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One of the most significant challenges of vehicular ad-hoc networks (VANETs) is establishing reliable 
connections with the network infrastructure despite the participation concern of attacking vehicles in 
routing. Vehicles need a proper defense mechanism against all types of attacks, even if a reliable path-
planning strategy accompanies them. This paper proposes a reliable score-based routing protocol using 
a fog-assisted intrusion detection system (RSR-IDS) in VANETs. First, RSR-IDS pre-processes data using 
minimum–maximum normalization and Pearson’s correlation coefficient. The IDS is trained using three 
machine learning-based algorithms and a voting technique to reduce false detection. These algorithms 
include the decision tree, random forest, and extra trees. Deploying the IDS in the fog server solves the 
data diversity problem in the classifier training. Therefore, RSR-IDS detects abnormal data accurately 
to calculate the untrust score (US). Then, RSR-IDS selects a route with the lowest total USs and hop 
count compared to others for communications. RSR-IDS is evaluated based on the accuracy, F1-score, 
false negative rate, packet delivery ratio (PDR), packet loss ratio, end-to-end delay, and throughput 
criteria using OMNeT +  + and the UNSW-NB15 dataset. The significant improvements in RSR-IDS 
include 14.1% in accuracy, 11.4% in F1-score, and 5.4% in PDR regarding various vehicle densities.
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Protecting inter-vehicle communication (IVC) from cyber threats is controversial due to its design 
without security requirements1. Vehicles use vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) 
communications to manage data traffic in vehicular ad-hoc networks (VANETs)2. Data propagation through 
unreliable V2V and V2I communications creates security challenges. These challenges may lead to the loss of 
precise and up-to-date information about road conditions and urban traffic3. According to statistical reports, 
40 million people die and 1.35 million people are injured each year due to vehicle accidents, respectively4. 
The World Health Organization report also shows that 93% of road accident fatalities occur in low-income 
countries with unsafe intelligent transportation systems5. The data loss and delay in exchanging information 
endanger drivers’ road safety. Informing about collisions or accidents 1–2 s earlier can prevent 60% of drivers’ 
accidents5. Therefore, expanding vehicles and their communications increases cyber risks in VANETs6. Hackers 
threaten the cybersecurity of vehicles through various attacks such as denial of service (DoS), Sybil attacks, 
distributed DoS (DDoS), etc.7. These attacks affect the availability, integrity, and trust of data in VANET 
communications8. DoS, DDoS, and Black Hole attacks decrease the availability of VANET services by making 
the channel busy and sending/receiving data by the attacker vehicle, while message tampering attacks destroy 
integrity8. For example, hackers remotely controlled 1.4 million vehicles by infiltrating a Jeep Cherokee9. Also, 
attackers hijacked a Tesla vehicle by targeting its primary functions and components, like the steering wheel and 
brakes10. Despite these risks, vehicles need a proper defense mechanism to detect abnormal data traffic. End-to-
end encryption/decryption is a strong security method to protect the confidentiality and integrity of sensitive 
data, such as identifiable information and location details of vehicles11. However, generating cryptographic keys 
by third parties, exchanging them, and decrypting messages are threat points that may lead to key leakage, 
cyberattacks, and misuse11. Encryption and decryption require high computational power, storage, and 
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energy consumption, which vehicles don’t have11. Therefore, encryption/decryption algorithms may not be 
suitable security approaches due to a lack of real-time responses, high latency, and delay11. Finally, intrusion 
detection systems (IDSs) are presented as defense mechanisms of vehicles with different performances. One 
