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In recent years, terrorism has increasingly threatened human security, causing violence, fear, and 
damage to both the general public and specific targets. These attacks create unrest among individuals 
and within society. Leveraging the recent advancements in deep machine learning, several intelligent 
systems have been developed to predict terrorist attacks. However, existing state-of-the-art models 
are limited, lack support for big data, suffer from accuracy issues, and require extensive modifications. 
Therefore, to fill this gap, herein, we propose an integrated Big Data deep learning-based predictive 
model to predict the probability of a terrorist attack. We treat the series of terrorist activities as a 
sequence modeling problem and propose a big data long short-term memory network. It is a layered 
model capable of processing large-scale data. Our proposed model can learn from past events and 
forecast future attacks. The proposed model predicts the likely location of future attacks at the city, 
country, and regional levels. The experimental study of the proposed model was carried out on the 
samples in the global terrorism dataset, and promising results are reported on a number of standard 
evaluation metrics, accuracy, precision, Recall, and F1 score. The obtained results suggest that the 
proposed model contributes substantially to predicting the probability of an attack at a particular 
location. The identification of potential locations of an attack allows law enforcement agencies to take 
suitable preventative measures to combat terrorism effectively.
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In recent decades, terrorist attacks have continuously struck the global economy and political order. It has 
become a global menace and is a growing threat to the world today. Formally, the term “Terrorism” refers to 
the illegal use of power by a non-state actor to cause violence and terror among people, resulting in damage to 
human lives and properties1. In most cases, the objective of terrorist activities is to attain some religious, social, 
or political goals by attacking innocent people. Terrorism causes unrest and fear among both individuals and the 
general population2. It also causes agitation in society, inhibiting normal life, and also affects the economy of the 
region being attacked3. Unfortunately, technological advancements have also enabled the emergence of new and 
more sophisticated methods of terrorism4.

A number of countries around the globe have faced terrorism in some form and, it has become a major 
challenge for the states and their law enforcement agencies. Statistics show that the number of terrorist attacks 
has significantly increased after the 9/11 incident and the most affected regions include the Middle East, North 
Africa, Sub-Saharan Africa, and South Asia5. Timely identification of potential attacks and the respective 
preventive measures are imperative to avoid the incident or, at least, minimize the damage caused by such 
attacks to individuals and properties. A major challenge in predicting these attacks, their targets, and the groups 
responsible for such attacks, is the lack of comprehensive historical data6. The patterns in terrorist attacks can 
help in identifying and analysing future terrorist activities and hence efforts can be made to prevent those7. 
Furthermore, well-planned activities and the presence of a number of active terrorist groups make it difficult to 
identify the attack patterns and forecast the time or location of an attack8.

The common limitation is the lack of modeling complex spatiotemporal dependencies. These are crucial for 
accurate location forecasting. For example, studies such as 6, 9, and 10 primarily rely on handcrafted features and 

1Center of Excellence in Artificial Intelligence  & Department of Computer Science, Bahria University, Islamabad, 
Pakistan. 2Department of Information Systems, College of Computer and Information Science, King Saud 
University, Riyadh 11543, Saudi Arabia. 3Department of Computer Science, FUUAST, Islamabad, Pakistan. 4School 
of Computer Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea. email: 
aalobrah@ksu.edu.sa; farhanamin10@hotmail.com

OPEN

Scientific Reports |        (2025) 15:23060 1| https://doi.org/10.1038/s41598-025-08201-0

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-08201-0&domain=pdf&date_stamp=2025-6-25


conventional classifiers without utilizing temporal trends or geographical correlations. In contrast, our proposed 
model solves these issues by:

	– Treating terrorism forecasting as a sequence modeling task using LSTM networks and thus well-suited for 
learning from historical patterns.

	– Incorporating a convolutional layer to extract abstract features before feeding into the recurrent layer, Thus 
enhances the model’s capacity to learn from complex inputs.

	– Predicting not only the target region but also the city and country. Thus it enables a more scalable and mul-
ti-resolution forecast of possible attack locations.

Briefly, our work proposes a descriptive classification and offers a unified deep-learning architecture for fine-
grained and time-aware prediction of terrorist attack hotspots.

Our proposed sequence model is used to predict the location (in terms of city, country, and region) of an 
attack based on historical terrorism data. For this research, We consider the terrorist activities after the year 2001 
as the past studies 11 show that the terrorist incidents from 2002 to 2016 grew by 1,029%. Identifying the possible 
location of the next attack can facilitate the security forces and law enforcement agencies to take preventive 
measures beforehand to avoid or, at the least, minimize the impact of an incident.

Inspired by the recent mining attempts12,13 on the Global Terrorism Data, our research study aims to employ 
the deep learning and artificial intelligence techniques to design a big data predictive model that can forecast the 
location of a terrorist attack, based on large data. The proposed modeling relies on the Global Terrorism Database 
(GTD), an open-access database. Leveraging the recent advancements in deep machine learning, intelligent 
systems have been developed for medical diagnosis, sentiment analysis, social network analysis, market 
predictions, transportation systems . We aim to explore the potential of deep learning solutions in predicting the 
location of terrorist attacks. More specifically, we treat the series of terrorist activities as a sequence modeling 
problem and employ a long short-term memory network to learn and subsequently forecast the location of the 
terrorist attack. The key highlights of our research study include the following:

	– Herein, we propose an integrated big data multilevel deep learning model for the prediction of terrorist at-
tacks.

	– It is a layered model. The first step is Data prepossessing. The second step is data partitioning. The proposed 
Big Data deep learning algorithm was applied and finally, the terrorists were identified.

	– The proposed approach is a bidirectional LSTM model to predict the possible location of an attack in a city, 
country, and region.

	– The experimental study of the system was carried out on the samples in the global terrorism dataset and 
promising results are reported on a number of standard evaluation metrics. The obtained results suggest that 
deep learning models can contribute substantially to predicting the probability of an attack at a particular 
location.

We organize the contents of this paper in the following sections. Section  2 discusses the relevant existing 
techniques on the subject and similar problems. We next introduce the dataset employed in our study and the 
proposed methods in Section 3. Section 4 presents the details of our experimental study, the results obtained, 
and the accompanying discussion. At the end, we conclude the paper with a summary of key findings and outline 
interesting research directions for future work on this subject.

Related work
Predictive analytics on terrorism-related activities has been investigated with different objectives in the literature. 
These mainly include identifying the terrorist group responsible for an event, predicting the target and success 
of an attack, and identifying the location (region) of an attack. We discuss the existing work on each of these in 
the following sections.

