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Environmental effects often cause variability in dynamic features, obscuring actual damage indicators 
and leading to false alarms in damage detection. The Gaussian mixture model (GMM) based method 
is an effective solution, but challenges such as selecting initial model parameters and determining the 
optimal number of Gaussian components can hinder its performance. To address these challenges, we 
propose a two-step method that combines sequential iteration with the GMM approach. In the first 
step, sequential iteration is employed to determine initial model parameters and the optimal number 
of Gaussian components for a reliable GMM. In the second step, the expectation-maximization (EM) 
algorithm is used to establish the GMM, clustering the training data into local subsets. For each subset, 
the Mahalanobis squared distance (MSD) between each sample point and the center of its Gaussian 
component is calculated. This distance is used to create a novelty index based on the minimum 
Mahalanobis squared distance (MMSD), facilitating effective damage detection by the statistical 
control chart. Moreover, generalized extreme value distribution modeling method is presented 
to determine an accurate control limit. We validate our method using real data from two bridges, 
demonstrating its effectiveness through comparative analysis.

Keywords  Structural health monitoring (SHM), Environmental and operational conditions, Damage 
detection, Gaussian mixture model, Z24 Bridge

Bridge structural health monitoring (SHM) plays a vital role in ensuring the safety and longevity of transportation 
infrastructure. Over time, bridges are subjected to various factors such as traffic loads, environmental 
conditions, and natural aging, which can cause deterioration. Early detection of damage through SHM enables 
timely maintenance, reducing the risk of catastrophic failures. By continuously assessing the condition of bridge 
components, the need for costly repairs can be minimized, and service life can be extended1,2. This proactive 
approach ultimately enhances public safety, reduces disruptions to transportation, and promotes sustainable 
infrastructure management.

In recent years, there has been extensive research on vibration-based damage identification methods within 
the field of SHM3. These methods operate on the principle that damage can induce alterations in the dynamic 
characteristics of structures, including frequency and mode shapes. Subsequently, according to changes in the 
identified dynamic features, structural damage can be detected through the application of inverse problem-
solving techniques4. However, in practical engineering applications, the dynamic characteristics of structures are 
not solely influenced by damage; they are also significantly impacted by diverse environmental and operational 
conditions, such as temperature5,6 humidity7 wind8 and traffic loads9. These influences can even completely 

1Department of Civil and Intelligent Construction Engineering, Shantou University, Shantou, Guangdong Province, 
China. 2Anhui Provincial International Joint Research Center of Data Diagnosis and Smart Maintenance on 
Bridge Structures, Chuzhou, Anhui Province, China. 3Shantou Key Laboratory of Offshore Wind Energy, Shantou, 
Guangdong Province, China. 4State Key Laboratory of Coastal and Offshore Engineering, Dalian University of 
Technology, Dalian, Liaoning Province, China. 5Civil and Environment Engineering School, University of Science 
and Technology Beijing, Beijing, China. 6Key Laboratory for Health and Safety of Bridge Structures, Wuhan, Hubei 
Province, China. email: lids@stu.edu.cn

OPEN

Scientific Reports |        (2025) 15:23823 1| https://doi.org/10.1038/s41598-025-08206-9

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-08206-9&domain=pdf&date_stamp=2025-7-3


mask the changes in dynamic characteristics caused by damage, thereby making accurate detection of damage 
occurrence challenging if environmental factors are not duly considered10.

Accordingly, researchers have proposed various methods to effectively remove the environmental effects 
from the damage identification process. Depending on whether the environmental parameters are measured, 
these methods can be categorized as input-output and output-only methods11. Input-output methods attempt to 
establish an explicit relationship between environmental variables and dynamic characteristics to quantify the 
impact of environmental variables on dynamic characteristics. Common methods include linear regression12,13 
polynomial regression14 bilinear regression15 support vector regression16 random forest models17 Gaussian 
process regression18 and artificial neural networks19 among others. These methods use environmental variables 
and the monitored dynamic characteristics as the model’s inputs and outputs, respectively, making it easier to 
interpret the influence of environmental variables on dynamic characteristics. However, their drawback lies in 
the requirement for comprehensive measurement of environmental variables, which is often difficult to obtain 
in practice20. Furthermore, once the input-output model is established, the sensors must remain in their original 
positions, as any failure in a sensor can lead to false-positive or false-negative outcomes21.

Compared to input-output methods, output-only methods do not directly measure environmental 
information; instead, they rely solely on the measured dynamic characteristics to learn the implicit relationship 
between environmental variables and dynamic characteristics22. The fundamental concept behind output-only 
methods is to transform the damaged features into a feature space through a suitable transformation23. This space 
yields new features that are insensitive to environmental operating variables but retain sensitivity to damage. 
Over recent years, output-only methods have gained widespread attention24–26 and several commonly employed 
methods in this context include PCA and its variants27–33 cointegration and its variants34–36 factor analysis37 
GMM38,39 Mahalanobis squared-distance37 singular spectrum analysis24 and auto-associative neural networks40,41 
nonlinear narrow dimension techniques42. More recently, Mousavi et al. developed a nonlinear method based on 
variational mode decomposition, cointegration, and recurrent neural network. The superiority of the proposed 
method was demonstrated by an experimental example of the Z24 bridge43. Wah et al.21 developed a multiple-
regression-based damage detection method under changing environmental and operational conditions. This 
method employs natural frequencies as both the independent and dependent variables and utilizes the difference 
in fits to identify influential observations and remove outlier measurements. Peng et al.44 proposed a novel 
structural damage detection based on manifold learning, utilizing the phase space representation of vibration 
characteristics to detect structural damage under varying environmental and operational conditions. Sarmadi et 
al.45 introduced a probabilistic data self-clustering method based on semi-parametric extreme value theory for 
damage detection. This method effectively handles environmental and operational variability while providing an 
integrated framework for determining the damage index and decision threshold.

Moreover, some machine learning or deep learning methods are used to address the temperature 
compensation problem in SHM. Sawant et al.46 proposed an unsupervised, temperature-compensated damage 
localization method for guided wave-based structural health monitoring (GW-SHM) using transfer learning 
from a convolutional autoencoder, achieving improved accuracy and robustness to environmental variations 
compared to supervised approaches, with fewer trainable parameters and without the need for pre-processed 
signals or material property knowledge. Du et al.47 developed an attention-based multi-task network with a 
modified U-Net architecture for accurate bolt loosening detection and temperature compensation in multi-
bolt connections, validated experimentally on a simulated aircraft structure. Kashyap et al.48 presented a 
TinyML-based unsupervised learning framework for GW-SHM using a lightweight neural network, enabling 
real-time damage identification and localization in a honeycomb composite sandwich structure under varying 
temperature conditions. Sawant et al.49 proposed a CNN-based supervised framework for automated feature 
extraction, coupled with a Gaussian mixture model for temperature compensation and damage localization in 
guided wave-based structural health monitoring.

Gaussian Mixture Model is a highly effective probabilistic statistical tool for characterizing data distributions. 
The GMM-based methods have gained significant traction for detecting structural damage under changing 
environmental and operational conditions. For example, Figueiredo et al.38,39 utilized GMM to model data 
distribution under varying normal conditions, employing the smallest MSD from each component for damage 
detection. This approach was successfully demonstrated using daily standard data sets from the Z24 Bridge. 
Other researchers have also explored the use of GMM in structural health monitoring. Kullaa et al.50 and Zang 
et al.51 applied GMM to cluster modal frequencies into several local subdomains. They then used minimum 
mean square error estimation and principal component analysis (PCA) to mitigate the effects of environmental 
and operational variations (EOV) on the subdomain data. Zhang et al.52 introduced a GMM-based method to 
quantify fatigue crack size, establishing a comprehensive baseline GMM database under varying temperatures 
and detecting cracks through the disparity between the baseline and test GMMs. Ren et al.53 combined GMM 
with a delay-and-sum method to achieve reliable damage monitoring and imaging localization for structures 
under variable conditions. More recently, Daneshvar et al.54 proposed an unsupervised damage detection 
method that employs GMM to provide local information for a deep reinforcement learning algorithm. This 
method reconstructs local training subsets using subdictionaries and uses an anomaly detector based on 
reconstruction error for damage detection. Beyond bridge structures55,56 GMM has been applied to damage 
and anomaly detection in various other domains, including gas turbines57 aircraft wings58 and wind turbines59.