of the challenges in current intrusion detection systems is scalability and mobility, especially in VANETs with 
many vehicles12. The inability to cover the mobility of many high-speed vehicles is a fundamental problem 
in detection systems, leading to link breakages and delays in communication between vehicles13. Traditional 
IDSs developed on onboard units (OBUs) have limited problems with storage capacity, transmission range, 
computing, and power supply12. Sharing information about these IDSs leads to delays and congestion in VANET 
connections12. Implementing intra-vehicle IDSs in OBUs also increases the cost of VANETs. In VANET urban 
scenarios with high vehicle density, it is necessary to deploy a trained IDS in the fog server. The deployed IDS in 
the fog server, unlike the OBU’s detection system, should be able to identify and manage a high volume of data. 
It’s essential to handle processing, storage resources, networking power, and computation of vehicles/RSUs in 
the fog-assisted server5. Therefore, a critical challenge of the fog server is efficiently sharing resources between 
vehicles14. Fog-assisted servers are also in danger in terms of security, data, virtualization, and monitoring due 
to the distributed sharing of fog computing14. Distributed fog computing is suitable for utilizing time-sensitive 
or real-time services of VANETs due to installing its nodes at the network edge15. Despite a shorter response 
time than cloud computing, fog computing of VANETs still has several time issues, like delay and latency15. 
Some researchers solved the problem of delay and latency and reduced them using a fog computing model based 
on priority in urban environments15. Since such a strategy cannot detect new attacks or all of them, vehicles 
need an efficient IDS mechanism to detect all known/unknown attacks. Most IDSs only detect known or one 
special type of attack. The overfitting problem also exists in most machine learning (ML)-based IDSs. However, 
the lack of a suitable IDS is not the only concern of researchers in vehicular security. Many routing protocols 
have been proposed to find suitable routes. Physical obstacles in the urban communication environment 
reduce the probability of achieving a clear line of sight between the source and the destination in VANETs3. 
Solving this problem requires providing a suitable multi-hop protocol using roadside units (RSUs) and the fog 
server, considering the urban environment’s challenges for message routing. The presented routing16 is a stable 
segment-aware protocol to solve the high vehicular mobility in VANETs. The proposed segment-aware protocol 
may select far-away segments with high delivery delays. Due to the non-confidential nature of information in 
message routing, it’s also necessary to find a trusted route in VANETs3. Choosing a path with an acceptable delay 
and high reliability to establish communication is one of the important components of the routing protocol in 
VANETs17. However, in some protocols18–21, the joint route reliability and the hop count (Hc) are not considered 
jointly in selecting the best path. The presented protocol22 is a global positioning system (GPS)-based routing 
that considers reliability and the minimum Hc in selecting a communication path. The proposed GPS-based 
protocol is also not suitable in real scenarios due to the assumption of real-time awareness of the destination GPS 
from the source. Therefore, vehicles need an efficient routing protocol to support urban challenges in selecting 
a short and reliable route for V2V and V2I communications. Regardless of reliability, an attacking vehicle can 
penetrate V2V/V2I communications even with a suitable IDS23,24. Attacking vehicles may send false messages 
to VANETs, which cause accidents. Attacking vehicles may also modify or delete messages from the VANET. 
Participation of attacking vehicles in routing leads to improper traffic management, security risks, and even 
irreparable financial and life damage on highways25. Despite these risks, it is necessary to provide a new score-
based protocol to increase the security of vehicles and routing reliability in VANETs.