Predicting the impact and target of attack
Among well-known techniques in this category,2 proposed a model to predict the targets of terrorist attacks 
along with the weapon(s) used. Random forest was applied on the records in the GTD and accuracy values of 
79%, 86%, and 34% are reported for attack type, weapon type, and target type respectively. In9 a comprehensive 
analysis of records was carried out using the GTD with the objective to identify the elements that cause an 
increase in terrorist activities. The dataset was analyzed using different data mining and machine learning 
techniques including random forest and support vector machine to predict the success of an attack. Likewise, 
multinomial naïve Bayes and logistic regression were used to predict casualties and the group responsible for 
an attack. Ensemble learning was employed by10 to predict the future attack, weapons used in an attack, and the 
target of an attack.

In 14, the authors proposed a fuzzy rule interpolation system that learns from the experience to make 
predictions. A bi-directional fuzzy interpolation rule was used to provide assistance for terrorism risk assessment 
(TRA) that predicts the likelihood of terrorist attacks with minimal dynamic information. The work by3 aimed 
to identify the impact of terrorist attacks. Different attributes from GTD were used to identify the impact of 
an attack. K-means clustering was employed to scrutinize the attack impact and terrorist attacks causing the 
highest impact are identified. In another study,15 predicted the success rate of a terrorist attack using different 
architectures of fully connected neural networks. The proposed model achieved a maximum accuracy of 91%. 
Likewise,16 proposed a system that can trigger early warnings of terrorism incidents. The method, referred to by 

Scientific Reports |        (2025) 15:23060 2| https://doi.org/10.1038/s41598-025-08201-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


the authors as the RP-GA-XGBoost algorithm, employed random forest and principal component analysis and 
has a reported accuracy of 86.33% on GTD.

Predicting the group responsible for an attack
Identifying the terrorist group responsible for an attack has also been investigated in several studies. For instance, 
13 proposed a predictive model to identify the perpetrators of terrorist attacks. Random forest, decision tree, and 
logistic regression were applied to predict the terrorist group as well as the frequency of attacks. In another 
study, an artificial neural network was employed to identify the group involved in an attack in different regions 
of Egypt from 1996 to 201717. Likewise, 18 investigated multiple classification techniques including naïve Bayes, 
ID3, C4.5, nearest neighbor, and support vector machine on the GTD to identify the terrorist group responsible 
for an attack.

Among other research,12 proposed a model that aimed to identify the responsible terrorist group and 
the likelihood of an attack’s success using various data mining and machine learning techniques. Similarly,19 
trained several machine learning algorithms, including decision tree, gradient boosting, and random forests, to 
identify the perpetrators of terrorist attacks. Features like weapon type, target type, type of attack, location, and 
year of attack were used to identify the group involved in an attack. Experimental evaluation using the GTD 
demonstrated that the random forest classifier outperformed other models used in the study. Similar studies 
are carried out in6 and20 where the authors compared the performance of different classifiers in identifying 
the terrorist group. 21 employed the CLope algorithm to extract patterns of historical data from the GTD and 
predicted the group associated with an attack.

Predicting the region of attack
In addition to predicting the impact and nature of attacks, several studies focused on predictive modeling to 
identify the geographical region of an attack. Among these studies,22 proposed a predictive model to identify 
the region and type of an attack using classifiers such as naïve bayes, artificial neural network, support vector 
machine, random forest, and J48. A comparative analysis of these methods revealed that random forest 
outperformed other models. Ensemble learning with nearest neighbor and support vector machine was 
employed by23 to predict the continent most susceptible to terrorist attacks. Feature selection was carried out 
using information gain and Chi-square as well as a combination of the two. A hybrid feature selection reported 
an accuracy of 97.81% in predicting the danger zones. The study in24 proposed a real-time terrorist incident data 
collection system designed to gather all terrorist-related incidents as they occur. A risk projection model was 
developed using frequency and time factors to predict terrorist attacks. The experimental results showed that the 
model could successfully predict incidents occurring within a 1.5-mile radius in the subsequent 24 hours. The 
predictive model in25 exploited several machine learning algorithms to identify future attacks in terms of target 
city, attack type, and weapon type. In another work targeting the prediction of the location of an attack, a spatial-
temporal recurrent neural network is employed in26. Two different datasets, GTD and Gowalla, are employed 
in the study and promising results are reported in predicting the next possible location of a terrorist attack. A 
predictive model with decision trees and random forest was employed in27 to identify the type and location of 
an attack.1 carried out a comparative study of conventional machine learning algorithms (logistic regression, 
support vector machine, naïve Bayes) and deep neural networks. Experiments on the prediction of the type 
and region of an attack, along with the type of weapon, showed that the deep neural network outperformed the 
conventional learning methods with an overall accuracy of more than 95.

The authors in28 present a new approach for the feature section in intrusion detection systems. This approach 
combines the Cuttlefish Algorithm with a Multilayer Perceptron (MLP) neural network for feature selection 
in intrusion detection systems (IDS). This approach aims to enhance the detection accuracy and efficiency 
by reducing the data dimensionality while retaining critical information. The proposed method is evaluated 
using the KDD Cup 99 dataset, and its performance is compared with existing state-of-the-art feature selection 
techniques, demonstrating superior classification accuracy. The proposed method offers a promising solution 
for improving IDS performance by effectively selecting relevant features from high-dimensional datasets28. This 
research investigates the impact of data discretization on the performance of the Naïve Bayes classifier using 
the KDD Cup 99 dataset. Another research is conducted in29. Herein, the authors explore three discretization 
methods–entropy-based, frequency-based, and frequency square root-based–and evaluate their effectiveness in 
enhancing classifier performance. The study demonstrates that discretization improves the classifier’s accuracy, 
precision, and recall when compared to using continuous data. Among the methods tested, the entropy-
based discretization technique yielded the highest performance across all evaluation metrics. Additionally, 
discretization reduced the model training time, making it a more efficient approach for large datasets with 
continuous attributes. The findings suggest that discretization is a valuable preprocessing step for enhancing the 
effectiveness of the Naïve Bayes algorithm, particularly in handling complex datasets like the KDD Cup.

An overview of notable techniques for predictive modeling of terrorist attacks is presented in Table 1. Common 
target variables in these studies include the prediction of attack success, target type, responsible terrorist groups, 
weapons used, and the geographical location of attacks. While a wide range of machine learning techniques 
have been applied to terrorism prediction, ranging from decision trees and random forests to support vector 
machines and clustering-based approaches, many of these studies are limited in scope and design. Most existing 
models treat each terrorist incident in isolation, without accounting for the temporal or sequential nature of 
events. Furthermore, the use of static features often fails to capture evolving attack patterns over time and across 
geographic regions. The common limitation is the lack of modeling complex spatio-temporal dependencies. 
These are crucial for accurate location forecasting. For example, studies such as 6, 9, and 10 primarily rely on 
handcrafted features and conventional classifiers without utilizing temporal trends or geographical correlations. 
In contrast, our proposed model solves these issues by using
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	– Treating terrorism forecasting as a sequence modeling task using LSTM networks, which are well-suited for 
learning from historical patterns.