Although GMM-based damage detection methods have proven effective, two important issues in mixture 
modeling need to be addressed: the selection of initial model parameters and the determination of the number 
of Gaussian components. (1) The first issue concerns the selection of initial model parameters. The common 
method to fit a GMM is through maximum likelihood estimation using the EM algorithm. However, the EM 
algorithm is a local optimization method and is highly sensitive to initialization. Due to the non-unimodal nature 
of the likelihood function in a mixture model, the EM algorithm may struggle to reach the optimal solution if the 
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initial parameters deviate significantly from the actual model parameters. (2) The second issue is selecting the 
number of Gaussian components. The Bayesian Information Criterion (BIC) is commonly used to estimate this 
number60. The optimal number of components is indicated by the lowest BIC value, balancing a good fit to the 
data with the avoidance of overfitting. However, the EM algorithm’s sensitivity to initial model parameters can 
cause variations in BIC values for the same number of components when different initial values are chosen. This 
instability makes determining the appropriate number of Gaussian components more complex61,62.

Figueiredo et al.63 also highlight these two challenges in GMMs: sensitive to initialization and selection of the 
number of Gaussian components. This paper proposed an unsupervised algorithm for learning finite mixture 
models from multivariate data, which integrates model estimation and selection into a single process, avoiding 
the issue of convergence to singular estimates at the boundary of the parameter space. Qiu et al.58 proposed 
an Improved Density Peaks Clustering (IDPC)-based EM algorithm for constructing an adaptive GMM. The 
algorithm improves the initialization process of GMM parameters by adaptively searching for probability density 
peaks of Guided Wave (GW) Damage Features (DFs), reducing reliance on experience-dependent parameters. 
Moreover, to ensure the accuracy of the classification results, Wang et al.64 and Yi et al.65 used the K-means 
clustering algorithm to estimate the initial parameters of the GMM.

Although similar methods have been proposed for determining the initial value of GMM, they have certain 
disadvantages. For example, in the K-means clustering-based GMM method64,65 to determine the number of 
clusters for K-means clustering, the BIC method is usually used. However, the variations in BIC values for the 
same number of components will cause the instability in determining the appropriate number of clusters. In 
the density peak clustering-based adaptive GMM method58 the ratio k in the algorithm should be empirically 
determined, limiting the application of this damage detection method. Moreover, for the unsupervised algorithm 
for learning finite mixture models63 it faces the challenge when dealing with mixtures that have components 
with very different weights, potentially leading to the premature elimination of smaller components or improper 
overlap of heavier components.

In this paper, we propose a method that integrates a sequential iteration operation into the GMM framework 
to address two critical issues: (1) the automatic determination of the number of Gaussian components, and (2) 
the enhancement of the reliability of the initial model parameters for GMM. Our method follows a systematic 
procedure. First, a sequential iteration approach is employed to analyze the modal frequencies under varying 
environmental conditions. This approach automatically divides the data into multiple clusters that conform to 
Gaussian distributions. These clusters provide the mean and covariance of each Gaussian component, which are 
then used as the initial parameters for the GMM, thereby improving their reliability. Next, the EM algorithm is 
applied iteratively to refine these parameters until an optimal solution is obtained, ensuring effective optimization 
of the GMM parameters. Finally, the MSD between the damage feature and each Gaussian component is 
calculated. Using this information, a statistical process control chart is established for damage detection based on 
the minimum MSD, and the generalized extreme value distribution modeling method is used to determine an 
appropriate threshold. To validate the effectiveness of the proposed method, we utilize real data from two bridge 
structures: a wooden truss bridge and the Z24 Bridge. The damage detection results indicate that the proposed 
method significantly reduces the occurrence of false alarms, demonstrating superior performance compared to 
conventional methods in real-world scenarios.

Conventional Gaussian mixture model
GMM is a powerful statistical tool that accurately describes the distribution of real data by employing a 
weighted linear combination of multiple Gaussian probability density functions66. In the context of a dataset 
Xn× d = {x1, . . ., xn}T, where n represents the number of samplings and d denotes the dimension of 
damage features, GMM assumes that the data can be effectively represented as a mixture of K multivariate 
Gaussian distributions. Consequently, the probability distribution of X adheres to the principles of the GMM 
model, the probability density function of X can be derived by summing the weighted Gaussian probability 
density functions of the K components. This can be mathematically expressed as follows58:

	
p (xi|Θ ) =

∑
K
k=1α k N (X|µ k, Ck)� (1)

with parameters

	 Θ = (α 1, · · · , α K ; µ 1, · · · , µ K ; C1, · · · , CK)� (2)

where K is the number of Gaussian components, α k  represents the weight of the k-th Gaussian component 
which satisfies the constraint that 

∑
K
k=1α k = 1 and 0 ≤ α k ≤ 1. µ k ∈ Rd and Ck ∈ Rd× d are the 

mean and covariance matrix of the k-th Gaussian component, respectively. N (X|µ k, Ck) represents the 
probability density function of the normal distribution:

	
N (xi | µ k, Ck) = 1

(2π )
d
2 |Ck|

1
2

e− 1
2 (xi−µ k)TC−1

k
(xi−µ k)

� (3)

To estimate the unknown parameters, the maximum likelihood estimation based on the EM algorithm is usually 
used. The log likelihood function to be maximized is defined as follows,

	
L (X|Θ ) = log

∏
n
i=1p (xi|Θ ) =

∑ n

i=1
log

∑
K
k=1α k N (X|µ k, Ck)� (4)
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The EM algorithm is an iterative process that comprises two main steps58: (a) the E-step, which involves 
estimating the posterior probability using Eq. (5); and (b) the M-step, where the Gaussian component model 
parameters are updated based on the posterior probability, utilizing Eqs.  (6)-(8). Initially, the parameters in 
Θ  are randomly selected, and the E-step and M-step are iterated repeatedly until the estimated Θ  remains 
almost unchanged. This convergence indicates that Θ  has reached a local optimum value. Finally, the model 
parameters Θ  of the GMM that maximize the log-likelihood function L (X|Θ ) are obtained.

	
Ψ ik (xi|Θ ) = α k N (xi|µ k, Ck)∑

K
j=1α j N

(
xi|µ j , Cj

) � (5)

	
α k = 1

n

∑
n
i=1Ψ ik (xi|Θ )� (6)

	
µ k =

∑
n
i=1[Ψ ik (xi| Θ )xi]∑

n
i=1Ψ ik (xi|Θ )

� (7)

	
Ck =

∑
n
i=1[Ψ ik (xi| Θ

)
(xi − µ k) (xi − µ k)T

]
∑

n
i=1Ψ ik (xi|Θ )

� (8)

However, the EM algorithm is a local optimization method due to the non-convex likelihood surface and 
iterative refinement, it may encounter difficulties in achieving the optimal solution when the initial parameters 
deviate significantly from the actual model parameters63. To illustrate the impact of randomly selecting initial 
parameters on the conventional GMM method, consider a clustering example using a 2-dimensional simulation 
dataset. When setting the number of model components to 13, the EM algorithm is applied to model the dataset 
multiple times using different initial values. Figure  1 showcases the modeling results obtained from three 
separate initial parameters. It is evident that the clustering outcomes obtained by the EM algorithm vary due 
to the usage of three different sets of initial parameters, with only one correct clustering result. This highlights 
that the random selection of initial parameters can lead to instability in the GMM model established by the EM 
algorithm.

In addition to selecting appropriate initial parameters, determining the appropriate number of Gaussian 
components is also crucial for building a reliable GMM. The BIC is commonly used for this purpose. It involves 
using the EM algorithm to establish GMMs with varying numbers of components, selecting the number of 
components corresponding to the minimum BIC value as the optimal choice. However, due to the randomness 
associated with initial parameter selection, BIC values can fluctuate for the same number of Gaussian components. 
To illustrate this variability, Fig. 2 shows the changes in BIC values with the number of components for the 
simulation data. In this illustration, the EM algorithm is executed five times with different initial parameters for 
each component. It is evident that the calculated BIC value varies significantly for a given number of Gaussian 
components due to different initial parameters. This instability in the BIC curve results from the EM algorithm’s 
sensitivity to random initialization, which reduces the reliability of the BIC method for determining the optimal 
number of components.

Improved GMM damage detection method
Improved GMM based on sequential iteration
To address the challenges in conventional GMM, we incorporate a sequential iteration operation to obtain stable 
and reasonable initial parameters67. This sequential iteration method automatically partitions the data into 
several clusters that adhere to Gaussian distributions, with each cluster serving as an initial Gaussian component 
of the GMM. The mean and covariance of each Gaussian component, derived from the sequential iteration 

Fig. 1.  Three clustering results based on the conventional GMM method by randomly using 3 sets of initial 
parameters. Table 1 shows the three groups of selected initial sample points. For each set of initial parameters, 
the initial weight of the k-th Gaussian component is set as α 0

k = 1/13, the initial covariance matrix of the k-

th Gaussian component is set as C0
k =

[ 86.57 1.89
1.89 97.09

]
, the initial mean of the k-th Gaussian component 

is listed in Table 1.
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method, are then used as the initial parameters for the GMM. This enhancement improves the modeling 
accuracy of the conventional GMM.