This paper presents a reliable score-based routing protocol using a fog-assisted intrusion detection system 
(RSR-IDS) in VANETs. RSR-IDS deploys an IDS as a scoring mechanism based on received data in the fog 
server. RSR-IDS identifies abnormal data and calculates the untrust score (US) through this scoring mechanism. 
The calculated scores are available through communications between the fog server, RSUs, and vehicles during 
routing. RSR-IDS selects a path using USs and Hc for VANET communications. The main contributions and 
innovations of this article are as follows:

•	 First, an IDS-based scoring mechanism is deployed in the fog server layer. Establishing the detection system 
of RSR-IDS in the fog server leads to data diversity in the training phase. The proposed fog-assisted detection 
strategy in RSR-IDS shows abnormal data detection with great accuracy.

•	 The classifier of this IDS is trained using three ML algorithms. These algorithms include the decision tree, 
random forest, and extra trees. They categorize data of each feature using the linear regression algorithm. The 
final detection results are determined using the voting technique. Therefore, using the voting technique is 
expected to reduce the false detection of data in RSR-IDS.

•	 After detecting data, a US is considered based on the normality/abnormality of data traffic. Calculated USs are 
available through communications between the fog server, RSUs, and vehicles during routing.

•	 In message routing, calculated USs and Hc are considered for each route. RSR-IDS selects a short and reliable 
route for communications in VANETs. According to the results, RSR-IDS enhances reliability by combining 
the IDS and the routing protocol in VANETs.

•	 RSR-IDS suggests a data traffic analysis model by deploying an IDS on the fog server. The classifier of RSR-
IDS greatly reduces overfitting using the combination of the decision tree, random forest, and extra trees 
algorithms. According to the results, RSR-IDS detects abnormal data efficiency.

•	 RSR-IDS is provided to detect abnormal data and reliable routing. It is expected that RSR-IDS will increase 
vehicle safety in VANETs. Therefore, this paper evaluates RSR-IDS using appropriate criteria in the OM-
NeT +  + simulator. These criteria include accuracy, F1-score, false negative rate (FNR), packet delivery ratio 
(PDR), packet loss ratio (PLR), end-to-end (E2E) delay, and throughput.
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The remaining sections are organized as follows:  Section “Related work”  presents related work. Section “System 
model” presents the system model of RSR-IDS. Section “Proposed model” presents RSR-IDS in this paper. 
Section “Performance evaluation” simulates and evaluates RSR-IDS. Section “Discussion” discusses RSR-IDS, 
and Section “Conclusion” concludes.

Related work
Automotive communications are prone to many data security challenges in the VANET ecosystem. These 
challenges are inherently affected by vehicular path planning, environmental security threats, communication 
protocols, network scalability, data handling strategies, etc.26. It is necessary to provide delay-tolerant routing 
protocols that outperform security concerns, even if the network suffers from weak communications. Automotive 
routing protocols have recently been planned to handle secure data propagation over unsecured networks. Due 
to the time-variant vehicular mobility models and the variety of propagated data types in VANETs, identifying 
hackers’ attack strategies is quite challenging26. The wireless communication nature of VANETs always makes 
these networks susceptible to security threats. Hackers always threaten vehicle security with various new attacks 
in VANETs. Considering the financial and life damages of these attacks for consumers, appropriate defense 
mechanisms for these risks are always necessary. So far, researchers have proposed various IDS techniques to 
detect cyberattacks in VANETs23,24,27. Due to the participation of attacking vehicles in the routing messaging, 
it is necessary to have a reliable routing protocol. The scalability of secured-routing protocols for real-time 
responses to highly dynamic and time-variant vehicular requirements is another security challenge of VANETs26. 
Researchers have proposed various routing protocols in VANETs18–21. This section reviews previously published 
research addressing the IDS models and IDS-aware routing protocol solutions.

IDS
IDSs play an essential role in improving vehicular security by detecting abnormal data. Researchers present 
various IDS models with different efficiencies. This subsection examines some IDS models in VANETs.

Bengui et al.23 presented a two-phase IDS to increase accuracy and reduce false alarms. They mentioned a 
challenge that limited resources and data lead to novel attacks not being detected in ML models. They were also 
going to decrease detection time by lowering the computing process and deploying a lightweight IDS. First, 
the classifier of this IDS was trained by the random forest algorithm and attack signatures. The random forest 
algorithm aimed to process a large amount of data, decrease computational time, and detect well-known attacks. 
After classifying, the IDS planned to generate an alert message when facing an attack. Otherwise, the trained 
classifier reclassified normal data with a clustering algorithm based on coresets. The aim of using the coresets 
cluster-based algorithm is to detect unknown attacks and decrease the false positive rates. After reclassifying, an 
alert message was generated if an attack took place by received data. The proposed model showed better accuracy 
and efficiency than classical ML algorithms. According to the results, the suggested IDS reduced processing time 
while maintaining the quality of big data analysis. It is reasonable that the computation time of the proposed IDS 
was higher than the random forest and coresets algorithms. The authors intended to reduce the false alarm using 
the proposed IDS, but didn’t statistically examine FNR.

