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This study introduces a flow network model to dynamically track carbon emissions in power grids, 
addressing limitations of traditional methods by transforming grids into directed graphs with virtual 
sink nodes for transmission losses. Using Markov chain-based probabilistic flow analysis, the model 
allocates emissions from generators to loads and power lines, incorporating life cycle emissions and 
eliminating matrix inversion. Validated via a 24-hour simulation on the IEEE 30-bus system, results 
demonstrate significant fluctuations in emission factors driven by renewable generation variability. 
Loads near renewables achieve near-zero emission factors during peak green generation, while loads 
remote from renewable sources exhibit weaker responses. The grid-level emission factor, inversely 
correlates with renewable output, reaching minimum during the highest renewable penetration. 
Furthermore, the model reveals that transmission losses contribute marginally to total emissions 
compared to loads, emphasizing the need for demand-side optimisation. This framework enables 
dynamic carbon-aware grid operations, such as aligning consumption with renewable availability 
and prioritizing low-loss pathways. By incorporating life cycle emissions, the model provides critical 
insights for sustainable grid planning, highlighting trade-offs between renewable deployment, storage 
integration, and emission reduction costs. The methodology’s scalability and compatibility with both 
transmission and distribution networks position it as a robust tool for advancing analysis of low-carbon 
power systems.
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The global imperative to mitigate climate change has intensified the focus on carbon emissions from electric 
power industry1–6, which accounts for approximately 40% of energy-related emissions positioning it as a critical 
sector in the global effort to achieve carbon neutrality7,8. Electricity, as a secondary energy source, relies heavily on 
power generation technologies, which dominate the carbon footprint of power systems. Unlike static generator-
level emission factors, the carbon intensity of electricity consumed by end-users or lost in transmission lines 
depends on the dynamic power flow distribution, which is influenced by grid topology, generator dispatch, 
and fluctuating renewable output9–13. Furthermore, the life cycle emissions of electricity generation must be 
considered to provide a comprehensive understanding of the carbon footprint associated with power systems. 
This includes emissions from the construction of power plants, the extraction and processing of fuels, and the 
eventual decommissioning of facilities14–18. While renewable energy sources (e.g., wind and solar) and nuclear 
power offer low operational emissions, their life cycle emissions, particularly from construction and material 
production, cannot be ignored. Fossil fuel-based generation, on the other hand, continues to be a significant 
contributor to greenhouse gases throughout its life cycle operation.

Accurately quantifying carbon emissions in power systems has been a focal point of energy research, driven 
by the need to align grid operations with decarbonisation goals. Early methodologies, such as carbon flow 
models, established foundational frameworks for tracking emissions from generators to consumers. Kang et al. 
(2012, 2015)1,2 pioneered this approach by proposing the carbon flow model, allocating emissions proportionally 
to power flows. While effective for transmission systems, the efficiency of these models may be reduced due to 
the topological characteristic of distribution networks with radial configurations and bidirectional power flows 
from distributed energy resources19. Matrix-based approaches emerged to address scalability challenges. Zhou 
et al. (2012)20 formulated carbon emission factors using nodal power injection matrices, enabling systematic 
allocation of emissions. However, matrix inversion operations in large-scale systems (e.g., distribution grids with 
thousands of nodes) incur prohibitive computational costs21. Guddanti et al. (2021)22 proposed iterative solvers 
to bypass matrix inversion, yet their accuracy diminishes under high renewable penetration due to nonlinear 

Energy Development Research Institute, CSG, Guangzhou 510530, China. email: chengwei.wang@hotmail.com

OPEN

Scientific Reports |        (2025) 15:26990 1| https://doi.org/10.1038/s41598-025-08053-8

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-08053-8&domain=pdf&date_stamp=2025-7-24


power flow dynamics. A critical gap across existing methods is the exclusion of life cycle emissions. Traditional 
models focus solely on operational emissions from fossil fuel combustion, neglecting upstream (e.g., fuel 
extraction, plant construction) and downstream (e.g., decommissioning) phases. Pehl et al. (2017)14 integrated 
an energy–economy–land-use–climate model for life cycle assessment to explore life cycle emissions of future 
low-carbon power supply systems. (Hertwich et al., 2015)16 proposed a comprehensive life cycle assessment 
reveals that transitioning to low-carbon electricity technologies (solar, wind, hydro-power, CCS) significantly 
reduces greenhouse gas emissions and environmental pollution over their entire life cycle compared to fossil 
fuels, despite higher initial material demands, confirming their global benefit under climate-mitigation scenarios. 
Recent studies integrate life cycle assessment (LCA) into grid models but remain static, lack of a clear instruction 
for dynamic tracking of carbon emission footprint17,18.