The sequential iteration method can be summarized in the following detailed steps67:
Step 1: Set the Gaussian cluster index k to 1, initialize the covariance parameter σ 2 of the dataset X  

using Eq.  (9)63 and randomly choose a sample point µ̂ k  from the training samples as the initial point. Let 
Ĉk = σ 2 · I , and I  represents the d-dimensional identity matrix.

	
σ2 = 1

10d
trace

(
1
n

n∑
i=1

(xi − x) (xi − x)T
)

, x = 1
n

∑n

i=1
xi� (9)

k-th Gaussian component

The 1st set The 2nd set The 3rd set The 4th set The 5th set

x1 x2 x1 x2 x1 x2 x1 x2 x1 x2

1 14.73 -0.10 -7.62 -9.41 -3.48 3.65 14.93 16.89 5.93 4.99

2 9.00 10.03 14.88 13.85 -7.97 -9.60 4.34 5.23 15.88 1.07

3 4.39 5.09 13.45 13.92 18.44 -9.17 18.44 -9.17 18.46 -0.82

4 6.08 11.21 18.54 -9.06 -6.22 11.28 -8.10 -8.65 -0.35 -6.82

Table 2.  The selected five sets of initial mean µ 0
k  when the number of Gaussian components is 4.

 

Fig. 2.  BIC curves under different initial parameters. When the number of Gaussian components is 4, the 
initial weight of the k-th Gaussian component is set as α 0

k = 1/4 in each set of initial parameters, the initial 

covariance matrix of the k-th Gaussian component is C0
k =

[ 86.57 1.89
1.89 97.09

]
, the initial mean of the k-th 

Gaussian component is listed in Table 2.

 

k-th Gaussian component

The 1st set The 2nd set The 3rd set

x1 x2 x1 x2 x1 x2

1 14.99 -1.74 -5.40 3.78 -7.18 11.66

2 -0.46 15.25 -8.26 -8.85 -0.27 14.60

3 -6.74 2.51 14.33 15.15 -8.30 -8.91

4 -5.72 0.74 20.69 8.33 18.05 8.54

5 20.48 10.83 -3.52 2.04 10.95 9.49

6 16.13 13.94 3.99 5.36 -4.59 9.87

7 21.18 9.71 16.07 14.93 -6.23 9.36

8 -1.32 5.32 9.10 10.49 8.47 -8.65

9 4.73 9.00 4.11 18.78 20.12 -8.44

10 9.08 -10.19 16.10 16.32 10.69 8.83

11 4.83 20.59 -8.43 -8.94 -0.33 -6.61

12 -4.45 2.38 -5.16 1.62 15.81 -1.02

13 14.40 14.25 14.70 14.90 5.15 7.76

Table 1.  The three sets of initial mean µ 0
k  selected for Fig. 1.
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Step 2: Calculate the Mahalanobis distance between xi (i = 1, . . . , n) and the arbitrarily chosen point 
µ̂ k ∈ X  using Eq. (10).

	 D (xi, µ̂ k) =
√

(xi − µ̂ k)TĈ
−1
k (xi − µ̂ k)� (10)

If the Mahalanobis distance is below 3, assign the xi into the sample set Xk
s .

Step 3: Calculate the mean 
∼
µ k  and variance 

∼
Ck  of the sample set Xk

s  using Eqs. (11)-(12),

	
∼
µ k = 1

nk

∑
xi∈ Xk

s

xi� (11)

	

∼
Ck = 1

nk − 1
∑

xi∈ Xk
s

(xi − µ k) (xi − µ k)T � (12)

where nk  represents the number of samples in Xk
s .

Step 4: Let µ̂ k = ∼
µ k, Ĉk =

∼
Ck, and repeat Steps (2)-(3) until:

	 ∥ µ̃k − µ̂k ∥< ε� (13)

where ϵ  is a small enough value, ϵ  is set to 10−6 in this paper.
Step 5: Determine the sample set Xk

s , compute the mean µ̂ k , covariance matrix Ĉk , and weight coefficient 
α̂ k = nk

n of Xk
s . Then, from the dataset X , remove the sample points xi that have been allocated to Xk

s ;
Step 6: Increment k by 1 ( k = k + 1).
Step 7: Repeat Steps (2)-(6) until all the data is assigned to the corresponding Xk

s . Finally, the µ̂ k , Ĉk , 
and α̂ k  obtained from each sample set Xk

s  are considered as the initial mean, covariance matrix, and weight 
in GMM.

To better visualize the stages of the proposed algorithm, the entire procedure for implementing the sequential 
iteration operation is illustrated in Fig. 3. The improved GMM eliminates the need for manual determination 
of the number of Gaussian components, as the sequential iteration process can automatically determine this 
value. Moreover, the model parameters obtained by the sequential iteration method is used as the initial model 
parameters of the EM algorithm, which can improve the computational efficiency and data fitting accuracy of 
the conventional GMM method.

Fig. 3.  Procedure for implementing the sequential iteration operation.
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Implementation process of the proposed GMM damage detection algorithm
After enhancing the conventional GMM with a sequential iteration method, we utilize the improved GMM 
approach for detecting damage in changing environmental conditions. Initially, continuous monitoring data is 
collected in a healthy state under the changing environmental conditions. From these data, damage features are 
extracted, forming a baseline training sample set denoted as X. Next, a sequential iteration approach is employed 
to establish the initial model parameters of the GMM.

. The EM algorithm is then utilized to construct a baseline GMM based on the data in X. Furthermore, the 
MSD between the damage feature and each Gaussian component is calculated as follows:

	 MSDk (x) = (x − µ k)T C−1
k (x − µ k)� (14)

The MSD has been shown to be an effective damage indicator that is insensitive to changing environments37. 
However, it is only capable of addressing linear EOV and remains sensitive to nonlinear EOV effects. To tackle 
this issue, Figueiredo et al. proposed the MMSD as a novelty index for damage detection under changing 
environments38,39. Similar studies utilizing the MMSD for this purpose can also be found in the literatures54,68,69. 
The minimum MSD is calculated as follows:

	 MMSD (x) = min [MSD1 (x) , · · · , MSDK (x)]� (15)

The insensitivity of the MMSD to nonlinear environmental effects stems from the division of nonlinearly 
related data into several categories using GMM. Compared to the entire dataset, each localized category 
exhibits a stronger linear correlation after clustering. Therefore, the MSD can effectively eliminate the linear 
environmental effects in these local datasets. In practice, the MMSD is calculated as the MSD of a sample point 
within its respective category. By separating the linear EOV effects within each category, the overall nonlinear 
environmental effects on the entire dataset are mitigated. This makes the MMSD insensitive to nonlinear EOV 
effects. In this paper, the MMSD is also used as the novelty index (NI) for damage detection under changing 
environments.

Furthermore, the MMSD values obtained during the training phase are used to compute a threshold for 
damage detection. When damage occurs in a structure, the feature data associated with the damaged state will 
deviate from the original distribution characteristics. Consequently, the MMSD will exceed the threshold during 
the testing phase, clearly indicating the presence of damage. To provide a comprehensive understanding of the 
algorithm’s stages, the complete implementation procedure for the enhanced GMM method in damage detection 
is illustrated in Fig. 4.

To quantify the effectiveness of damage detection, this study employs two metrics: the false positive rate 
(FPR) and the false negative rate (FNR). The two metrics originate from the field of machine learning, where a 
confusion matrix table enables visualization of the performance of a machine learning algorithm based on some 
criteria, including true positive (TP), false positive (FP), false negative (FT), and true negative (TN). In the context 
of SHM, the terms “positive” and “negative” refer to the damaged and undamaged states, respectively21. The TN 
means that the structure is in undamaged condition and the method could correctly detect the undamaged 
state (i.e., the novelty indexes are below the threshold in the undamaged state); the FN means that the structure 
suffered from damage, but the method cannot correctly alarm the occurrence of damage (i.e., the novelty indexes 
are below the threshold in the damaged state); the FP means that the structure is in undamaged condition, but 
the method cannot correctly detect the undamaged state (i.e., the novelty indexes are over the threshold in 
undamaged state); the TP means that the structure suffered from damage and the method could correctly alarm 

Fig. 4.  The procedure of improving the GMM method for damage detection.
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the occurrence of damage (i.e., the novelty indexes are over the threshold in damaged state). Table 3 depicts the 
confusion matrix, where two metrics, including FPR and FNR, are defined as follows.