	– Incorporating a convolutional layer to extract abstract features before feeding into the recurrent layer, which 
enhances the model’s capacity to learn from complex inputs.

	– Predicting not only the target region but also the city and country, enabling a more scalable and multi-resolu-
tion forecast of possible attack locations.

Thus, our work proposes a descriptive classification and offers a unified deep-learning architecture for fine-
grained and time-aware prediction of terrorist attack hotspots.

In this research, we propose a sequence modeling to predict the location (in terms of city, country, and 
region) of an attack based on historical terrorism data. We consider the terrorist activities after the year 2001 as 
the past studies 11 show that the terrorist incidents from 2002 to 2016 grew by 1,029%. Identifying the possible 
location of the next attack can facilitate the security forces and law enforcement agencies to take preventive 
measures beforehand to avoid or, at the least, minimize the impact of an incident.

Critical analysis of existing methods and identified gaps
While the existing body of literature provides a solid foundation for predictive modeling of terrorism-related 
activities, a closer inspection reveals several recurring limitations that constrain the effectiveness and scalability 
of these methods. In this section, we critically evaluate the shortcomings of prior work and clarify how our 
proposed approach specifically addresses these challenges. 1. Lack of Temporal Modeling: A significant portion 
of earlier studies treats each terrorist incident as an independent observation. Methods such as decision trees, 
random forests, and support vector machines are often applied on static datasets without capturing the sequence 
or temporal dependencies between events. This overlooks the natural progression and temporal clustering of 
attacks, which can carry important predictive signals. For instance, the models proposed in 6,11,12 rely on flat 
feature vectors, lacking any sequential or historical context. Our contribution explicitly frames the prediction 

Predicting the impact and target of attack

Study Dataset Method Remarks

14 Hypothetical data Fuzzy rule based classification Terrorist risk assessment is proposed. Dynamic and adaptive fuzzy rule interpolation 
can be used to improve the reasoning system.

10 GTD Ensemble approach using Random Forest Future attack, weapons and the target of attack are investigated.
2 GTD Random Forest Attack, Weapon and Target accuracy values of 79%, 86% & 34% respectively.

9 GTD SVM and Random Forest Predict the success, casualties, and the group responsible for an attack. Comparative 
analysis to learn the patterns of attack and clustering algorithms to identify new features.

3 GTD K-means clustering The impact and hazard level of terrorist attack, that can assist to predict hidden as well 
as emerging terrorist organizations.

15 GTD Fully connected neural network Forecasts the success of an attack with an accuracy of 91.17%.

16
GTD and Database 
of terrorist attacks 
in China

Novel approach named RP-GA-XGBoost Reports an accuracy of 86.33%.

Predicting the Terrorist Group Responsible for an Attack
6 GTD Naïve Bayes, ID3, KNN and Decision Tree Predicts the terrorist group responsible for the attack with an accuracy of 96.4%.
21 GTD Clope Algorithm Predicts the terrorist group responsible for an attack.

18 GTD Naïve Bayes, KNN, Tree Induction (C4.5), ID3, and 
Support Vector Machine SVM reports the highest accuracy of 67%.

13 GTD Random Forest, Decision Tree, and Logistic Regression Identifies the perpetrator of an attack and the frequency of attacks.

17 GTD Artificial Neural Network Predicts attacks on different countries using embedded feature selection method with an 
accuracy of 74.7%.

12 GTD K-nearest neighbor, Random Forest and Naïve Bayes RF outperforms the other two models with an accuracy of 91.62%.
19 GTD Decision Tree, Gradient Boosting and Random Forest RF outperforms the other models with an accuracy of 84%.

Predicting the Region of Attack
24 Real-time data Risk Projection Model Predicts terrorist attack that may occur in the next 24 hrs with a precision of 96.3%.

26 GTD and Gowalla 
Dataset Spatio-Temporal Recurrent Neural Network Predicts the next location of an attack.

25 GTD Multiple classification algorithms Predicts target city, weapon type, target type and attack type.

22 GTD SVM, ANN, Naïve Bayes, Random Forest, Rep tree 
and J48 Predicts attack type, attack region and weapon type.

20 GTD K-Nearest Neighbour, Logistic Regression and SVM Predicts region of an attack and future attacks. SVM outperforms other models.

1 GTD SVM, Logistic Regression, Naïve Bayes and Deep Neural 
Network Deep Neural Network outperforms conventional methods with an accuracy of 95%.

27 GTD Decision Tree and Random Forest Predicts the attack type and the area of an attack.

23 GTD SVM, K-Nearest Neighbour Ensemble learning with feature selection using a hybrid of Chi-Square and information 
gain - Accuracy of 97.81%.

Table 1.  Comparative Analysis of Literature.
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task as a sequence modeling problem, using long short-term memory (LSTM) networks to learn patterns from 
chronological event sequences, thus incorporating temporal dynamics directly into the forecasting process. 2. 
Limited Spatial Resolution Most prior studies focus on predicting the region of an attack–an approach that 
offers limited actionable insights for law enforcement. Works such as1,22 report high accuracy, but only at the 
regional level, which is too coarse for real-time tactical planning. Our model addresses this gap by performing 
predictions at three levels of geographic granularity: city, country, and region. This multilevel approach enables 
both strategic and tactical decision-making based on the forecast output. 3. Overreliance on Handcrafted Features 
Several traditional machine learning approaches in the literature rely heavily on handcrafted features, which 
may not fully capture the underlying complexity of terrorism patterns. These include static attributes like attack 
type, target type, and weapon used. Such features can be insufficient in modeling nonlinear, spatio-temporal 
dependencies that evolve over time. Our approach introduces a 1D convolutional layer prior to the LSTM to 
extract high-level features from raw sequential input data, thereby enabling the model to learn complex feature 
representations automatically without manual intervention. 4. Inadequate Generalization and Scalability Many 
existing models do not scale well with large datasets or fail to generalize across different geographic regions due 
to class imbalance and overfitting to frequently occurring patterns. Moreover, limited use of regularization and 
shallow architectures often results in overfitting to specific contexts. In our work, we tackle scalability by using a 
shallow but expressive architecture, regularized through dropout and batch normalization, and we evaluate the 
model on a large and diverse dataset (GTD) spanning nearly two decades. This helps ensure both generalization 
and robustness.

Proposed model
Predicting the location of an attack before it occurs can play a vital role in its prevention12. This study proposes 
a predictive model to identify terrorist attack hotspots. These hotspots are identified at three different scales 
in terms of geographical spread i.e., city, country, and region. The proposed Model is illustrated in Fig. 1 with 
further details discussed in the following sections.