A hybrid IDS model was presented24 to detect known/unknown attacks on IVCs and intra-vehicle 
communications. Traditional ML algorithms preprocessed data and selected essential features to increase data 
quality for accurate detection. The signature-based IDS was trained using four supervised ML algorithms, 
including the decision tree, random forest, extreme gradient boosting (XGBoost), and extra trees. These ML 
algorithms detected known attacks on IVCs and intra-vehicle communications. Bayesian optimization with the 
tree Parzen estimator method was also used to optimize supervised ML algorithms. The anomaly-based IDS was 
also trained using an unsupervised k-means clustering algorithm and biased classifiers to detect zero-day attacks. 
A Bayesian optimization with the Gaussian process (BO-GP) method was used to optimize unsupervised ML 
algorithms. The advantages of the proposed model include efficiency in handling high volumes of data and the 
ability to run on vehicles in real time. Moreover, using optimization algorithms and the low computational-time 
complexity are other advantages. The low processing time led to the real-time implementation of the proposed 
model in modern vehicles. The proposed IDS can’t effectively detect most fuzzy attacks on intra-vehicle networks. 
The proposed model is also less effective for detecting unknown attacks than designed mechanisms for a type of 
attack, especially in external vehicle networks.

Alsarhan et al.27 presented a support vector machine (SVM)-based IDS in VANETs. They mentioned that 
the SVM algorithm can manage a small sample or extensive data. Using SVM also leads to irrelevance between 
the algorithm’s complexity and the sample’s dimension. A penalty function was used in the proposed IDS to 
regularize and control the complexity of the classification. The IDS was optimized using the genetic algorithm, 
particle swarm optimization (PSO), and ant colony optimization algorithms. The utilized algorithms solved the 
optimum local problem. The suggested IDS showed the best performance when using the genetic algorithm. 
Several issues, such as the connection of algorithm complexity and sample dimension, classifying a large amount 
of data, and managing a small sample, were solved in this system. It seems that the proposed IDS has a high 
mathematical complexity.

Karthiga et al.28 presented an Intelligent hybrid IDS based on ML and deep learning algorithms to detect 
known/unknown attacks in VANETs. Due to the large size of VANET’s traffic, they preprocessed data to remove 
duplicate items. In the training phase, patterns were obtained from the pre-processed traffic dataset using the 
signature module and the adaptive neuro-fuzzy inference system (ANFIS) classifier. Known IDS (KIDS) and 
unknown IDS (UIDS) modules used these patterns to detect attacks. In the testing phase, real-time traffic data 
were pre-processed to remove redundant data. Then, known and unknown attacks were detected by ANFIS-based 
KIDS and convolutional neural networks (CNN)-based UIDS modules, respectively. The modified LeeNET, as 
a simple architecture of conventional deep learning, was used to detect the type of unknown attacks. This IDS 
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accurately detected external attacks such as Botnet, PortScan, DoS, and Brute Force in VANETs. The proposed 
IDS had a lower detection rate for brute-force attacks than others on the i-VANET dataset. The presented IDS 
also had more detection time for Botnet attacks in VANETs. One of the advantages of their proposed model is 
detecting unknown attacks using soft computing techniques. The suggested IDS improves the detection rate 
compared to other works.

Amaouche et al.29 presented an enhanced IDS based on the random forest method to improve precision and 
accuracy in VANETs. They believed that the high speed of vehicles is an important issue, leading to unstable 
communications and the complexity of security measures in VANETs. First, non-numeric data were converted 
into numerical values using the one-hot encoding technique in the proposed model. The synthetic minority over-
sampling technique (SMOTE) was also used to solve the class imbalance and overfitting problems in the data 
pre-processing step. In the feature selection step, the mutual information filtering method was used to optimize 
the data quality and decrease resource consumption. The minimum–maximum normalization (MinMaxScaler) 
method also normalized feature values. In the classification step, the trained classifier identified data using the 
random forest algorithm and 15 features. Their suggested model achieved high accuracy, recall, precision, and 
F1-score compared to others. One of the advantages of this model is the reduction of resource consumption. The 
proposed IDS is limited to the fast mobility of vehicles in VANETs.