	
F P R = NF P

NF P + NT N
× 100%� (16)

	
F NR = NF N

NF N + NT P
× 100% � (17)

where NT N , NF N , NF P and NT P  represent the number of TN, FN, FP and TP sample points, respectively.

Threshold limit determination
The estimation of the threshold plays a crucial role in improved GMM for early damage detection. This estimation 
is typically derived from the probabilistic characteristics of MMSD during the training phase. One commonly 
used approach is to employ a standard confidence interval based on the central limit theory. For instance, a 
95% confidence interval for MMSD is often utilized, assuming that MMSD during the training stage follows a 
normal distribution70. Nevertheless, relying solely on the standard confidence interval proves inadequate when 
MMSDs exhibit a non-normal or heavy-tailed distribution. To determine an appropriate threshold, the extreme 
value statistics is used in the improved GMM method. Extreme value statistics is a methodology employed to 
analyze exceptional events to identify extreme values within a given probability distribution. This approach 
finds extensive application in diverse fields such as structural engineering, finance, earth sciences, and geological 
engineering.

Extreme value analysis proves invaluable in establishing control limits that mark a failure point, beyond 
which a failure or end-of-life event is likely to occur. The generalized extreme value distribution (GEV) comprises 
three main forms: the Gumbel (Type I) distribution, the Fréchet (Type II) distribution, and the Weibull (Type 
III) distribution, these three types of extreme value distributions can effectively model extreme events across a 
diverse range of datasets71.

Gumbel distribution:

	 H1(x; µ , σ ) = e−e
− x−µ

σ
, −∞ < x < ∞ � (18)

Fréchet distribution:

	
H2 (x; µ , σ , α ) =

{
0 x ≤ µ ,

e−( x−µ
σ )−α

x > µ ,
α > 0� (19)

Weibull distribution:

	
H3 (x; µ , σ , α ) =

{
e−(− x−µ

σ )α

x ≤ µ ,
1 x > µ ,

α > 0� (20)

where µ  is the location parameter, σ  is the scale parameter, and α  is the shape parameter. From a mathematical 
standpoint, the three types of extreme value distributions can be unified and expressed in a common form.

	
H(x; µ , σ , ξ ) = exp

{
−

(
1 + ξ

x − µ

σ

)− 1
ξ

}
, 1 + ξ

x − µ

σ
> 0� (21)

where ξ  represents the shape parameter in the GEV distribution, where its value determines the type of extreme 
value distribution71. The threshold limit determination based on the GEV distribution model contains three 
main steps, which includes72: the selection of one of the extreme value distributions, the estimation of unknown 
parameters of selected extreme value distribution, and the determination of its extreme quantile. The extreme 
quantile of the distribution is estimated at a given significance level by inverting Eq. (21), which yields,

	
xp =

{
µ + σ

ξ

[
(−log (p))−ξ − 1

]
ξ ̸= 0

µ − σ log (−log (p)) ξ = 0 � (22)

In this paper, a confidence level of 95% is chosen, treating the tail probability of 5% in the cumulative probability 
function.

Detected results

Actual state

Undamaged Damage

Undamaged T N F N

Damage F P T P

Table 3.  The confusion matrix for evaluating the performance of the damage detection method.
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Contributions
The main contributions and novelty of this research can be summarized as:

	(i)	 Development of an innovative damage detection method: This research introduces a novel method spe-
cifically designed for long-term SHM under varying environmental conditions. The key innovation lies 
in the integration of sequential iteration and GMM. The advantages of this method are: (1) It is capable of 
automatically selecting the number of components, and it does not require careful initialization; (2) Unlike 
the density peak clustering-based GMM58 it does not require to empirically determine the model param-
eters; (3) Compared to the BIC-based method for determining the number of components, the proposed 
method is more stable and reliable. Moreover, this approach effectively addresses environmental variability, 
including nonlinear effects, which most traditional normalization techniques (like MSD, PCA, and factor 
analysis) can only handle in a linear context.

	(ii)	 Determination of threshold using the GEV distribution method. Traditional threshold determination 
method is to employ a standard confidence interval based on the central limit theory, which assumes that 
the damage index follows a normal distribution. However, relying solely on the standard confidence in-
terval proves inadequate when MMSDs exhibit a non-normal or heavy-tailed distribution. Therefore, the 
proposed method uses the extreme value distribution to determine an appropriate threshold, which ensures 
more accurate threshold estimation, reducing the likelihood of false alarms and improving the reliability of 
damage detection.

Real-world application 1: a wooden truss Bridge
In this section, the experimental data of a wooden truss bridge are used to verify the effectiveness of the proposed 
GMM method. The wooden bridge is a laboratory truss structure monitored by Prof. Kullaa for several days 
under a changing environmental condition73. The monitoring system for the structure is shown in Fig. 5, in 
which an electrodynamic shaker is applied on the wooden bridge to produce a random white noise excitation 
and fifteen accelerometers are deployed at different locations to measure the acceleration responses. Moreover, 
modal frequencies and mode shapes of the structure were identified from the vibration measurements based 
on the stochastic subspace method. Because only modal frequencies of the seven modes were made available to 
researchers, the seven frequencies are used as the main damage-sensitive features for damage detection.

To simulate various damage scenarios, different sizes of masses were attached to the wooden bridge, as detailed 
in Table 4. The total mass of the structure was 36 kg, with the heaviest mass added to the structure weighing 
193.7 g. The monitoring process involved test measurements of both undamaged and damaged conditions of 
the bridge. The measurements 1-2000 were taken in undamaged state under varying environmental conditions, 
while the measurements 2001–2019, 2020–2042, 2043–2065, 2066–2091, and 2092–2114 were performed on the 
damaged state of the structure at different damage levels.

Figure 6 shows the changes of natural frequencies f1, f2, f6 and f7 over time, with the vertical dashed line 
indicating the moment of damage occurrence. It is apparent that environmental variations significantly impact 
the natural frequencies throughout the monitoring period, making it challenging to distinguish whether the 
frequency changes stem from structural damage or changing environments.

Comparison of the proposed method with other methods
In the context of mitigating environmental influences on damage detection, cointegration34 and PCA28 are 
widely used techniques. This paper compares the proposed method with these two damage detection methods. 
Additionally, since the proposed method improves upon the GMM, we also compare the damage detection results 
with those of the conventional GMM to highlight the superiority of our approach. Using PCA, cointegration, 
and both conventional and proposed GMM methods, we implement damage detection for a Wooden Bridge 
during both training and test phases. During offline learning in the training period, 1800 observations under 
normal conditions are utilized as the training dataset. For the test phase, the remaining observations from 
normal conditions, alongside all observations from the damaged state, are utilized as the test dataset.

Fig. 5.  (a) The Wooden Bridge, (b) the locations of the acceleration sensors and the electro-dynamic shaker73.
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Regarding the first comparison, it is necessary to calculate a stationary cointegration residual by linearly 
combining observed frequency data. The cointegration residual can be interpreted as a long-term stable 
equilibrium relationship between nonstationary frequencies. Once structural damage occurs, this equilibrium 
relationship will no longer be maintained, and the stationary residual will become nonstationary. Following the 
damage detection procedure of the cointegration method34 the cointegration residual can be calculated by the 
Johansen test. Figure 7 displays the variation of cointegration residuals in the training and test phases, where the 
black scatter points represent the residuals in the training phase, the blue scatter points represent the undamaged 
residuals in the test phase, and the red points are the damaged residuals in the test phase.

Regarding the second comparison, the fundamental concept of PCA involves projecting the original data onto 
a vector space formed by the principal components (PCs) and then mapping it back to the original space while 
retaining a specific number of PCs. The error between the original and remapped data can be utilized to compute 
a novelty index for damage detection. Therefore, it is initially necessary to determine the number of PCs. This 
can be achieved by calculating the ratio of the sum of eigenvalues of consecutive principal components to the 
total sum of all eigenvalues and identifying the smallest integer with a ratio exceeding a predefined threshold. In 
this case, the threshold is set at 95%. Accordingly, the optimal number of principal components for the Wooden 
Bridge is determined to be 2, which accounted for 98.37% of the data variance. Based on the damage detection 
procedure of the PCA method28 the novelty index can be obtained and shown in Fig. 8.

From Fig.  7, it can be seen that the cointegration residual is stationary in undamaged state, and almost 
all the residuals of the normal condition related to either the training or validation samples are within the 
control limit, indicating that environmental effects are effectively removed and no damage is detected in the 
structure in undamaged state. On the contrary, Fig.  8 shows that the evolution process of the PCA novelty 
indexes is nonstationary, and some of the undamaged novelty indexes are outside the control limit, indicating 
that some undamaged samples are misclassified as damaged samples. Furthermore, the poor performance of 
the cointegration and PCA methods emerges from the damaged state, where most of the residuals and novelty 
indexes are within the control limit, implying large false detection. Regardless of the control limit, it is observed 
that numerous cointegration residuals and novelty indexes of the damaged state are in the same scales as the 
undamaged state, which implies the low damage detectability of the cointegration and PCA methods.