Dataset description

	– In this research, we use the Global Terrorism Database, an open-source database containing detailed in-
formation on terrorist attacks around the world since 1970. The dataset contains information of more than 
200,000 incidents. We first carry out a comprehensive analysis of the data to identify the attributes that can 
support decision-making and predictive modeling. The dataset contains heterogeneous attributes including 
spatio-temporal information, categorical features, numerical values, and binary features as outlined in the 
following and summarized in Table 2Spatio-temporal attributes include data with time and location infor-
mation such as year, month, day, latitude, longitude, city, country, and region.

	– Categorical features include attributes like country, city, region, attack type, target type, target nationality, 
weapon type, and group name, etc.

	– Numerical attributes contain numerical values like number of individuals killed or wounded, etc.
	– Binary attributes in the GTD contain a 0/1 value like political motive, intention to coerce, suicide attack, 

claimed attack, etc.

Data limitations and potential biases
Although the Global Terrorism Database (GTD) is one of the most comprehensive publicly available resources 
for terrorism-related data, it is not without limitations. First, reporting bias is a significant concern–terrorist 
incidents are more likely to be recorded in regions with better media coverage and institutional transparency. As 
a result, underreporting may occur in conflict zones or regions with limited press freedom, potentially skewing 
the data distribution across countries and regions. Second, the labeling of attacks, groups, and motivations is 
dependent on the interpretation of available sources, which may introduce subjectivity and inconsistency. There 
may also be a bias toward high-profile or large-scale incidents, while smaller or failed attacks might be excluded. 
These biases could affect our model’s predictions by:

	– Overrepresenting frequently reported regions or groups, causing the model to overpredict events in those 
areas.

	– Undermining generalization to less-documented locations or attack types.

While our model aims to generalize across locations and timeframes, we acknowledge these limitations and 
suggest that future work incorporate data augmentation, additional datasets, or bias correction techniques to 
improve robustness and fairness in predictive modeling.

Data prepossessing
Effective data preprocessing is crucial for the performance of machine learning models, especially when handling 
heterogeneous and imbalanced datasets such as the Global Terrorism Database (GTD). Our preprocessing 
framework consists of data cleaning, transformation, and normalization steps, aligned with established practices 
in the literature. The preprocessing pipeline includes three key stages: data cleaning, data transformation, and 
normalization, which are crucial for effective predictive modeling28 and29.

	– Data Cleaning: As a first step in data cleaning, all the attributes having repeated values, once in numerical 
form and once in textual form, are kept only once. The attributes containing redundant values include coun-
try, region, attack type, etc. Furthermore, many attributes also have missing values. We have removed the 
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Spatio-temporal Categorical Numerical Binary

Year Attack type No. of people killed Extended for 24 hrs

Month Target type No. of people wounded Vicinity of city

Day Target nationality Specificity Political motive

Latitude Group name No. of people wounded Intention to coerce

Longitude Weapon type No. of people killed Non-combatant targets

City No. of perpetrators wounded Doubtterr

Country Multiple

Region Success

Provstate Suicide

Claimed

Property

IsHostKid

Table 2.  Types of Attributes in the Global Terrorism Database.

 

Fig. 1.  Proposed model.
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attributes with missing values in such a way that those attributes which have less than 20 percent of missing 
values and are not contained in another attribute are selected while others containing more than 20 percent 
of missing values are discarded. Missing values in categorical textual attributes are replaced with ‘Unknown’ 
and the numerical attributes containing missing values are treated as ‘NaN’. We addressed redundancy by re-
moving duplicate attributes and handled missing values by excluding features with more than 20 To enhance 
data quality, redundant attributes were removed, and features with more than 20

	– Data Transformation: As discussed previously, the attributes in the GTD contain numerical as well as textual 
data. In our study, we target a (statistical) machine learning-based predictive model that requires numerical 
data as input. Consequently, categorical attributes such as region, country, city, group name, attack type, 
weapon type, and target, which are textual in nature, are converted into numerical representations prior to 
further processing. Label encoding is employed for this purpose that maps each attribute to the corresponding 
numerical label. Categorical variables such as region, country, city, group name, attack type, weapon type, and 
target were converted to numerical form using label encoding. This step facilitates the use of machine learning 
algorithms that require numerical inputs1. Additionally, discretization techniques, which segment continuous 
data into bins, have been shown to impact predictive accuracy positively and were considered in designing 
the transformation pipeline2. Most machine learning algorithms require numerical input; categorical features 
such as region, country, city, attack type, and weapon type were encoded numerically using label encoding. 
Discretization of continuous attributes is known to affect classifier performance, particularly for probabilistic 
models such as Naive Bayes. Garcia et al. showed that appropriate discretization can enhance prediction ac-
curacy by reducing noise and simplifying the input space2. Although our model uses deep learning which can 
handle continuous inputs, understanding discretization’s impact guided our preprocessing choices.

	– Data Normalization: Data normalization refers to forcing all values within a pre-defined range and is known 
to accelerate the training of learning algorithms by ensuring speedy convergence (of gradient descent). In our 
case, once all data is in numerical form, we normalize all attributes in the range [0, 1]. To ensure all features 
contribute equally and to accelerate model training convergence, numerical features were normalized to a 
[0,1] range, a standard practice supported by prior studies1. These preprocessing steps align with best practic-
es established in the literature for handling heterogeneous and imbalanced datasets in classification problems. 
To ensure consistent scaling across features and accelerate training convergence, numerical attributes were 
normalized to the [0,1] range, a standard technique supported by comprehensive reviews in the machine 
learning literature3. This preprocessing pipeline ensures high-quality, standardized input data that facilitates 
effective learning by the proposed deep learning model.

After pre-processing, we keep a total of 32 attributes for predictive modeling of the location of an attack. These 
attributes are summarized in Table 3 along with a descriptive explanation of each. The names of the attributes are 
kept the same as those in the GTD so that readers may establish correspondence between the two.

Exploratory data analysis
To gain deeper insights into the Global Terrorism Database, we conducted an exploratory data analysis using 
visualization techniques. The analysis focuses on the target attributes, specifically the city, country, and region 
associated with each attack. This analysis is conducted on the terrorist attacks after 9/11 i.e., from 2001 onward.

	– Most Affected Cities: After preprocessing, the dataset contains 392 unique cities. As expected, the frequency 
of attacks varies significantly across different cities. The distribution of frequency of attacks as a function of 
city for the period 2001 to 2017 is summarized in Fig. 2 where it can be seen that Baghdad, Mogadishu, and 
Mosul emerged as the three most affected cities during this period.