Arya et al.30 presented an IDS based on ensemble federated learning and CNN while saving time and resources 
in VANETs. Vehicles were local devices in the proposed IDS. They mentioned that the high mobility of vehicles 
and the lack of security approaches are important challenges in smart cities. In the first step, heterogeneous 
data were pre-processed for individual clients to solve the class imbalance. Then, the classifier of client models 
was trained using a 1D CNN as an information extractor and heterogeneous local data. The goal of using CNN 
was to select assistant features in spatial data. The trained classifier of local models retained data and shared it 
upon request to reduce communication overhead with neighbors. The trained heterogeneous client classifiers 
were ensembled into a centralized federated CNN model in the third step. The weights of trained models were 
aggregated to update the centralized model weight. Due to the high communication cost and data heterogeneity 
problems of traditional federated learning, the proposed method used the PSO algorithm to optimize the weight 
of local models. The centralized model weight was tuned and optimized using a nature-inspired PSO algorithm. 
The detection accuracy improved using PSO optimization and the ensemble technique. Abnormal data were 
detected by the federated ensemble CNN model. Using federated learning aimed to protect the privacy of local 
data in edge devices. The proposed model also generated an alarm if it identified a problem or harmful data in 
VANETs. The advantages of the proposed system are saving time and resources, solving the overfitting problem, 
and managing a large volume of data in the urban environment. The presented IDS had a higher false positive 
rate (FPR) than the K-nearest neighbor (K-NN) algorithm.

Ajjaj et al.31 presented a multivariate statistical detection scheme (MVSDS) using real-time traffic monitoring 
to identify routing attacks like the black hole in VANETs. They mentioned that the restriction of delay in the 
delivery of messages is a challenge for VANETs. In the first step, real-time traffic data were monitored based on 
throughput, dropped packets ratio, and overhead traffic ratio metrics. The collected data were normalized using 
z-score, MinMaxScaler, and decimal scaling techniques in the rescaling step. The obtained data were modeled 
as detection input by a multivariate dataset sampled at different times. Multivariable datasets were transformed 
into univariate samples using the Rao–Ali test for each time window. Ryan–Joiner test calculated the correlation 
coefficient for the obtained univariate samples. In the attack detection step, abnormal behavior was detected if the 
calculated correlation coefficient was less than the threshold value. Indeed, the proposed model detected normal 
behavior from abnormal by confirming multiple network characteristics with data samples. A notification was 
generated when an abnormal behavior was detected. Based on the results, the proposed scheme performed 
better using the MinMaxScaler technique. The proposed scheme could be applied without changes to routing 
protocols like ad-hoc on-demand distance vector (AODV) in VANETs. The presented scheme was only designed 
for routing attacks like the black hole.

The studied IDSs have different strengths and weaknesses in identifying abnormal data. Table 1 summarizes 
studied IDSs regarding challenges, innovations, advantages, disadvantages, and future works. Fog computing-
based methods were presented for VANETs using encryption methodology to identify malicious nodes, but 
had high processing delay and overhead32,33. However, to solve network overhead, a customized fog-based IDS 
was presented for a specific type of attack33. Some IDSs23 were also designed to reduce the false alarm, but 
were not studied statistically. The FNR of RSR-IDS is studied statistically in section “Performance evaluation” 
to show how to solve resource constraints by deploying the proposed IDS in the fog server. Some IDSs24,28 
cannot effectively detect one type of attack. Most IDSs can detect known attacks or a special type in VANETs31. 
Some IDSs can detect both known/unknown attacks. The proposed RSR-IDS is presented to identify any kind 
of known/unknown abnormal data. Unlike some other IDSs29, the proposed RSR-IDS covers the mobility of 
vehicles in urban environments and solves the overfitting of ML algorithms in some classifiers. RSR-IDS, like 
most detection systems, can also be efficient with a high volume of data. However, the studied IDSs try to 
maintain high accuracy in detecting attacks, but none consider routing reliability in VANET communications. 
To resolve this challenge, RSR-IDS is proposed to enhance the reliability of communications using a fog-assisted 
IDS and a US-based routing protocol.