In this study, we propose a flow network23–26 model to address the above mentioned limitations by:

•	 Generalising grid representation through virtual sink nodes for losses, eliminating topological restrictions;
•	 Replacing matrix inversion with Markov chain-based probabilistic flow analysis, enhancing scalability;
•	 Incorporating dynamic life cycle factors for all generation technologies, providing a comprehensive assess-

ment of the carbon footprint associated with electricity generation, transmission, and consumption.

Validated with the IEEE 30-bus system, our results reveal that emission factors for loads and transmission lines 
fluctuate significantly with renewable generation variability. For instance, loads directly connected to renewable 
sources achieve near-zero emission factors during peak renewable generation periods, while emission factors 
of loads remote from renewable sources exhibit weaker responses to renewable output changes. These findings 
underscore the importance of dynamic emission tracking in optimising grid operations for carbon reduction, 
such as aligning load consumption with renewable availability or prioritising low-loss transmission pathways. 
Additionally, the inclusion of life cycle emissions highlights the long-term carbon implications of different 
generation technologies, informing more sustainable grid planning and investment decisions.

Results
The flow network model for power grids
A power grid is an interconnected network delivering electricity from generators to consumers. The electricity 
flowing through an AC power grid is normally denoted by complex power which is the vector sum of active and 
reactive power27. Active power (the real part of the complex power) is the flow that transfers the consumable 
electrical energy from generators to consumers. Reactive power (the imaginary part of the complex power) 
that stores and releases energy in the circuit’s inductors and capacitors does not deliver consumable electrical 
energy between generators and consumers. The carbon emission in power grids comes from the consumption 
of electricity, thus the carbon emission factor in power grids is only related to active power. We focus on the 
analysis of carbon emission factor in this paper, thus we only consider the active power flow and ignore the 
reactive power flow. Figure 1 (a) shows a single-line diagram, the simplest symbolic representation, of a 5-bus 
power grid. This single line diagram contains four basic components of a power grid: (1) generators which 
produce electricity, represented with a letter “G”; (2) loads which consume electricity, represented with a letter 
“L”; (3) power lines which deliver electricity from generators to loads, represented with a thin line; (4) buses 
which collect and distribute electricity among power lines, represented with thick lines. Power loss arises when 
transferring electrical energy due to heat loss etc. on power lines. Shown as Fig 1 (a), the power injected into 
the power line between bus 1 and bus 4 is P14 and the power output from this line is P ′

14, and P14 − P ′
14 is the 

power loss on this power line.

Fig. 1.  The 5-bus power grid and its flow network model. (a) shows the single line diagram of a 5-bus power 
grid with generators, loads, power lines and buses. (b) shows the equivalent flow network of the 5-bus power 
grid.

 

Scientific Reports |        (2025) 15:26990 2| https://doi.org/10.1038/s41598-025-08053-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


A power grid can be represented by a flow network. A flow network is denoted by a directed graph28 G(V, E), 
where V  is a set of distinct nodes, E  is a set of distinct directed edges. We define that each edge (i, j) ∈ E  has a 
non-negative flow fi,j  from node i to j. More strictly, we require E  never contains both edge (i, j) and edge (j, i) 
for any pair of nodes, i.e., each edge in E  is uniquely directed, thus there is no loop flow in the network. For any 
node i, j ∈ V , if (i, j) /∈ E , we let fi,j = 0. A flow network contains source nodes, denoted by a set of S , that 
provides flow into the network, and sink nodes, denoted by a set of L, that absorb flow from the network. Other 
nodes that only distribute flows and neither provide nor absorb flow from the network are named as junction 
nodes.

In order to represent a power grid with a flow network, we transform the power grid topology shown in 
Fig. 1 (a) to (b). In this transformation, each component of the power grid is transformed to a type of nodes: 
(1) source nodes: containing nodes that transformed from generators, denoted by bus numbers with a letter 
“G”, such as node 1G; (2) sink nodes: containing two types of nodes including (a) nodes that transformed from 
loads, denoted by bus numbers with a letter “L”, such as node 4L; (b) nodes that transformed from power lines, 
denoted by the symbol ∆ with subscripts of the numbers of buses that connects each power line, such as node 
∆1−4. (3) junction nodes: transformed from buses and denoted by bus numbers, such as node 1. In the above 
transformation, we have transformed all power lines into virtual sink nodes, such as node ∆1−4 absorbing flow 
from the network. We allocate each virtual sink node to the primary side of the original power line, for example, 
we connect ∆1−4 with node 1 which is the primary side of the power line (1,4). We define a set D ∈ L to contain 
all these virtual sink nodes transformed from power lines. This transformation of power lines to nodes helps us 
to deal with power losses on power lines. We consider the power loss on a power line as the power consumed by 
the virtual sink node transformed from that power line, for example, the loss P14 − P ′