In the third comparison, the conventional GMM method is employed for structural damage detection, which 
determines the number of Gaussian components using the BIC and estimates the model parameters using the 
EM algorithm. Figure 9 illustrates five BIC curves resulting from running the EM algorithm five times with 
different initial parameters. Similar to the numerical simulation results in Sect. 2, noticeable fluctuations are 
observed in the BIC curve. Furthermore, it is noted that when the number of Gaussian components is 9, the 
BIC value is relatively small. Opting for 9 Gaussian components, damage detection based on the conventional 
GMM method is conducted, as depicted in Fig. 10. In this analysis, the EM algorithm is run three times under 
varying initial parameters. The results indicate that due to the randomly selected initial parameters, the damage 
detection outcomes vary. This suggests that damage detection based on the conventional GMM method is prone 
to instability.

Fig. 6.  Changes of the natural frequencies of the wooden bridge during the monitoring period (the occurrence 
of damage is denoted by the dashed vertical line).

 

Damage case Measurements Added mass (g)

Case 1 [2001, 2019] 23.5

Case 2 [2020, 2042] 47

Case 3 [2043, 2065] 70.5

Case 4 [2066, 2091] 123.2

Case 5 [2092, 2114] 193.7

Table 4.  Damage cases of the wooden truss bridge.
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Fig. 9.  BIC curves under three different initial states.

 

Fig. 8.  Damage detection in the wooden bridge based on the PCA method: (a) entire novelty index and (b) 
partial novelty index. (The black points represent the novelty indexes in the training phase, the blue scatter 
points represent the undamaged novelty indexes in the test phase, and the red points are the damaged novelty 
indexes in the test phase).

 

Fig. 7.  Damage detection in the wooden bridge based on the cointegration method: (a) entire residuals and 
(b) partial residuals. (The black scatter points represent the residuals in the training phase, the blue scatter 
points represent the undamaged residuals in the test phase, and the red points are the damaged residuals in the 
test phase).
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C0
k =




0.06 0.07 0.05 0.06 0.03 0.05 0.07
0.07 0.10 0.06 0.08 0.04 0.07 0.09
0.05 0.06 0.04 0.05 0.03 0.04 0.06
0.06 0.08 0.05 0.07 0.04 0.06 0.08
0.03 0.04 0.03 0.04 0.02 0.04 0.04
0.05 0.07 0.04 0.06 0.04 0.06 0.07
0.07 0.09 0.06 0.08 0.04 0.07 0.10




The primary step in evaluating the performance of the proposed GMM-based method involves 
determining the initial GMM parameters through sequential iteration. For the process of the sequential 
iteration method, it begins with random selection of initial points µ̂ 0, which is here chosen as 
µ̂ 0 = [24.80, 28.46, 39.01, 52.57, 63.79, 65.33, 78.64]T. Subsequently, the mean, covariance matrix, and 
weight of each data set can be obtained by executing Steps 1–3 of the sequential iteration in Sect. 3.1. These 

k-th Gaussian component

The 2nd set of initial mean

f1 f2 f3 f4 f5 f6 f7

1 25.34 29.08 39.47 53.10 64.02 65.79 79.29

2 25.19 28.99 39.28 52.94 63.81 65.57 79.23

3 24.82 28.49 39.02 52.59 63.83 65.36 78.73

4 25.00 28.72 39.16 52.81 63.94 65.55 78.93

5 25.28 29.02 39.43 53.07 64.00 65.78 79.23

6 24.90 28.55 39.12 52.66 63.83 65.44 78.81

7 24.86 28.58 39.05 52.60 63.69 65.28 78.87

8 24.85 28.45 39.11 52.69 63.87 65.43 78.75

9 24.99 28.77 39.16 52.76 63.73 65.43 79.06

Table 6.  The 2nd set of initial mean µ 0
k  when the number of Gaussian components is 9.

 

k-th Gaussian component

The 1st set of initial mean

f1 f2 f3 f4 f5 f6 f7

1 25.16 28.92 39.28 52.93 63.89 65.57 79.13

2 25.27 29.00 39.37 53.04 64.00 65.70 79.22

3 24.62 28.11 38.89 52.37 63.77 65.14 78.13

4 24.79 28.39 38.98 52.47 63.64 65.19 78.71

5 24.79 28.41 38.99 52.46 63.66 65.19 78.71

6 24.79 28.44 39.04 52.57 63.81 65.36 78.61

7 25.31 29.08 39.45 53.12 64.04 65.81 79.26

8 25.28 29.01 39.38 53.03 63.98 65.70 79.23

9 24.76 28.38 39.01 52.45 63.65 65.24 78.54

Table 5.  The 1st set of initial mean µ 0
k  when the number of Gaussian components is 9.

 

Fig. 10.  Damage detection in the wooden bridge based on the conventional GMM method using 3 different 
sets of initial parameters. For each set of initial parameters, the initial mean is listed in Tables 5, 6 and 7, the 
initial weight of each Gaussian component is set as α 0

k = 1/9, the initial covariance matrix of each Gaussian 
component is set as

 

Scientific Reports |        (2025) 15:23823 12| https://doi.org/10.1038/s41598-025-08206-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


outputs serve as the initial parameters for establishing the GMM model. The next step involves calculating the 
MSD between the sampling points and each Gaussian component. The minimum distance is then chosen as the 
novelty index for damage detection. Figure 11 illustrates the results of early damage detection in the wooden 
truss bridge using the proposed GMM method. It is evident that the majority of novelty indexes related to 
the training samples fall below the threshold line, indicating a correct detection of the undamaged state with 
minimal false alarms. Moreover, the vast majority of novelty indexes for the validation data within samples 
1800–2000 are also below the threshold. These observations confirm the efficacy of the proposed method in 
accurately detecting the undamaged state of the wooden bridge. In the case of novelty indexes related to the 
damaged state in samples 2001–2114, almost all of them exceed the threshold limit, demonstrating the high 
damage detectability of the proposed method. Nonetheless, it’s worth noting that some observations in damage 
case 1 (23.5 g) fall below the threshold limit, which aligns with findings in references21,51. This behavior can 
be attributed to the relatively small mass, accounting for only 6.53 × 10−7 of the total structure mass, which 
causes a negligible deviation in natural frequencies from the undamaged cases. Regardless of the threshold line, 
it is observed that there is a clear discrepancy between the novelty indexes of the undamaged and damaged 
states. This outcome reinforces the robustness of the proposed method in providing discerning novelty indexes 
and achieving high damage detectability.

Table 8 presents the FPR and FNR calculated using cointegration, PCA, the conventional GMM, and the 
proposed GMM method. The FPR and FNR values for the conventional GMM are averaged from three results 
shown in Fig. 10. Regarding the FPR metric, the values for all three methods are relatively small, indicating 
minimal misclassifications under normal conditions. Concerning the FNR metric, the proposed GMM method 
significantly outperforms the other methods, suggesting a higher capability for accurate damage detection. The 
limitations of PCA and cointegration methods in accurate damage detection can be attributed to their linear 
nature. These methods attempt to derive a damage index by linearly combining different frequencies, assuming 
a strong linear relationship between natural frequencies. However, the natural frequencies of the wooden bridge 
exhibit inadequate linear correlation, leading to reduced accuracy in damage detection for PCA and cointegration 
methods. Additionally, the damage detection results obtained by the conventional GMM are not reliable due 
to its sensitivity to initial parameters. In contrast, the proposed GMM method divides the data into multiple 
datasets, treating each Gaussian component of the mixture as a cluster. This approach effectively decomposes 
nonlinearly related data into multiple locally linearly related datasets, transforming nonlinear problems into 

Fig. 11.  Damage detection in the wooden bridge based on the proposed GMM method: (a) entire novelty 
index and (b) partial novelty index.

 

k-th Gaussian component

The 3rd set of initial mean

f1 f2 f3 f4 f5 f6 f7

1 25.12 28.83 39.25 52.91 63.94 65.61 79.05

2 24.85 28.63 39.03 52.62 63.69 65.30 78.86

3 25.13 28.90 39.30 52.90 63.84 65.57 79.24

4 24.71 28.34 38.90 52.41 63.60 65.17 78.63

5 25.36 29.12 39.44 53.09 64.00 65.77 79.32

6 24.98 28.65 39.14 52.83 63.92 65.59 78.92

7 25.00 28.72 39.18 52.81 63.86 65.52 78.95

8 25.00 28.69 39.18 52.82 63.89 65.55 78.95

9 24.82 28.56 38.99 52.58 63.68 65.28 78.84

Table 7.  The 3rd set of initial mean µ 0
k  when the number of Gaussian components is 9.
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linear ones. Consequently, the proposed method achieves more reliable damage detection, particularly when 
dealing with data exhibiting poor linear correlation, surpassing the capabilities of the cointegration and PCA 
methods.