Routing protocol
Routing protocols are proposed to select suitable message routes in VANETs. This subsection presents several 
routing protocols in the Internet of Vehicles (IoV) and VANETs.

Sharma et al.21 presented an extended on-demand multicast routing protocol (ODMRP) to control the 
communication in VANETs. They referred to rapid changes, huge scale, and link disconnections as VANET’s 
challenges. This protocol was secured using a security algorithm based on a cryptographic method. This 
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security algorithm combined the advanced encryption standard (AES) and the revest Shamir Adelman (RSA). 
The combined key generation algorithm generated a message and sent it to the base station to announce the 
responsible RSU for authentication. After initializing the configuration and running the ODMRP routing, RSA 
created public/private keys to generate the asymmetric key by AES. Finally, a secret shared key was generated 
to send to the receiver RSU. The receiver RSU used the private key for the decryption of the secret shared 
key. The AES algorithm had a better encryption time than the combined security algorithm. The proposed 
protocol increased throughput and PDR, reducing the PLR and packet delivery time. The suggested model used 
the encryption technique to keep the message secure. The encryption ratio is limited to reduce the proposed 
protocol’s complexity. A weakness of this protocol is the participation of attacking vehicles in routing.

Magaia et al.20 presented a cluster-based routing protocol to support IoV’s reliable communications. They 
mentioned that high vehicle speeds and unstable and unreliable communication are essential issues in IoV. The 
proposed protocol used a clustering algorithm at the network’s edge and the group’n route (GnR) approach in 
routing. Nodes were clustered based on Euclidean distance and k-means clustering in this protocol. Indeed, the 
proposed protocol clustered vehicles with the same connections using social relationships. Cluster heads were 
selected based on two metrics by the edge. After clustering, routing was done based on specific metrics and 
forwarding policies. The proposed protocol supported stable communication through graphs of relationships 
and ML in the IoV. Using social relationships in clustering routing covered the mobility and patterns of vehicles. 
Despite controlling the number of message copies, the proposed protocol has acceptable PDR and overhead. The 
proposed protocol maintained its proper efficiency by increasing the number of nodes. The suggested routing 
has worse results in overhead and PDR than the enhanced privacy-preserving opportunistic (ePRIVO) protocol. 
In the proposed protocol, routing reliability was not considered for V2V communications.

An extended AODV routing protocol was presented in VANETs by Kumar et al.19 to detect black hole attacks. 
They referred to the router role of vehicles and the probability of sharing spoofed routing tables in VANETs. 
The route request (RREQ) and the route reply (RREP) packets were modified to secure routing in the proposed 
protocol. Before forwarding the packet, the destination vehicle confirmed the source through the packet 
sequence number. A cryptographic function was used for encryption/decryption to increase routing security. 
The proposed protocol removed malicious vehicles from the network by cutting off their communications. 
Based on the results, the proposed protocol has a high network performance compared to the default AODV, but 
the disadvantage is low efficiency with high overhead in real scenarios.

A secure routing protocol was presented by Divya et al.18 using the clustered vehicle location protocol 
(CVLP) and the hybrid krill herd-bat optimization (HKH-BO) technique to enhance secure communications 
in VANETs. CVLP reduced energy consumption and packet delay on the network. HKH-BO identified black 
hole and wormhole attacks based on packet delivery time. Black hole and wormhole attacks were mentioned as 
destroyers of data broadcasting regions in VANETs. Based on the results, the proposed protocol improved data 
transmission by minimizing overload and delay while increasing the sent packets. The suggested algorithm is 
not scalable, and if the vehicle density increases, the network throughput decreases significantly. A disadvantage 

Ref. Challenge Innovation Advantage Disadvantage Future work

23
Detecting known/
unknown attacks with 
high accuracy

Random forest and 
coresets-based clustering 
algorithms

✓ Higher accuracy than classical ML
✓ Reducing the processing time while 
maintaining the quality of big data analysis

✓ Higher computation time 
than basic algorithms
✓ The Lack of statistically 
examining FNR