14 on the power line (1, 4) 
is consumed by the virtual sink node ∆1−4. This process transforms the loss P14 − P ′

14 on power line (1, 4) 
into a power flow, P1,∆1−4 , from node 1 to node ∆1−4 on edge (1, ∆1−4). With the above transformation, the 
power line (1, 4) can be treated as a lossless power line, i.e., the power injected from node 1 to edge (1, 4) is equal 
to that received by node 4 from edge (1, 4) and the quantity of this power flow is P ′

1,4. Furthermore, we set the 
power flow from a generator to the bus connecting it to be the generation power of the generator, i.e., P1G,1 on 
edge (1G, 1) in Fig. 1 (b) to be equal to P1G in Fig. 1 (a). Similarly, the power flow from a bus to its downstream 
load is set to be the consumption power of that load, i.e., P1,1L on edge (1, 1L) in Fig. 1 (b) to be equal to P1L 
in Fig. 1 (a). The node set, V , of the flow network in 1 (b) are composed by the source nodes transformed from 
generator, the sink nodes transformed from both loads and power lines and the junction nodes transformed 
from buses. The edge set, E , of the flow network in 1 (b) are composed by the power lines that connects two 
nodes in V . The active power flow is treated as the flow on each edge, i.e., for any edge transmitting active power 
from node i to j we require fi,j = Pi,j . The 5-bus power grid in Fig. 1 (a) is now modelled by the flow network 
in Fig. 1 (b).

The carbon emission from generation to consumption
All electricity generation technologies produce carbon emissions in their life cycle. The construction, 
maintenance and decommission process of all generation sites, including nuclear and renewable plants, emits 
carbon dioxide into the atmosphere. Generators that burns fossil fuels continues emitting carbon dioxide in their 
operation when generating electricity.

Let Cg,construction represent the total carbon emissions produced in the construction of a power plant, 
Ĉg,maintenance be the expected carbon emissions caused by maintaining or repairing works in the life cycle of 
the power plant, Ĉg,decommission be the expected carbon emissions caused by decommissioning or recycling 
works of the power plant, and Êg  indicate the expected total electricity to be generated in the life cycle of 
the power plant. The non-operation carbon emission factor, Fg,non−op. (in unit of kgCO2/MW h), can be 
calculated as the average carbon emission per unit of electricity over its life cycle in Eq. 1

	
Fg,non−op. = Cg,construction + Ĉg,maintenance + Ĉg,decommission

Êg

.� (1)

Define Fg,fuel−burning  to be the carbon emission factor of the fossil fuel during its burning process in a power 
plant, indicating the carbon emission generated from burning a unit of fossil fuel. Define Fg,fuel−upstream to 
be the carbon emission factor of the fossil fuel during its producing and delivering process, indicating the carbon 
emission generated from the upstream works for a unit of fossil fuel. Let Wg  be the total units of fuels burned by 
the generator during a time period dt, and Pg  be the average power of the generator during dt. The operational 
carbon emission factor of this generator is calculated in Eq. 2

	
Fg,op. = (Fg,fuel−burning + Fg,fuel−upstream) · Wg

Pg · dt
.� (2)

Nuclear and renewable plants do not generate carbon emissions during their running process, thus the carbon 
emission factor of a nuclear or renewable generation site is equal to their non-operating carbon emission factor, 
i.e.:

	 Fg,non−fossil = Fg,non−op.,� (3)

where Fg,non−fossil indicates the carbon emission factor of nuclear and renewable generations. However, the 
carbon emissions of a generator utilising fossil fuels come from both its non-operation and operation processes, 
i.e.:
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	 Fg,fossil = Fg,non−op. + Fg,op.,� (4)

where Fg,fossil indicates the carbon emission factor of a generator utilising fossil fuels.
Normally, Cg,construction is a fixed value for a generation plant, Ĉg,maintenance, Ĉg,decommission and Êg  

can be evaluated as constant values during the life cycle of a generator. Thus, the non-operating carbon emission 
factor can be treated as a constant value, i.e., nuclear and renewable sources have constant carbon emission 
factors during their life cycle. In terms of a generator utilising fossil fuels, it burns the same batch of fossil for a 
given period of time, which implies Fg,fuel−burning  and Fg,fuel−upstream to be constants for that period of 
time. Furthermore, the efficiency of a fossil fuel generator is denoted by a ratio of energy input to energy output, 
calculated in ηg = Pg · dt/Wg . Normally, ηg  can be treated as a constant for a given type of generator. Thus, 
Fg,op. can be treated to be a constant value for a given period of time. Therefore, the carbon emission factor of a 
generator utilising fossil fuels is a constant during a given period of time.