Effects of measurement noise and initial points
Previous evaluations were conducted under laboratory conditions with minimal measurement noise, field 
measurements often encounter higher levels of noise in the recorded signals. The incorporation of Gaussian 
white noise into the original frequency data allows for a comprehensive assessment of the method’s ability to 
handle real-world conditions with varying noise levels. Gaussian white noise was introduced into the original 
frequency data to examine the damage detection performance of the proposed GMM method using noisy data.

	
f (t) =

∼
f (t) + EpNnoiseσ

(∼
f

)
� (23)

where f (t) is the measured frequency data with noise, Ep is the noise level, Nnoise is a Gauss-distributed 

random vector with zero mean and variance 1, and σ
(∼

f
)

 is the standard deviation of f . Two levels of noise, 

namely 5% and 10%, were deliberately introduced into the original frequency data. The resulting correlations 
scatter plot between f3 and f7 at different noise levels is depicted in Fig. 12. Notably, as the noise level increases, 
the correlation between f3 and f7 exhibits a clear decrease, and the frequency sample points become noticeably 
more dispersed. This observation underscores the significant influence of measurement noise on the correlation 
between frequencies.

Following the procedure of the proposed GMM method in Sect. 3, the novelty indexes of the wooden bridge 
at different noise levels were obtained. Figures 13 and 14 present the results of damage detection at noise levels of 
5% and 10%, respectively. It is evident that most novelty indexes in the undamaged state fall below the threshold 
limit, while some exceed it, possibly due to high noise levels. As the noise level increases, the misclassification 
rate also rises. However, even at a 10% noise level, most novelty indexes in the damaged state surpass the 
threshold value, indicating successful damage detection. Without considering the threshold limit, there is a 
discernible difference between the novelty indexes of the damaged and undamaged states, validating the high 
damage detectability of the proposed GMM method.

To demonstrate the stability and reliability of the proposed method, the damage identification process 
was repeated 20 times at various noise levels, given the random nature of measurement noise. The FNR and 
FPR metrics were computed for each of these 20 damage detections. Figure 12 displays the values of FNR and 
FPR for the 20 damage detections under different noise levels. From Fig. 15, several key observations can be 
made: (1) Similar to Fig.  14, as the noise level increases from 5 to 10%, both the FNR and FPR values also 
increase, indicating that higher noise levels can impact the accuracy of damage detection. (2) Despite the 
influence of measurement noise on the damage detection results, the FNR and FPR values remain relatively 
low, suggesting that the proposed GMM method exhibits excellent damage detectability even in the presence 
of high noise. (3) The amplitudes of FNR and FPR obtained from the 20 damage detections are remarkably 
stable, showing minimal fluctuations across different instances of damage detection. This stability underscores 
the high confidence in utilizing the proposed GMM method for damage detection. In summary, the repeated 
experiments at various noise levels illustrate the consistent and dependable performance of the proposed GMM 

Fig. 12.  The relation between f3 and f7 under (a) 0%, (b) 5% and (c) 10% noise levels.

 

Cointegration PCA GMM Proposed GMM method

FPR 1% 2% 6.86% 1.65%

FNR 61.40% 81.60% 27.78% 15.79%

Table 8.  FPR and FNR obtained based on different damage detection methods.
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method in detecting damage, as evidenced by the relatively low FNR and FPR values and their stable nature 
throughout the experiments.

Regarding the proposed GMM method, it is initially necessary to specify an initial point needed for the 
sequential iteration process. As explained in Sect. 3.1, this initial point is randomly selected from the original 
dataset. To investigate the impact of randomly selected initial points on the method’s performance, the damage 

Fig. 15.  FPR and FNR obtained in 20 repeated damage detection processes under different noise levels.

 

Fig. 14.  Damage detection based on the proposed method under 10% noise level: (a) entire novelty index and 
(b) partial novelty index.

 

Fig. 13.  Damage detection based on the proposed method under 5% noise level: (a) entire novelty index and 
(b) partial novelty index.
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detection process was repeated 10 times with 10 different random initial points. The values of these initial points 
are listed in Table 9, and Fig. 16 illustrates the corresponding FNR and FPR calculated for each damage detection. 
It is evident from the results that the FNR and FPR values are consistently low across all damage detections, with 
minimal fluctuations in their amplitudes. This finding indicates that the selection of different initial points has 
negligible effects on the proposed method. The proposed GMM method demonstrates reliability and robustness 
for SHM even under different initial points.

Real-world application 2: Z24 Bridge
To further validate the environmental robustness of the proposed GMM method for damage detection, a widely 
used benchmark structure, namely the Z24 bridge, is used in this section. Located in the province of Bern, 
Switzerland, the Z24 bridge was a three-span post-tensioned concrete bridge (Fig.  17) that was eventually 
demolished in 1998 to make way for a larger span railway bridge. Before its demolition, the bridge was equipped 
with a SHM system, which measured the vibration responses as well as environmental variables, such as 
acceleration, temperature, humidity, and wind characteristics. During the undamaged period of Z24 bridge, the 
SHM system continuously collected data on the bridge’s behavior under normal operating conditions. Towards 
the end of the health monitoring period, a series of progressive damage scenarios were artificially applied to 
simulate different damage states. For more detailed information regarding the configuration of the SHM system 
and implemented vibration tests, interested readers can find comprehensive details in References12.

An automatic modal analysis based on frequency domain decomposition was developed to extract the 
natural frequencies of the first four modes under varying environmental conditions. The dataset comprises 5652 
observations, with the first 4848 observations representing the healthy state and the subsequent observations 
from 4849 to 5652 corresponding to the damaged state. In Fig. 18, the evolution of the four natural frequencies 
over time is presented, with the dashed vertical line indicating the moment of damage. The results reveal that 
changing environmental conditions have a significant impact on the natural frequencies of the Z24 bridge, and 
the frequency variations caused by environmental influences outweigh those caused by the damage. Particularly, 
an evident peak is observed around sample 2000, coinciding with a period of very low temperatures. Moreover, 
a bilinear relationship between frequency and temperature is observed, which further leads to a nonlinear 
relationship between the frequencies44.

Damage detection
A comparative analysis was conducted to showcase the superiority of the proposed method over the PCA and 
cointegration methods. In the comparison, damage detection via different methods is carried out in the training 
and test phases. In the training phase, 80% of the undamaged observations of the modal frequencies were utilized 

Fig. 16.  FPR and FNR obtained in 10 repeated damage detection processes using 10 different initial points.

 

Initial point

The i-th selection of the initial point

1 2 3 4 5 6 7 8 9 10

f1 24.74 25.15 24.78 25.14 24.87 24.89 24.89 25.05 24.60 25.01

f2 28.35 29.12 28.13 28.76 28.47 28.75 27.77 28.81 28.07 28.74

f3 39.04 39.35 39.23 39.32 39.14 39.11 39.26 39.22 38.87 39.19

f4 52.56 52.93 52.58 53.03 52.66 52.68 52.72 52.87 52.39 52.80

f5 63.67 63.86 63.33 64.12 63.99 63.70 63.59 63.99 63.74 63.96

f6 65.29 65.64 64.84 65.75 65.45 65.40 65.05 65.58 65.24 65.54

f7 78.66 79.29 78.42 79.12 78.55 79.07 78.75 79.03 78.21 78.86

Table 9.  Ten randomly chosen initial points in 10 repeated damage detection processes.
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as the training dataset. Subsequently, the remaining 20% of the undamaged observations, along with all damaged 
observations, were considered as the test dataset.

In the first comparative study, the popular machine learning methods, Support Vector Regression (SVR) 
and Gaussian Process Regression (GPR), were employed to detect structural damage under varying EOCs. 
Initially, these methods involve establishing a regression relationship between temperature and modal frequency 
during the training phase. The trained model is then used to predict frequency based on the testing temperature 
data. Structural damage is detected by analyzing the prediction error. According to the above process, damage 
detection results can be obtained based on SVR and GPR methods, as shown in Figs. 19 and 20. It can be seen 
that when using the frequency f1 as the output, both SVR and GPR methods produced a significant number 
of false alarms in damaged stage, indicating that damage was not effectively detected. Although the damage 
identification results are improved when using f2 as the output, there are still a large number of undamaged 
samples that are mistakenly detected as damaged samples, indicating that there are a large number of false 
positive detection. This result shows that these two methods are inaccurate for damage detection of Z24 bridge.

