03

1.00E-04

Epochs

100

100

100

100

100

100

Batch Size

64

64

64

64

64

64

Optimizer

Adam (weight decay: 1e-5)

Adam (weight decay: 1e-5)

Adam (weight decay: 1e-5)

Adam (weight decay: 1e-5)

Adam (weight decay: 1e-5)

Adam (weight decay: 1e-5)