The World Nuclear Association studied the average life cycle CO2 equivalent emissions of various electricity 
generation sources, as shown in Fig. 2.

The electricity is supplied by generators but finally utilised by consumers. The responsibility of carbon emission 
occurred at the generation side should be counted at the consumption side, i.e., there is a transfer process of the 
carbon emission responsibility along with the transfer process of power from generation to consumption, shown 
in Fig. 3. The direct carbon emissions happens in fossil fuel generations from their operating and non-operating 
periods, and happens in nuclear and renewable generations during their non-operating periods. However, the 
emission factor of a load is not directly known in a power grid, since a consumer may received electricity from 
different types of generators with different emission factors. In the meantime, the proportion of the electricity 
received by each load from each generator is dynamically changing due to the real-time dispatching process in 
power systems. This means that, the carbon emission factor of each load is a real-time number that dynamically 
changing. The lack of clear carbon emission factor on consumer side restricts the allocation of responsibility 
of indirect carbon emissions among consumers and limits the tracking of carbon footprint for products that 
utilised electricity in their production process. The majority of electricity is utilised by consumers with a small 
part being lost during transmission. The power loss on a power line can be modelled as a consumption of the 
power line as shown in Fig. 1 (b). Loads and power lines share the carbon emission responsibility originated 
from generators. The carbon emission factor of each power line is also a dynamic number that is not directly 

Fig. 3.  The transfer process of carbon emission responsibility from generation to consumption.

 

Fig. 2.  Average life cycle CO2 equivalent emissions of different types of power plants. Data source: World 
Nuclear Association29.
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known. The lack of clear carbon emission factor on power loss limits the evaluation of the indirect carbon 
emissions of the power transportation system.

To solve the above mentioned issues for power consumers and power transportation system is then formed to 
track the life cycle carbon emissions in power grids: to calculate the dynamic carbon emission factors for loads 
and power lines with known carbon emission factors of generators (Fg,non−fossil and Fg,fossil) and known 
power flow distribution given by the power flow calculation27 at each time point of the system running process.

Calculation of dynamic carbon emission factors
We apply a path-based allocation method with Markov chain theory to calculate the dynamic carbon emission 
factors. A directed path in a flow network is a sequence of distinct directed edges joining a sequence of distinct 
nodes, where any edge in the path must have the same direction as that of the flow on this edge. For example, 
there are two paths from node 1 to node 5 in Fig.  1 (b) including path 1 → (1, 4) → 4 → (4, 5) → 5 and 
path 1 → (1, 2) → 2 → (2, 3) → 3 → (3, 5) → 5. Assume there is at least one path between node i and j. We 
define qk

i,j  where k ⩾ 1 to denote the kth path between node i and j. We denote (u, v) ∈ qk
i,j  if edge (u, v) is 

in the sequence of path qk
i,j . All paths in a directed flow network can be found by the deep-first-search (DFS) 

algorithm30.
In a power grid, the electricity flowing through power lines between nodes is a macroscopic phenomena of 

the electrons moving between nodes through power lines in microscopic level. Each electron leaving a node has 
a probability to be distributed to one of the downstream power line connected to this node. As shown in Fig. 1 
(b), the electrons at node 1 are dispatched to edges (1, 2), (1, 4), (1, ∆1−2) and (1, ∆1−4). Since the power 
flow is known in this network, we can treat the probability of each electron distributed to an edge from node 1 
being equal to the proportional ratio between the amount of power flowing from node 1 to that edge and the 
total output power of node 1. For example, the probability of an electron flowing from node 1 to edge (1, 2) can 
be calculated as P1,2/(P1,2 + P1,4 + P1,∆1−2 + P1,∆1−4 ) · 100% = P1,2/P1. Furthermore, we requires the 
electron that leaves a node will not flow back to that node. In this way, the power flow in a power grid can be 
treated as a chain process: each node is a discrete state, and the transfer of an electron from an upstream state, 
i, to one of its downstream state, j, has a probability of Mi,j  calculated by Mi,j = Pi,j/Pi · 100%. Since the 
electron does not flow backward from node j to i, the probability Mi,j  only depends on the state of the upstream 
(Pi). If node i and j is not directly connected, i.e. (i, j) /∈ E), implying that the electrons leaving from node i 
cannot be distributed to node j directly, then we set Mi,j = 0. Following the above analysis, we define M as the 
Markov matrix31, of a power network with element Mi,j  being calculated in Eq. 5

	
Mi,j = Pi,j

Pi
· 100%,� (5)

where Pi,j  and Pi are the active power of edge (i, j) and node i, respectively, and Mi,j = 0 if (i, j) /∈ E . Power 
flow calculation gives us the power distribution in the network, thus we can calculate all elements in M.