In the second comparative study, by performing the damage detection procedures of the cointegration and 
PCA methods, the cointegration residuals and PCA novelty index were obtained (see Fig. 21). Observing Fig. 21, 
it is evident that almost all the residuals and novelty indexes in the undamaged state are below the threshold limit. 
This indicates that both methods yield only a few false alarms in the undamaged state. However, the cointegration 
residuals do not show a clear shift when the damage occurs (Fig. 21(a)), resulting in the cointegration method’s 
failure to detect damage accurately and distinguish the damaged state from the undamaged state. Similarly, in 
the case of the PCA method (Fig. 21(b)), most of the novelty indexes in the damaged state do not exceed the 
threshold. This indicates a significant number of false negatives in detecting damage with the PCA method. 
Consequently, these observations highlight the poor damage detectability of both the cointegration and PCA 
methods under nonlinear environmental variability. Moreover, Fig. 22 illustrates the damage detection results 
of the conventional GMM using three sets of randomly selected initial parameters. It can be observed that due 
to its sensitivity to initial parameters, the detection results of the GMM vary each time, with only one result 
being reasonable. This highlights the instability of the conventional GMM method in detecting damage in the 
Z24 bridge.
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Fig. 18.  Changes of the natural frequencies of Z24 Bridge during the monitoring period (the occurrence of 
damage is denoted by the dashed vertical line).

 

Fig. 17.  (a) The Z24 Bridge, (b) the longitudinal section and top view of the bridge.
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Fig. 21.  Damage detection in the Z24 Bridge based on the conventional methods: (a) cointegration, (b) PCA. 
(The black scatter points represent the residuals in the training phase, the blue scatter points represent the 
undamaged residuals in the test phase, and the red points are the damaged residuals in the test phase).

 

Fig. 20.  Damage detection based on the GPR method using (a) temperature and f1, (b) temperature and f2 
as the input and output, respectively. (The black scatter points represent the prediction errors in the training 
phase, the blue scatter points represent the undamaged prediction errors in the test phase, and the red points 
are the damaged prediction errors in the test phase).

 

Fig. 19.  Damage detection based on the SVR method using (a) temperature and f1, (b) temperature and f2 
as the input and output, respectively. (The black scatter points represent the prediction errors in the training 
phase, the blue scatter points represent the undamaged prediction errors in the test phase, and the red points 
are the damaged prediction errors in the test phase).
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Figure 23 displays the novelty index obtained using the proposed GMM method. From Fig. 23, it can be seen that 
in the undamaged state during the test phase, most of the novelty indexes fall below the threshold limit, suggesting 
that these observations correspond to the same structural condition as the observations in the training dataset 
(normal condition); a small number of undamaged observations are out of limit and this might be attributed 
to large measurement noise. In the damaged state, all the novelty indexes surpass the threshold limit, and the 
value of the novelty index increases with the severity of the damage. This indicates that the proposed method not 
only detects the occurrence of structural damage but also identifies the progression of damage in the structure 
accurately. The clear distinction between undamaged and damaged cases is evident regardless of the threshold 
value, confirming the high damage detectability of the proposed GMM method in accurately assessing the state 
of the Z24 bridge.

For further evaluation, Table  13 presents the FPR and FNR obtained using the cointegration, PCA, 
conventional and the proposed GMM methods. Although the cointegration and PCA methods demonstrate 
reasonable performances in terms of low FPR (minimizing the occurrence of false alarms), they suffer from 
a significant number of misclassifications with high FNR (failing to detect actual damage). This indicates that 
these two methods are not adequately suitable for effectively detecting structural damage in the Z24 bridge. On 
the other hand, the proposed GMM method exhibits the lowest rate of misclassification and triggers only a small 
number of false alarms. Hence, the comparison of the results of damage detection shown in Table 13 reveals that 

k-th Gaussian component

The 3rd set of initial 
mean

f1 f2 f3 f4

1 3.96 5.10 10.16 10.68

2 3.93 5.15 10.10 10.66

Table 12.  The 3rd set of initial mean µ 0
k  when the number of Gaussian components is 2.

 

k-th Gaussian component

The 2nd set of initial 
mean

f1 f2 f3 f4

1 4.03 5.16 10.12 10.91

2 4.02 5.20 10.12 10.79

Table 11.  The 2nd set of initial mean µ 0
k  when the number of Gaussian components is 2.

 

k-th Gaussian component

The 1st set of initial mean

f1 f2 f3 f4

1 3.97 5.13 10.21 10.71

2 3.97 5.16 9.92 11.03

Table 10.  The 1st set of initial mean µ 0
k  when the number of Gaussian components is 2.

 

Fig. 22.  Damage detection in the Z24 bridge based on the traditional GMM using 3 different sets of initial 
parameters. For each set of initial parameters, the three sets of initial mean are listed in Tables 10, 11 and 12, 
the initial weight of the k-th Gaussian component is set as α 0

k = 1/2, the initial covariance matrix of the k-th 
Gaussian component is set as,
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the proposed GMM method outperforms the other methods in terms of having smaller errors and providing 
higher damage detectability.

In the following, the performance of the proposed GMM-based sequential iteration (SI) method is compared 
with clustering techniques based on the K-means and Fuzzy C-means (FCM) algorithms. For this comparison, 
the SI method is used to initialize the parameters of these algorithms. Damage detection results using the SI-K-
means and SI-FCM techniques are presented in Fig. 24(a)–(b). It is evident that both SI-K-means and SI-FCM 
techniques produce a significant number of false alarms during the undamaged stage, resulting in ineffective 
damage detection. In contrast, the proposed method shows almost no false alarms, as observed in the Fig. 23. 
This result may be attributed to the fact that K-means and FCM assume clusters to be spherical and of equal size, 
which is not ideal for data with varying shapes or sizes. On the other hand, GMM can handle elliptical clusters 
and accommodates different covariance structures, allowing it to better model the Z24 frequency data, which 
is not spherically distributed. As a result, the GMM-based method outperforms K-means and FCM in terms of 
clustering accuracy, leading to more reliable damage detection outcomes.

Fig. 24.  Damage detection in the Z24 Bridge based on (a) the SI-K-means method and (b) the SI-FCM 
method.

 

Cointegration PCA GMM Proposed GMM method

FPR 1.59% 2.74% 5.61% 1.63%

FNR 98.63% 98.26% 17.20% 0.75%

Table 13.  FPR and FNR obtained based on different damage detection methods.

 

Fig. 23.  Damage detection in the Z24 Bridge based on the proposed GMM method. (The black scatter points 
represent the residuals in the training phase, the blue scatter points represent the undamaged residuals in the 
test phase, and the red points are the damaged residuals in the test phase).
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Effects of different initial points and training data
To assess the impact of initial points on the damage detection of the proposed method for the Z24 bridge, we 
conducted 20 repeated damage detection processes using 20 randomly chosen initial points. Figure 25 presents 
the calculated FNR and FPR for each damage detection, while Fig. 26 illustrates the evolution of novelty index 
for two damage detections over time. It can be seen that the FPR and FNR obtained in each damage detection is 
very stable with less volatility, and almost no false alarms are observed in both undamaged and damage phases. 
The results clearly demonstrate the remarkable stability of the proposed GMM method for damage detection, 
affirming its insensitivity to the initial point selection. Furthermore, when progressive damage scenarios are 
introduced to the bridge, there is a notable increase in the novelty index values. This observation indicates the 
effective detection capability of the proposed method in identifying introduced damages, with the novelty index 
proving to be highly sensitive to structural damage while remaining unaffected by changing environmental 
conditions.

In all the previous analyses, the process of damage detection involved utilizing 80% of the observations of 
natural frequencies associated with the normal condition as the training data. In order to furtherly investigate 
the impact of the training dataset size on the performance of the proposed GMM damage detection method, new 
training datasets were created using 40%, 60%, and 100% of observations of the undamaged natural frequencies. 
These training sets comprised 1939, 2909, and 4848 learning samples, respectively, covering different wide 
ranges of environmental conditions under the normal condition. Following the procedure shown in Fig. 4 for 
the proposed GMM damage detection method, the novelty indexes are computed in training and test stages. 
Figure 27 shows the results of early damage detection in the Z24 Bridge via the proposed GMM method using 
different numbers of learning samples. Furthermore, Table 14 lists the FPR and FNR obtained under different 
training samples.