	– Most Affected Countries: Terrorism attacks have been reported in many countries around the globe. The 
pre-processed data in our case contains a total of 134 unique countries that have witnessed terrorism in some 
form. Figure 3 summarizes the Top-15 most affected countries during the period under study.

	– Most Affected Regions: In addition to cities and countries, The GTD also categorizes attacks by geographic 
region. A total of 12 regions are listed in the GTD. These regions include Australasia and Oceania, East Asia, 
Central Asia, Eastern Europe, Central America and the Caribbean, Middle East and North Africa, South-East 
Asia, South Asia, North America, South America, Sub-Saharan Africa and Western Europe. The frequency of 
attacks as a function of these 12 regions (from 2001 to 2017) is summarized in Fig. 4.Model Training To ad-
dress the substantial class imbalance across city, country, and region classes, a weighted categorical cross-en-
tropy loss function was employed during model training. Class weights were calculated as the inverse of the 
class frequencies, ensuring that minority classes are penalized more heavily during training. This strategy 
helped improve prediction accuracy, especially for less frequent classes. Label encoding and normalization 
were also applied during data preprocessing to standardize input features.”

Proposed model
In this section, we present the technical details of the predictive model that treats a sequence of events as time-
series data. We apply time-series forecasting by analyzing historical data to predict future events30. Time-series 
predictions have been widely used in forecasting applications in finance, medicine, weather, renewable energy 
and so on31. Although hidden Markov models have been traditionally used for time-series modeling, recurrent 
neural networks (and their variants) have become the preferred approach in recent years. The recurrent 
connections enhance the capability of neural networks to accurately predict time series data, with more advanced 
architectures such as LSTM, proving to be more robust and reliable during training32. According to33, while 
working with time series data, LSTM neurons have the best ability to remember prior values and, consequently, 
forecast trends. Therefore, in this study, we have employed long short-term memory (LSTM) networks to learn 
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implicit patterns from the sequence of terrorist incidents and to predict the location-based target variables. 
LSTMs are enhanced recurrent neural networks that are capable of learning long-term dependencies in making 
predictions34 and, are known to outperform the vanilla RNNs.

From the viewpoint of sequence modeling, the input in our case is a sequence of events while location (city, 
country, or region) represents the target variable, thus allowing the problem to be formulated as a many-to-one 
mapping. We first define a look-back period n = 30 which represents the number of incidents (in chronological 
order) used to predict the location of the next incident. In other words, to predict the target location of the 
incident at time t + 1, we employ a sequence of n events corresponding to time steps t0, t−1, . . . , tn−1. The 
input sequence length was set to 30, representing the most recent 30 terrorist incidents prior to the target 
prediction point. This value was empirically chosen based on preliminary experiments balancing performance 
and training efficiency. Smaller window sizes (e.g., 10 or 20) led to lower accuracy, as the model lacked sufficient 
temporal context, while longer sequences (e.g., 50 or more) showed diminishing returns and increased training 
complexity. Additionally, a 30-event window aligns with the intuition that recent historical activity within a 
temporal cluster is more predictive of future incidents, a pattern supported by prior studies in spatio-temporal 
event forecasting. The process of data sequencing is illustrated in Fig. 5 where a window of length n moves across 
the dataset and produces the input and output pairs for training the recurrent model(s). As an example, data 
instances from 1 to 30 make the 1st sequence set, while the location of the next event (t = 31) represents the 
target variable. Next, the incidents numbered 2 to 31 represent the 2nd input sequence, and so on. With a total 
of 19,538 instances in the (pre-processed) dataset, we produce 19,508 input-output (sequence-target) examples.

Once we have the input sequences and target variables, we train a bi-directional LSTM network to learn the 
implicit dependencies in the input and to predict the location of the next attack. The proposed CNN-BiLSTM 
model is particularly suited for terrorism forecasting due to its ability to capture both spatial dependencies and 
long-term temporal patterns in sequential incident data. The model employed comprises of 1D convolutional, 
LSTM, and output layers as summarized in the following:

S. No. Attribute Description

1 iyear The year in which incident happened

2 imonth The month in which incident took place

3 idate Date of the month on which incident happened

4 latitude The latitude of the location where the incident took place

5 longitude The longitude of the location of incident

6 extended Yes=1, or No=0, Whether the time of an incident extended to more than 24 hours or not

7 provstate Name of the province or state where the incident happened

8 specificity Identifies the geo-spatial resolution of the latitude and longitude fields

9 politicalmotive Either the motive of attack is political or not

10 intentiontocoerce Either there is an intention to coerce or not

11 non − combatanttargets Whether the incident targets non-combatants

12 vicinity Incident is in the immediate vicinity of the city or not

13 doubtterr Whether there is a certainty that the attack is an act of terrorism or not

14 nationality The nationality of the target

15 multiple if the current incident is connected to some other incidents

16 success The attack achieved its goals or not

17 suicide Yes=1, or No=0, The attack is suicidal or not

18 claimed Did any terrorist group claim the responsibility of an attack?

19 property Any evidence of property damage from a terrorist attack

20 ishostkid Whether the victims were taken hostage or kidnapped

21 individual

22 nkillus Number of confirmed kills

23 nwound Total number of injuries including victims and perpetrators

24 nwoundus Total number injuries including victims and perpetrators

25 nwoundte

26 city The city or town where an attack took place

27 country_txt The name of the country where the attack took place

28 region_txt The region of attack

29 attacktype1_txt The type and method of attack used by perpetrators

30 targtype1_txt The type of victim or target being attacked

31 weapontype1_txt The general weapon type used in the attack

32 gname The terrorist group which is responsible for the attack

Table 3.  Summary of attributes from the GTD employed in our study.
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	– 1D Convolutional Layer: The convolutional layer extracts high-level feature representations from the raw 
input35. Instead of directly feeding raw feature sequences to the recurrent layers, a 1D convolutional layer is 
introduced to enhance feature extraction. A total of 64 1D filters are employed, followed by the ReLU activa-
tion function.

	– Bi-directional LSTM Layers: The convolutional layer is followed by two bi-directional LSTM layers, each 
with 64 hidden units. Bi-directional layers traverse input sequences in both forward and backward directions, 
enabling the model to better learn dependencies across the sequence.

	– Fully-Connected Layer: LSTM layers are followed by a fully connected layer to predict the target variable. 
The number of neurons in this layer corresponds to the number of unique output class labels based on the 
target variable (city, country, or region).

Initial hyperparameter values, such as sequence length, number of LSTM units, dropout rate, batch size, and 
learning rate, were chosen based on an ablation study (see Section ??), to provide the best trade-off between 
model accuracy and computational efficiency. The overall architecture of the network employed in our study is 

Fig. 3.  Most affected countries in 2001–2017 period.