Assume node i and node j is not directly connected, i.e., (i, j) /∈ E , but there is at least a path transmitting power 
from node i to j. Assume the kth path delivering power from node i to j is qk

ij = i → (i, u) → u → (u, j) → j, 
where node u is a junction node joining the path qk

ij  between node i and j. The probability of an electron, e, 
leaving from node i arriving at node u is Mi,u and the probability for this electron to be further delivered to 
node j from node u is Mu,j . Thus, the macroscopic power flow from node i to j can be treated as a microscopic 
Markov chain with the probability of the electron e to be delivered from node i to j calculated as Mi,u · Mu,j . 
Considering the total output power of node i is Pi, the total power delivered from node i to j through path qk

i,j  
is calculated as Pi · Mi,u · Mu,j . This means that the flow from node i to j through a path qk

i,j  can be calculated 
as a Markov chain by multiplying Pi with all Mu,v , provided edge (u, v) is in the sequence of qk

i,j . Thus, use Rk
i,j  

to denote the flow from node i to j via path qk
i,j , we have

	

Rk
i,j = Pi ·

∏
(u,v)∈qk

i,j

Mu,v.
� (6)

Define Ri,j  indicating the total flow from node i to node j via all paths between them. Ri,j  can be calculated in 
Eq. 7

	
Ri,j =

|Qi,j |∑
k=1

Rk
i,j .� (7)

where the set Qi,j  contains all directed paths from node i to j and | Qi,j | represents the total number of paths 
between node i and j. Note that if there is no path between node i and j, Qi,j  becomes an empty set and Ri,j = 0.

The carbon emission is transferred from sources to sinks in the network along with the power transmitting 
process. Assume node i is a source node with carbon emission factor of Fi (in unit of kgCO2/MWh) which can 
be calculated in Eq. 3 for nuclear or renewable sources and in Eq. 4 for power plants utilising fossil fuels. Assume 
the average power of node i to be Pi (in unit of MW) during a period of time dt. Let Ci (in unit of kgCO2) be 
the total quantity of carbon dioxide emitted from i during dt. Ci can be calculated in Eq. 8

	 Ci = Fi · Pi · dt.� (8)
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Assume node j is a sink node and there is at least one path delivering power from node i to j. Let Ci,j  be the total 
quantity of carbon emission transferred from node i to j during a period of time dt. Recall the previous analysis 
that the carbon emission factor Fi of generator i can be treated as constant value for a given period of time, then 
the carbon emission transferred from node i to j is linearly proportional to the total electricity delivered from 
node i to j which is Ri,j · dt. Thus, Ci,j  as a portion of Ci, can be calculated by Eq. 9

	
Ci,j = Ci · Ri,j · dt

Pi · dt
= (Fi · Pi · dt) · Ri,j

Pi
= Fi · Ri,j · dt.� (9)

The total carbon emission transferred from all sources to sink j is then derived in Eq. 10

	
Cj =

∑
i∈S

Ci,j ,� (10)

where S  is the previously defined set containing all source nodes. Considering the total electricity consumed at 
node j during dt is Pj · dt, the carbon emission factor of node j during dt is calculated in Eq. 11

	
Fj = Cj

Pj · dt
=

∑
i∈S(Fi · Ri,j)

Pj
.� (11)

In Eq. 11, Fi is the carbon emission factor of a source node which can be treated a constant value for a given 
period of time, however, Fj  as the carbon emission factor of a sink node is a real-time changing number since 
Ri,j  and Pj  are dynamic changing depending on the power distribution of the network at each time point.

Equation 11 can be applied to calculate the dynamic carbon emission factors of all loads and power lines that 
have been modelled as virtual sink nodes. With all dynamic carbon emission factors known for loads and power 
lines at any given time, the life cycle carbon emissions from power plants are explicitly transferred to consumers 
and power losses at each time point.

Further considering the power losses of all power lines are known from the power flow calculation, we can 
evaluate the average dynamic carbon emission factor of the network transmission lines, i.e., the dynamic carbon 
emission factor of the whole transmitting grid is calculated in Eq.

