Table 1 Comparison of performance metrics values for size, 1S abs, and PL using all ML methods.
From: Machine learning models for accurately predicting properties of CsPbCl3 Perovskite quantum dots
Model | Train data | Test data | |||||
---|---|---|---|---|---|---|---|
\(\text {R}^2\) | RMSE | MAE | \(\text {R}^2\) | RMSE | MAE | ||
Size | SVR | 0.99 | 0.009 | 0.009 | 0.80 | 0.34 | 0.16 |
NND | 0.99 | 0.012 | 0.008 | 0.62 | 0.47 | 0.30 | |
DL | 0.77 | 0.49 | 0.38 | 0.10 | 0.74 | 0.56 | |
DT | 0.94 | 0.23 | 0.17 | 0.94 | 0.23 | 0.16 | |
RF | 0.93 | 0.26 | 0.20 | 0.51 | 0.66 | 0.54 | |
GBM | 0.97 | 0.14 | 0.13 | 0.48 | 0.56 | 0.38 | |
1 S abs | SVR | 0.99 | 0.009 | 0.008 | 0.84 | 0.34 | 0.19 |
NND | 0.99 | 0.009 | 0.005 | 0.55 | 0.59 | 0.34 | |
DL | 0.66 | 0.59 | 0.39 | 0.44 | 0.66 | 0.49 | |
DT | 0.96 | 0.19 | 0.13 | 0.96 | 0.19 | 0.13 | |
RF | 0.94 | 0.23 | 0.17 | 0.64 | 0.53 | 0.37 | |
GBM | 0.98 | 0.11 | 0.09 | 0.66 | 0.51 | 0.30 | |
PL | SVR | 0.99 | 0.009 | 0.009 | 0.66 | 0.58 | 0.28 |
NND | 0.99 | 0.005 | 0.002 | 0.78 | 0.46 | 0.29 | |
DL | 0.73 | 0.51 | 0.38 | 0.53 | 0.68 | 0.56 | |
DT | 0.97 | 0.16 | 0.11 | 0.97 | 0.16 | 0.11 | |
RF | 0.94 | 0.23 | 0.16 | 0.70 | 0.54 | 0.39 | |
GBM | 0.99 | 0.09 | 0.07 | 0.71 | 0.53 | 0.34 |