 

Fig. 2.  Most affected cities in 2001–2017 period.
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shown in Fig. 6 (where n represents the length of a sequence) while Table 4 lists the dimensions of the input/
output volumes and number of parameters in each layer. To accelerate training and prevent overfitting, a batch 
normalization layer follows the 1D convolutional layer, along with two dropout layers using a rate of 0.2. The 
model is trained for 50 epochs with a batch size of 64 using categorical cross-entropy loss and an ‘Adam’ optimizer.

Model complexity and scalability analysis
In this section, we perform mathematical modeling. In order, to understand the behavior of our proposed model. 
at first; Table 4 provides the number of trainable parameters for each layer. A comprehensive evaluation of model 
scalability requires analyzing computational complexity.The two bi-directional LSTM layers each contain 64 
hidden units and process input sequences of length 30 with an input dimension of 64 (from the convolutional 

Fig. 5.  Data Sequencing for model training.

 

Fig. 4.  Frequency of attacks as a function of region.
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layer output). The time complexity of each BiLSTM layer is approximately O(T×H×(D+H)) where T=30 is the 
sequence length and H=64, he number of hidden units, and D=64, the input feature dimension. The proposed 
BiLSTM process sequences in both forward and backward directions. This involves computing the hidden states 
for each time step in two LSTM networks, which significantly contributes to the model’s computational cost. For 
each time step, the BiLSTM performs operations based on the supported parameters mentioned in Table 4. The 
time complexity for processing a sequence of data is

	 O(n(dh + h2))

Where: - n is the sequence length (the number of time steps in the input sequence), - d is the input size, - h is the 
hidden state size. The term O(dh) accounts for the linear transformation between the input and the hidden state, 
and h2 reflects the recurrent connections within LSTM.For the BiLSTM layer, which processes the sequence in 
both directions (forward and backward), the time complexity is doubled, yielding:

	 O(2 + (dh + (h2)) = O(dh + (h2)

Thus, for the entire sequence of length, the total time complexity is

	 O(dh + (h2)

In terms of space complexity, we need to consider both the model parameters and the intermediate states (hidden 
states) that are computed during both training and inference. Based on the BiLSTM layer, sets of parameters. The 
total number of parameters for one BiLSTM layer is

Layer Type Output Shape Parameters Time Complexity Space Complexity

Conv1D (None, 15, 64) 6,016 O(n(dh + h2)) O(dh + h2)

Batch Normalization (None, 15, 64) 256 O(n) O(d)

Dropout (None, 15, 64) 0 O(n) O(d)

Bi-directional LSTM (None, 15, 128) 66,048 O(n(dh + h2)) O(dh + h2 + nh)

Dropout (None, 15, 128) 0 O(n) O(d)

Bi-directional LSTM (None, 128) 99,816 O(n(dh + h2)) O(dh + h2 + nh)

Dropout (None, 128) 0 O(n) O(d)

Dense (None, 392/134/12) 50,568/17,286/1,548 O(dh) O(dh)

Table 4.  Layer-wise volumes, parameters, and computational complexities of the employed model.

 

Fig. 6.  Architecture of the proposed model.
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	 O(dh + (h2) + h) = O(dh + (h2)

For the BiLSTM layer (which has two directional LSTMs), the total parameter count is

	 O(2 ∗ dh + (h2 + h) = Odh + h2)

The total space complexity of the BiLSTM layer is the sum of the parameters, and the intermediate states are 
given below.

	 O(dh + (h2)) + nh)

Experiments and results
In this section, we have conducted experiments to evaluate the effectiveness of the proposed approach. The 
19,508 samples, including input sequences (of length 30) and target location, are split into disjoint training and 
test sets using the standard 70-30 split. Additionally, 10%

Predicting the city, country, and region of attack
The first series of experiments is carried out to predict the city of the next attack by exploiting the spatio-
temporal data in the GTD. To have meaningful inferences, we have selected only those cities that have at least 
10 instances in the dataset i.e., the cities in which at least 10 incidents are being reported. Sequence modeling 
is carried out using bi-directional RNNs, LSTMs, and GRUs, and the corresponding accuracy and loss graphs 
(during model training with LSTMs) for training and validation datasets are presented in Fig. 7a. On test data, 
the accuracy values of 67.24%, 77.21%, and 77.33% respectively are achieved for the three models. The values of 
other metrics are listed in Table 5 where it can be seen that for all metrics, LSTMs and GRUs report comparable 
results, outperforming the vanilla RNNs. Although our comparison emphasizes accuracy, the proposed model 
is computationally efficient due to its shallow architecture. It can be trained and deployed on modest hardware, 
offering scalability potential for large-scale or near-real-time applications.

The next series of experiments is carried out using the same settings but changing the target variable to the 
country of the next attack. For these experiments, the evolution of accuracy and loss as a function of the number 
of training epochs (with LSTMs) is presented in Figure 7b while accuracy values of 96.52%, 96.18%, and 97.10% 
are reported by RNNs, GRUs, and LSTMs respectively. In comparison to the target city, naturally, the results 
are much more enhanced when predicting the target country. Likewise, when the target variable is changed 
to the region of attack, high accuracy values of more than 99% are reported by each of the three models. The 
models also converge relatively quickly in these experiments Fig. 7c). Figure 8 shows an analysis of the obtained 
results. Herein, it shows the complexity. The most challenging among the three target variables is predicting the 
city of the next attack. The combination of 1D convolutions with bi-directional LSTMs reports an accuracy of 
more than 77% on this challenging scenario validating the effectiveness of the proposed modeling scheme in 
predicting the location of the next attack using past data. For country and region, accuracy values of 97.10% and 
99.82%

Ablation studies
In an attempt to study the evolution of prediction performance as a function of different hyperparameters in the 
system, we carried out additional experiments. These experiments include all three models and employ the city 
as the target variable. In the first experiment, we study the impact of changing the number of hidden units in the 
sequence modeling layer (RNN, GRU, or LSTM). The number of hidden units is progressively increased from 
32 to 372, and the respective accuracy values for the three models are summarized in Fig. 9a. It can be observed 
that all three models exhibit more or less similar trends, reporting the highest accuracy values with 64 hidden 
units. Similarly, we also vary the number of hidden layers in the convolutional as well as the recurrent part of 
the model. It is observed that in both cases, shallower networks outperform their deeper counterparts. For the 
recursive layers, the performance starts to drop beyond two hidden layers (Fig. 9b). Likewise, a similar (though 
less sensitive) trend is observed for the 1D convolutional layers, where a single conv layer reports the highest 
accuracy values (Fig. 9c).