	
Fgrid =

∑
j∈D Cj∑

j∈D Pj · dt
=

∑
j∈D Fj · Pj · dt∑

j∈D Pj · dt
=

∑
j∈D Fj · Pj∑

j∈D Pj
,� (12)

where D is the previously defined set containing all virtual sink nodes transformed from power lines. Fgrid is 
the dynamic carbon emission factor caused by the total network loss in the process of transmitting electricity. 
Traditionally, the total network loss is an important variable for power grid planning or operation in order to 
minimize the long-term or short-term operation cost of the power grid. With increasing attention on green 
development, low carbon emission has become a significant target for the optimisation process in power grid 
planning or operation. Fgrid, the grid carbon emission indicator, is a key variable supporting to minimise the 
total carbon emission cost of the network in nowadays’ low carbon emission grid design.

Case study with the IEEE 30-bus system
The model proposed in this article can be generally applied to track life cycle carbon emissions in various time 
resolutions, such as daily, hourly or minute level, depending on the time interval selected in Eq.8. In this work, we 
provide a case study for dynamic tracking the life cycle carbon emissions with a 96-point (a point per 15 minute 
for 24 hours) operating simulation with the IEEE 30-bus system. The 96-point simulation provides a relatively 
higher resolution of carbon emission calculation in power system. The benefits of utilising high-resolution (or 
real-time) models to calculate carbon emission factors include supporting better informed decision-making 
about load management32, enabling real-time low carbon scheduling operations33, helping accurately quantify 
the carbon emission costs34, monitoring carbon emissions precisely during disruptions such as extreme weather 
events35 etc. The IEEE-30 bus system represents a portion of the American power grid as of December, 196136. 
The system has 6 generators and 10 loads. The single line diagram of the system is shown in Fig. 4 (a). The power 
of generators and loads is obtained from the initial power flow data of the “case30” in the open-source Python 
package “pypower”. The package “pypower” is a Python solver of power flow and optimal power flow, which 
is a port of MATPOWER to the Python programming language37. We utilise a 96-point p.u. power dataset 
for wind and solar generations provided by the open-source Python package “pandapower” (data in the file 
named “cigre_timeseries_15min.json′′)38 in order to simulate the dynamic process. We set the generator 
at bus 2 to be a wind farm and the generator at bus 23 to be a solar farm, and modify the static power of the 
two generators provided by “pypower” to a 96-point dynamic power dataset corresponding to the 96-point p.u. 
power dataset provided by “pandapower”. Taking bus 2 as an example, the modification process is as below:

•	 find the maximum p.u. value of the wind power in the 96-point p.u. power dataset from “pandapower”, de-
noted it by pmax,p.u.;

•	 find the maximum limitation of the generator at bus 2, denoted by pmax, given by “pypower”;
•	 calculate a ratio, pmax/pmax,p.u., and multiply this ratio to all p.u. values in the 96-point p.u. power of the 

wind generator.
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With the above modification, we obtain a 96-point power of the wind generator at bus 2. The 96-point power of 
the solar farm at bus 23 can be obtained following the same rule. The power curves of the wind generation, solar 
generation, total generation and total demand are shown in Fig. 4 (b). As shown in Fig. 4 (b), we assumed the 
demand power to keep unchanged as given by the initial power flow data in “pypower”. This assumption helps 
us simplify the simulation and clearly show the impact of the renewable sources to carbon emission factors. A 
more realistic scenario where demands change overtime is discussed in the Discussion section after this section. 
Referring to Fig. 2, we set the carbon emission factors of generators in Fig. 4 (a) as shown in Table 1. With the 
above settings, we can simulate the 96-point dynamic process of the system with the power flow redistributed at 
each time point along the changing of power outputs of the wind farm and the solar farm.

Figure 5 shows the real-time supplied power of the wind farm and the solar farm and the real-time carbon 
emission factors of loads 2L, 23L, power line (6, 8) and the grid. As shown in Fig. 4, bus 2 connects the wind farm 
and the load 2L together. Consequently, a large part of the wind power is supplied to 2L and the carbon emission 
factor of 2L is highly negative-correlated to the output power of the wind farm. Between 12:00pm to 12:45pm, 

Fig. 5.  The dynamic emission factors of the loads 2L, 23L, the power line (∆6−8) and the grid along with the 
output power of the wind farm and the solar farm during the simulation. The two vertical red lines mark up 
the time points of the maximum and minimum renewable output power, respectively.

 

Bus 1 2 13 22 23 27

Assumed Generator Type Coal Wind onshore Natural gas Coal Solar PV-utility Natural gas

CEF (kgCO2/MW h) 820 11 490 820 48 490

Table 1.  Assumption of the carbon emission factors (CEF) of the generators in the IEEE-30 bus system.