From Fig. 27; Table 14, it is evident that a significant number of misclassifications occur in the undamaged 
state when using 40% and 60% of the natural frequencies as training data. Particularly, a noticeable peak is 
observed around sample 2000 when utilizing 40% learning samples. Moreover, as the size of the learning 
samples increases, the misclassification rate decreases. Accurate and reliable damage detection can be achieved 
when using 80% and 100% of the observations from the normal condition. The observed phenomenon can be 
explained using Figs. 28 and 29, which depict the contour plots and probability distribution plots of f1 based 

Fig. 26.  Damage detection in the Z24 Bridge based on the proposed GMM method by using different initial 
points: (a) µ̂ 0 = [4.02, 5.04, 10.37,11.38]T  and (b) µ̂ 0 = [3.91, 5.18, 9.73,10.51]T .

 

Fig. 25.  FPR and FNR obtained in 20 repeated damage detection processes using 20 randomly chosen initial 
points.
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on the proposed method using different numbers of frequency data, denoted as f1 and f2. Notably, when only 
40% of the undamaged data is used as the training data, the number of Gaussian components and distribution 
diagram notably differ from those obtained with other training data percentages. This discrepancy arises 
because 40% of training samples fail to encompass frequency data under low-temperature conditions, resulting 

Fig. 28.  Contour plot for f1 and f2 obtained by the proposed GMM method under different learning 
samples: (a) 40%, (b) 60%, (c) 80% and (d) 100%.

 

Learning samples FPR FNR

40% 7.45% 0.25%

60% 3.51% 0.50%

80% 1.63% 0.75%

100% 1.51% 0.87%

Table 14.  FPR and FNR obtained via the proposed GMM method under different learning samples.

 

Fig. 27.  Damage detection in the Z24 Bridge by using the proposed GMM method under different learning 
samples: (a) 40%, (b) 60%, (c) 80% and (d) 100%.

 

Scientific Reports |        (2025) 15:23823 22| https://doi.org/10.1038/s41598-025-08206-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


in an inaccurate probability distribution. Consequently, errors occur in the calculation of the MMSD, leading 
to inaccurate damage detection. This underscores the critical importance of employing a sufficient number of 
learning samples that cover a wide range of environmental variations to ensure the accuracy and reliability of 
the damage detection process.

Real-world application 3: KW51 Bridge
To furtherly assess the effectiveness of the proposed GMM method on real structures, this section examines its 
application to the KW51 railway bridge. The KW51 bridge, a steel arch structure located on railway line L36N 
between Leuven and Brussels, Belgium, has been operational since 2003 74. In September 2018, a SHM system 
was installed to record various operational data, including acceleration, displacement, strain, temperature and 
relative humidity. From May 15 to September 27, 2019, the bridge underwent a retrofit to correct a construction 
error identified during inspections. This retrofit involved reinforcing the connections between the diagonals, 
arches, and bridge deck. Consequently, the collected data spans three distinct periods: pre-retrofit (7.5 months), 
during the retrofit (4.5 months), and post-retrofit (3.5 months). Figure 30 shows the variation of the model 
frequencies and temperature series before and after the retrofit. It can be seen that the fluctuations in natural 
frequencies are strongly affected by environmental conditions, especially the higher order modal frequencies. 
Around the 3000th sample, the stiffness of the asphalt layer on the bridge deck increased significantly due to 
frost caused by the lower temperature, resulting in a sharp increase in the natural frequency.

To evaluate the performance of various methods for damage identification, only the first 6 frequencies with 
low sensitivity to damage are selected for damage identification. Similar to the Z24 bridge analysis, 80% of 
the undamaged data was allocated for training, while the remaining 20% and all damaged data were used for 
testing. Figure 31 (a)-(d) presents the damage detection results for PCA, cointegration, conventional GMM, and 
the proposed GMM methods. A numerical comparison, summarized in Table 15, highlights the false positive 
rate (FPR) and false negative rate (FNR) for each approach. PCA and cointegration demonstrated the weakest 
performance, with high false negative rates, indicating their limited effectiveness in identifying damage in the 
KW51 bridge. The conventional GMM method showed improved results compared to PCA and cointegration; 
however, fluctuations in the novelty index during the undamaged phase suggest its limited ability to remove 
environmental influences. The proposed GMM method, by contrast, achieved the best performance, with the 
lowest error rates. During the undamaged phase, almost no novelty indices exceeded the control threshold, 
whereas all novelty indices during the damaged phase surpassed it. These findings confirm the proposed 
method’s effectiveness in eliminating environmental effects and accurately detecting structural damage.

Fig. 30.  Changes of (a) the surface temperature below the bridge deck and (b) the 14 natural frequency series 
over time. The period during which the retrofit is performed is indicated with a gray shading74.

 

Fig. 29.  Probability density of f1 obtained by the proposed GMM method under different learning samples: 
(a) 40%, (b) 60%, (c) 80% and (d) 100%.
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The choice of threshold determination method is crucial for reliable damage detection. Figure 32 compares 
four threshold methods—Gaussian distribution, chi-square distribution, F distribution, and extreme value 
distribution—with their respective FPR and FNR summarized in Table  16. The extreme value distribution 
method demonstrated superior performance, achieving the most accurate results in damage identification. 
While the other three methods produced slightly lower FNRs, their higher FPRs increased the likelihood of false 
alarms during the undamaged phase. This limitation arises from the assumption that real-world data strictly 
follow predefined statistical distributions. The extreme value distribution method, by determining thresholds 
based on the extreme values of the data, adapts more effectively to the inherent characteristics of the data, 
reducing false alarms and improving reliability in practical applications.

Limitations and drawbacks
From the above results, we can see that the shortcomings of this method are as follows:

	 (i)	 Insensitive to minor damage. For instance, in the example of Fig. 11, the algorithm cannot detect the dam-
age occurrence in damage case 1 with the minor damage (23.5 g). An improved approach is to propose a 
more sensitive damage indicator to identify the minor damage, such as weighted Mahalanobis distance or 
threshold-normalized Mahalanobis distance51.

	(ii)	 The obtained MMSD time series is non-stationary. As shown in Figs. 11 and 23, the minimum Mahalano-
bis distance obtained by the proposed method has non-stationary fluctuations, which indicates that the 
environmental effects may not be completely removed. A possible solution to this problem consists in 
using the switching cointegration method to reduce the nonstationary22.

Cointegration PCA GMM Proposed GMM method

FPR 1.25% 1.61% 4.54% 0.60%

FNR 98.33% 99.81% 0% 0%

Table 15.  FPR and FNR obtained based on different damage detection methods.

 

Fig. 31.  Damage detection in the KW51 Bridge based on the conventional methods: (a) cointegration, (b) 
PCA, (c) traditional GMM and (d) proposed GMM method.
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	(iii)	 The need for sufficient training data under varying environments. As shown in Fig. 27, inaccurate damage 
detection is obtained when using 40% and 60% of the natural frequencies as training data, while damage 
can be reliably detected when using 80% and 100% of the natural frequencies as training data. This implies 
that insufficient training data will lead to the failure of the proposed damage identification method.

Conclusion
In this article, a novel method for detecting structural damage under changing environments is proposed. The 
method combines sequential iteration and GMM to achieve accurate and efficient results. Firstly, the initial 
model parameters and the number of Gaussian components in the GMM are determined using the sequential 
iteration approach. This step helps in setting up the foundation for our analysis. Next, the EM algorithm is 
employed to construct a baseline GMM based on the natural frequencies observed under varying environmental 
conditions. This baseline GMM serves as a reference for identifying deviations caused by structural damage. 
To quantify the extent of novelty or deviation from the baseline, we calculate the MSD between each sample 
point and the center of each Gaussian component in the GMM. The minimum MSD is then utilized as the 
novelty index, enabling us to detect and pinpoint structural damage effectively. To validate the practicality and 
effectiveness of the proposed GMM damage detection method, the frequency measurements from two real-
world structures (i.e. the wooden truss bridge and the Z24 bridge) are employed.

According to the results, the detailed conclusions can be drawn as follows: (1) The proposed method effectively 
discriminates between damaged and undamaged states in real-world bridges with severe environmental 
variability. It exhibits high detectability and few false alarms, even when the observations are affected by high 
measurement noise. (2) The proposed GMM damage detection method is not sensitive to the initial point 
selection. It consistently yields stable and reliable detection results, even when different initial points are used 
in the sequential iteration step. (3) Comparative studies of different methods demonstrate that the proposed 
approach outperforms conventional cointegration and PCA methods. It shows a smaller FPR and FNR while 
achieving higher damage detectability. (4) Regarding the issue of learning sample size, the comparative study 
on the Z24 Bridge reveals that more reliable and appropriate damage detection results are obtained when the 
training dataset covers a wider range of environmental conditions. Specifically, the proposed method does not 
yield reasonable damage detection results when the percentage of training samples is smaller than 60%.

Data availability
All data generated or analysed during this study are included in this published article.
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