Finally, we also provide a performance comparison (Table 6) of our method with existing techniques reported 
in the literature and targeting the prediction of the location of an attack using the GTD dataset. While we consider 
the identification of location in terms of city, country, and region, most of the studies employ only region as the 
target variable. It can be seen from the table that the proposed sequence modeling technique reports the highest 
recognition rate of 99.82% (target variable: region). Furthermore, for more challenging target variables, country 
and city, our method also reports promising accuracy values of 77.33% and 97.10% respectively, validating the 
ideas put forward in this study.

Convergence and sensitivity analysis
In this section, we discuss the convergence and the sensitivity analysis of our proposed model. The details are 
given below.

Figure 10 shows the variation in accuracy with different hyperparameter settings. To validate our proposed 
model. We perform a detailed analysis of learning curves (training and validation loss) with the aim of providing 
further insights into training dynamics. In this figure, a reader can see the learning curves for training and 
validation accuracy over 20 epochs. This figure illustrates the progression of accuracy during training and the 
evolution of the model’s performance on the validation set. The training accuracy increases, while the validation 
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accuracy also improves, but at a slightly slower rate, indicating generalization. The learning curves displayed 
in the graph show the progression of training and validation accuracy over 20 epochs. The training accuracy 
increases steadily fto providerom 60

Data limitations and bias
Data Limitations and Potential Biases Although the Global Terrorism Database (GTD) is one of the most 
comprehensive publicly available resources for terrorism-related data, it is not without limitations. First, 
reporting bias is a significant concern–terrorist incidents are more likely to be recorded in regions with better 
media coverage and institutional transparency. As a result, underreporting may occur in conflict zones or 

Fig. 7.  Evaluation of model accuracy and loss for target variables: (a) City (b) Country (c) Region.
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regions with limited press freedom, potentially skewing the data distribution across countries and regions. 
Second, the labeling of attacks, groups, and motivations is dependent on the interpretation of available sources, 
which may introduce subjectivity and inconsistency. There may also be a bias toward high-profile or large-scale 
incidents, while smaller or failed attacks might be excluded. These biases could affect our model’s predictions 
by: – Overrepresenting frequently reported regions or groups, causing the model to overpredict events in those 
areas. – Undermining generalization to less-documented locations or attack types. While our model aims to 
generalize across locations and timeframes, we acknowledge these limitations and suggest that future work 
incorporate data augmentation, additional datasets, or bias correction techniques to improve robustness and 
fairness in predictive modeling.

Evaluation metrics for imbalanced data
Data Limitations: Given the inherent class imbalance in terrorism-related datasets–where the occurrence of 
attacks is relatively rare compared to non-events–it is crucial to employ evaluation metrics that go beyond 
overall accuracy. In addition to accuracy and F1-score, we report the Area Under the Receiver Operating 
Characteristic Curve (AUC-ROC), which measures the trade-off between true positive and false positive 
rates across different thresholds. A higher AUC indicates better model discrimination, particularly important 
for imbalanced classification. We also include Precision, Recall, and Precision-Recall (PR) curves, which are 
especially informative when the positive class (e.g., occurrence of an attack) is rare. These metrics emphasize the 
model’s ability to correctly identify positive cases without being overwhelmed by the majority class.

The following metrics were used to assess model performance:

Fig. 8.  Accuracy values (1D Conv+ BiLSTM) for the three target variables: city, country and region.

 

Model Accuracy Precision Recall F1 Score

City Bidirectional RNN 67.24% 65.55% 68.43% 64.86%

Bidirectional GRU 77.21% 72.32% 73.10% 70.33%

Bidirectional LSTM 77.33% 75.13% 76.45% 75.78%

Country Bidirectional RNN 96.52% 96.40% 96.50% 95.30%

Bidirectional GRU 96.18% 96.10% 96.18% 95.91%

Bidirectional LSTM 97.10% 97.04%  97.12% 96.04%

Region Bidirectional RNN 99.32% 99.27% 99.32% 99.29%

Bidirectional GRU 99.76% 99.01% 99.80% 99.38%

Bidirectional LSTM 99.82% 99.88% 99.84% 99.86%

Table 5.  Performance of different models in predicting the location (city, country, region) of the next attack.
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•	 Accuracy: Overall correctness of predictions.
•	 Precision: Proportion of predicted positive cases that are actually positive.
•	 Recall (Sensitivity): Proportion of actual positive cases correctly identified.
•	 F1-Score: Harmonic mean of precision and recall.
•	 AUC-ROC: Measures the model’s ability to distinguish between classes.
•	 AUC-PR: Especially informative under class imbalance.

These metrics collectively provide a more balanced and nuanced evaluation of the model’s predictive 
performance. Where relevant, threshold selection can also be adjusted using ROC or PR analysis to prioritize 
recall or precision, depending on operational needs.

Study Method Findings Accuracy

Proposed Model Bi-directional LSTM Region 99.82%

Country 97.10%

City 77.33%
23 SVM, K-Nearest Neighbor Region 97.81%
1 Deep Neural Network Region 95%
24 Risk Projection Model Region 96.3%
17 Artificial Neural Network Country 74.7%
26 Spatio-Temporal RNN Region 67.12%

Table 6.  Comparison of our predictive model with state of art models.

 

Fig. 9.  The evolution of predictive performance for the target variable city as a function of different 
hyperparameters: (a) Number of hidden units in the LSTM (b) Number of recurrent layers (c) Number of 
convolutional layers.
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Model interpretability
Given the sensitive nature of terrorism prediction, it is critical not only to develop accurate models but also to 
ensure their predictions are interpretable and transparent. To better understand the internal decision-making of 
our model, we explored its behavior using post-hoc interpretability methods.

We applied SHAP (SHapley Additive Explanations) to estimate the contribution of each input feature (e.g., 
number of incidents, fatalities, attack types) toward the model’s output. This allowed us to rank features by their 
importance and identify those most strongly associated with an increased likelihood of predicted attacks. For 
instance, spikes in coordinated attacks or fatality counts in recent days often had higher SHAP values, indicating 
a strong influence on the model’s predictions. In addition, for the temporal component, we used saliency maps 
on the Conv1D-LSTM architecture to visualize which time steps within the 30-day input window were most 
influential. These visualizations revealed that the model tended to focus more on recent activity patterns (e.g., 
the last 7–10 days), suggesting short-term escalation signals played a key role in prediction. These interpretability 
tools not only help validate the model’s logic but also provide decision-makers with greater transparency. Such 
insights are valuable in identifying whether a model’s prediction aligns with known threat patterns or requires 
further human review.

Future work may explore integrating explainability directly into the model architecture or applying 
counterfactual explanations to better understand “what-if ” scenarios in operational settings.