 

Fig. 4.  The IEEE 30-bus system. (a) shows the single line diagram of the IEEE 30-bus system39 where a wind 
farm (2G) is connected to bus 2 and a solar farm (23G) is connected to bus 23. (b) shows the wind power curve 
of the wind farm 2G on the left hand side (LHS) axis and the solar power curve of the solar farm 23G on the 
right hand side (RHS) axis.
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the wind farm output is large enough to support load 2L resulting in F2L = 11kgCO2/MW h which is same 
to the carbon emission factor of the wind farm. The load 23L and the solar farm 23G are directly connected to 
bus 23, thus the carbon emission factor of 23L is highly affected by the solar farm. The carbon emission factor of 
23L, F23L, is high when the solar farm does not supply power in night hours. However, with increasing power 
generated by the solar farm from 8:30am, the carbon emission factor of 23L keeps decreasing fast and being 
equal to the carbon emission factor of the solar farm (48kgCO2/MW h) at 9:15am, meaning that the power 
generated by the solar farm is enough to support 23L running at low carbon emission status. The solar power 
becomes weak in the afternoon and the emission factor of 23L starts rising at 15:15pm. Modelled as a load, the 
power line (6, 8) is not adjacent to the wind farm and solar farm, but its emission factor is still indirectly affected 
by the changing of the renewable output power in the simulation. The grid emission factor is affected by the total 
renewable output power. Fgrid reaches its minimum when the renewable output power climbs to its peak at 
12:15pm and Fgrid increased to its maximum at 20:00pm when the renewable output power falls to its trough.

The quantity of carbon emission of loads and grid can be evaluated at each time point with known power 
distribution and calculated emission factors. Assume the power distribution of the grid is unchanged within the 
minimum simulation time interval which is dt = 15 minutes = 0.25h in our 96-point simulation. The carbon 
emission of each load or power line can be calculated using the same method applied to derive the carbon 
emission for source nodes in Eq. 8. Within each time interval, the total carbon emission of all loads (including 
the virtual loads of power lines) is calculated in 

∑
i∈L Ci where L is the pre-defined set containing all sink 

nodes. Figure 6 shows the carbon emission of all loads, the carbon emission of the grid, and the total output 
power of the wind farm and the solar farm. The carbon emission of the grid is relatively low comparing to that of 
the loads. This makes sense because most power of the system is consumed by loads with a small portion being 
lost in grid during transmission. The total carbon emission of all loads and the grid is negatively correlated to the 
output of the renewable output. The system is running with lowest carbon emission at 12:15 pm when renewable 
sources generating the maximum power. This result can be a reference to optimise the power grid for low carbon 
emission operation, i.e., encourage loads to consume more power when renewable output is high.

Discussion
Reducing carbon emission in practical power systems
We trace the life cycle carbon emissions from sources to loads by calculating the dynamic carbon emission factors 
of loads, power lines and the grid utilising a flow network model. The result is as expected: more renewable 
source power supplied in the system results in lower carbon emission factors, and consequently lower carbon 
emissions of loads and the grid. In our study, we assumed the consumption power of loads unchanged during the 
day. However, the consumption power of loads is not a constant value in reality. Figure 7 shows a curve of loads 
and a curve of the renewable output during a day utilising the data provided in “pandapower”38. We find that the 
peak time of loads is roughly from 17:00pm to 22:00pm, however, the renewable output is relatively low during 
this period of time. This means that consumers need to utilise more non-renewable power to support the peak 
period, which will leads to higher carbon emissions.

Low carbon demand response is a hot research topic to reduce carbon emissions in power systems40–43 which 
requires power suppliers to encourage consumers to change their load curve to use more power when renewable 
output is high and use less power when renewable output is low. Alternatively, building more energy storage 
plants to store green electricity during the peak time of renewable output to supply peak load is also a way to 
reduce carbon emission of power systems. However, either changing the consumer load curve or building more 
energy storage plants may lead to higher cost to power suppliers or consumers. To balance the carbon emission 
and running cost in power systems is a topic that needs to be further studied.

Fig. 6.  The carbon emissions of all loads and the grid for the IEEE-30 bus system during the simulation. The 
total carbon emission of all loads is shown in grey and the carbon emission of the grid is shown in red on the 
left hand side (LHS) axis. The power curve of the renewable output is shown in green line on the right hand 
side (RHS) axis.
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Validation of the proposed methodology
The carbon flow model1,2 and the direct calculation model with matrix20 are developed to track the carbon 
emission flowing from generation to consumption. The two existing methodologies can be applied to calculate the 
dynamic carbon emission factors for loads and imply the same results19. We validate the proposed methodology 
proposed in this work by comparing the carbon emission factors of all loads calculated by the flow network 
model developed in this paper to the existing carbon flow model in Table 2 at time 00:00 in our simulation. As 
shown in the table, the results given by the two models are equivalent for any load. This proves the correctness 
of the flow network model.