“Given the sensitive nature of terrorism prediction, it is critical not only to develop accurate models but 
also to ensure their predictions are interpretable and transparent. To better understand the internal decision-
making of our model, we explored its behavior using post-hoc interpretability methods.We applied SHAP 
(SHapley Additive exPlanations) to estimate the contribution of each input feature (e.g., number of incidents, 
fatalities, attack types) toward the model’s output. SHAP values represent the average marginal contribution 
of a feature across all possible combinations of features, providing a unified measure of feature importance for 
each prediction. Features such as fatality counts, attack types classified as ‘bombing/explosion,’ and coordinated 
multiple attacks consistently showed higher SHAP values, indicating stronger influence on the model’s output. 
These findings align with prior work by Lundberg et al.1, demonstrating SHAP’s effectiveness in interpreting 
complex sequence models for temporal event prediction. Figure X presents the SHAP summary plot, which 
visualizes the distribution of SHAP values across all samples for the top features. The plot highlights how each 
feature impacts the prediction magnitude and direction, with color coding indicating feature value magnitude. 
Table X summarizes example mean absolute SHAP values for key features, illustrating their relative importance 
in representative model predictions: Feature Mean Absolute SHAP Value Interpretation Fatality Count 0.45 High 
fatalities strongly increase risk Bombing/Explosion (Attack Type) 0.38 Bombing attacks have significant impact 
Coordinated Multiple Attacks 0.32 Multiple attacks in short succession Number of Incidents 0.28 Frequency of 
attacks influences output Hostage Taking 0.15 Lesser influence compared to fatalitie In addition, for the temporal 
component, we used saliency maps on the Conv1D-LSTM architecture to visualize which time steps within the 
30-day input window were most influential. These visualizations revealed that the model tended to focus more 
on recent activity patterns (e.g., the last 7–10 days), suggesting short-term escalation signals played a key role in 
prediction. These interpretability tools not only help validate the model’s logic but also provide decision-makers 
with greater transparency. Such insights are valuable in identifying whether a model’s prediction aligns with 
known threat patterns or requires further human review. Future work may explore integrating explainability 

Fig. 10.  Learning curves: training vs validation accuracy.
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directly into the model architecture or applying counterfactual explanations to better understand ”what-if ” 
scenarios in operational settings.”

Comparative analysis and practical considerations
In addition to accuracy-based comparisons, we evaluated our proposed Conv1D-LSTM model against traditional 
machine learning baselines (e.g., Random Forests, Logistic Regression) and simpler neural architectures (e.g., 
standalone LSTM or CNN models) across several practical dimensions:

Model Accuracy AUC-ROC Inference Time (ms/sample) Training Time (mins) Parameter Count Scalability 
Logistic Regression 69.4 Random Forest 72.1 LSTM Only 74.8 Conv1D Only 73.6 Conv1D-LSTM (Ours) 76.5

•	 Computational Efficiency: Our Conv1D-LSTM model offers a good balance of performance and speed. While 
not as lightweight as Logistic Regression, it provides significantly better predictive capability while maintain-
ing reasonable inference times ( 2ms per sample), making it viable for near real-time use.

•	 Training Overhead: Training time is moderate ( 12 minutes on a mid-tier GPU) and scalable across datasets 
of similar size, making periodic retraining practical.

•	 Scalability: The model supports batch inference and can be deployed efficiently using standard deep learning 
frameworks (e.g., TensorFlow, PyTorch). Its architecture is well-suited for integration with modern event 
monitoring pipelines.

•	 Deployment Considerations: The model has a relatively low memory footprint and supports fast inference, 
which is critical for continuous monitoring systems. Furthermore, its performance gains justify the moderate 
increase in computational complexity over traditional models.

These practical considerations reinforce the viability of our approach in real-world applications, where decision 
latency, model refresh cycles, and hardware limitations must be taken into account.

Conclusion
In recent years, the tasks of predicting and combating terrorism have gained considerable importance. In addition 
to conventional methods, utilizing the recent advancements in deep (machine) learning, predictive analytics can 
substantially aid the security forces and intelligence agencies in taking preventive measures beforehand. In this 
context, the proposed study targeted the problem of predicting the location of the next terrorist attack using large 
data. we considered a series of terrorist incidents as time-series data and formulated the task of predicting the 
location of the next attack as a sequence modeling problem. The predictive model comprises 1D convolutions 
followed by bi-directional LSTM layers which strive to learn the implicit patterns in the sequence of incidents 
and forecast the city, country, and region of the next incident. The experimental study of the system was carried 
out on the global terrorism dataset and promising results are reported on a number of standard evaluation 
metrics. The obtained results suggest that deep learning models can contribute substantially to predicting the 
probability of an attack at a particular location.

There are several interesting research directions that can be explored as an extension of the current study. To 
enable comparison with previous studies, our evaluation focused on commonly used metrics such as accuracy, 
precision, recall, and F1 score. However, we recognize the limitations of these metrics in the presence of class 
imbalance. In our ongoing research, we plan to incorporate additional metrics such as AUC-ROC and precision-
recall curves to provide a more thorough assessment of model performance, especially for underrepresented 
classes.

Given the sensitive nature of terrorist attack prediction, model interpretability is critical for real-world 
deployment and decision-making. While the proposed model focuses on predictive performance, it currently 
operates as a black-box, providing little transparency into which features or past events drive specific predictions. 
This can be a significant limitation in practical scenarios, where law enforcement or policy analysts require 
explanations for model outputs to ensure trust, accountability, and effective action.To address this, future work 
will explore incorporating interpretable deep learning techniques, such as SHAP (SHapley Additive exPlanations) 
and LIME (Local Interpretable Model-agnostic Explanations), which can help quantify the influence of 
specific inputs (e.g., location, time, weapon type) on the model’s decision. In addition, attention mechanisms 
or feature importance analysis could be integrated into the model architecture to enhance transparency and 
provide decision support information. Furthermore, data sets such as the GTD typically represent a terrorist 
organization as a single unified entity rather than as a network of interconnected groups. Only a few studies, 
such36 and37, have attempted to explore the structure of terrorist networks and identify strong links among 
groups and subsubgroups.se aspects require further in-depth investigation, where modern machine learning 
approaches may prove particularly effective.38 investigated the relationships between terrorist groups between 
1987 and 2005 and concluded that more than one-third of the groups have at least one cooperative relationship, 
and about 10 percent of the groups have at least one adversarial relationship. This area of research has been 
addressed in only a limited number of studies, such as data from global social networks on terrorist groups 
39, and warrants further investigation.In addition, our current Conv1D-BiLSTM model operates as a many-
to-one sequence predictor without autoregressive feedback from previous predictions. Future research could 
explore autoregressive architectures and incorporate attention mechanisms such as Transformers, which have 
shown success in modeling long-range dependencies and providing enhanced interpretability. Evaluating these 
approaches may further improve prediction accuracy and model transparency in terrorist attack forecasting.

Data availability
The authors confirm that the data supporting the findings of this study are available within the article.
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