The carbon flow model is friendly to be applied in transmission networks and maybe restricted by the 
topology characteristic of distribution networks19, while the methodology utilising matrix calculation is 
restricted by the inverse calculation of large size matrix when applied in a large scale network21,22. The flow 
network model developed in this paper can be applied in both transmission networks and distribution networks 
without topological requirement and can be applied in large scale grid without inverse calculation of large size 
matrix. A detailed comparison of the proposed methodology with the existing carbon flow model and matrix-
based model is shown in Table 3

Conclusion
This study presents a flow network model to dynamically track life cycle carbon emissions in power grids, 
addressing critical gaps in traditional methods by integrating grid topology, real-time power flow dynamics, and 
comprehensive life cycle emissions of generation technologies. By transforming power grids into directed graphs 
with virtual sinks for transmission losses and employing a Markov chain-based probabilistic flow analysis, the 
framework enables precise allocation of emissions from generators to loads and power lines without matrix 
inversion or topological constraints. Validation on the IEEE 30-bus system over a 24-hour simulation revealed 
three key insights.

Model Carbon flow model Matrix-based model Flow network model

Core Methodology Proportional allocation of carbon emissions using power 
flow tracing

Nodal power injection matrices requiring matrix 
inversion operations

Directed graph with virtual sinks and 
Markov chain probabilistic flow analysis

Scalability Effective for transmission networks and limited by 
radial/bidirectional flows in distribution grids19

Computationally intensive in large scale grid due 
to matrix inversion operations21,22

Universally applicable without topological 
restrictions and avoids matrix inversion

Loss Allocation Indirectly calculated via proportional flows Embedded in power balance equations Explicitly expressed as virtual sinks

Key Innovation First carbon flow conceptualisation Systematic matrix framework Markov chain conceptualisation for carbon 
emission tracing and loss-as-sink paradigm

Table 3.  Comparison of the flow network model and existing models in calculating carbon emission factors.

 

Loads 2L 3L 4L 7L 8L 10L 12L 14L 15L 16L

Flow Network Model 336.84 820 587.92 378.24 469.94 501.84 505.16 505.16 505.16 505.16

Carbon Flow Model 336.84 820 587.92 378.24 469.94 501.84 505.16 505.16 505.16 505.16

Loads 17L 18L 19L 20L 21L 23L 24L 26L 29L 30L

Flow Network Model 503.69 505.16 503.19 501.84 802.36 490.17 594.73 490.00 490.00 490.00

Carbon Flow Model 503.69 505.16 503.19 501.84 802.36 490.17 594.73 490.00 490.00 490.00

Table 2.  The equivalence of carbon emission factors of loads calculated by the flow network model and the 
carbon flow model.

 

Fig. 7.  The 96-point residential load curve and renewable output curve38.
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1) Dynamic emission factors driven by renewables: Loads directly connected to renewable sources achieve 
near-zero emission factors during peak generation (e.g., 11 kgCO2/MW h for wind-powered loads), while 
remote loads exhibit delayed and weaker responses to renewable variability. Grid-level emission factors inversely 
correlate with renewable output, reaching minima during periods of high solar and wind penetration.

2) Minor role of transmission losses: Losses contribute marginally (5–8% of total emissions) compared to 
loads, underscoring demand-side optimisation, such as aligning consumption with renewable availability, as a 
priority for emission reduction.

3) Life cycle emissions matter: Incorporating construction, maintenance, and decommissioning phases 
significantly impacts emission factors for renewables (e.g., solar rises from 0 to 48 kgCO2/MW h), emphasizing 
the need for holistic assessments in grid planning.

The proposed model’s scalability and compatibility with transmission/distribution networks make it a versatile 
tool for low-carbon grid operations. It supports strategies like prioritizing low-loss pathways, incentivising time-
shifted consumption, and evaluating the long-term carbon trade-offs of renewable deployment versus storage 
integration. Future work will integrate real-world load flexibility data and explore cost-emission optimization 
frameworks to accelerate the transition to carbon-neutral power systems. By bridging dynamic grid operations 
with life cycle accountability, this methodology advances both academic research and practical decarbonisation 
efforts.

Data availability
The data utilised to generate the curves of renewable outputs and loads during the current study is available in a 
separate supplementary material.
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