-

24 Detecting known/
unknown attacks on IVCs

Signature/anomaly-based 
IDSs using ML and the 
k-means clustering

✓ Efficiency in the high volume of data
✓ Running on vehicles in real-time
✓ Using optimization algorithms
✓ Low computational-time complexity

✓ Failure to detect fuzzy 
attacks effectively
✓ Less efficient in detecting 
unknown attacks than IDSs 
designed for one attack

Using unsupervised and 
online learning methods

27

Detecting types of attacks 
while solving algorithm 
complexity and sample 
dimension problems

SVM-based IDS using 
optimization algorithms in 
VANETs

✓ Classifying a large amount of data
✓ Managing a small sample
✓ Solving optimum local problems
✓ Controlling the complexity of the 
classification using a penalty function

High mathematical complexity
Using deep learning and real 
big datasets for training SVM 
classification

28

Detecting known/
unknown attacks such as 
Botnet, PortScan, DoS, 
and Brute Force

ANFIS-based KIDS and 
CNN-based UIDS modules

✓ Improving the detection rate
✓ Detecting unknown attacks using soft 
computing techniques

✓ High detection time for 
Botnet attacks
✓ Lower detection rate for 
Brute Force attacks than others

✓ Using Deep Learning to 
Improve Security
✓ Optimizing performance 
using the proposed methods

29
Detecting various attacks 
by selecting features and 
handling class imbalance

Random forest and pre-
processing methods

✓ Reduction of resource consumption
✓ Higher performance than others

Limitations in the fast mobility 
of vehicles

Developing adaptive IDSs 
to solve the problem of fast 
mobility

30

Detecting intrusion 
while saving time and 
resources and reducing 
communication overhead

Centralized IDS containing 
weighted local models using 
ensemble federated learning 
and CNN

✓ Improving accuracy using PSO
✓ Solving the overfitting problem
✓ Managing a large volume of data

Higher FPR than the K-NN 
algorithm

✓ Deploying a model with 
higher performance in Apache 
Spark and Kafka
✓ Using nature-inspired 
optimization methods to 
reduce dimensionality

31 Detecting routing attacks 
like the black hole

Proposing MVSDS using 
real-time traffic monitoring 
and pre-processing methods

Applying without changes to the routing 
protocols

Lack of statistical analysis of 
the proposed scheme with 
other detection models

✓ Integrating performance 
metrics with the proposed IDS
✓ Implementing a reaction 
scheme for routing attacks

Table 1.  A summary of studied IDSs.
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of the proposed protocol is its focus on the security of cluster heads, and the security of cluster members was not 
considered in the proposed protocol.

The studied routing protocols have different performances regarding PDR, PLR, E2E-delay, throughput, etc. 
Table 2 summarizes the protocols studied regarding challenges, innovations, advantages, disadvantages, and 
future works. Many routing protocols are secured against only one type of attack19. Therefore, these protocols are 
vulnerable to other attacks. RSR-IDS is designed to detect all known/unknown abnormal data. Several protocols 
are empowered by encryption and decryption methods using security algorithms19,21. These methods may have 
a limited encryption ratio19. RSR-IDS chooses a safe and short path without encrypting/decrypting messages. 
Increasing nodes decreases the network throughput significantly in many protocols18. Some routing protocols 
have high overhead in real scenarios19. Many clustering protocols are only focused on the security of cluster 
heads18. RSR-IDS considers the safety of all vehicles by identifying data and choosing a reliable route in VANETs. 
The studied protocols try to have a high network performance without considering routing reliability. Therefore, 
attacking vehicles may participate in the routing of VANETs.

System model
RSR-IDS is an IDS-adaptive routing protocol wherein the IDS of Yang et al.24 inspires the detection system 
of RSR-IDS. Figure 1 shows the diagram of the RSR-IDS system model. First, the input data is entered into 
the pre-processing step. Data traffic is pre-processed in RSR-IDS by two techniques, including MinMaxScaler 
and Pearson’s correlation coefficient (PCC) techniques. Data traffic is categorized by the three ML classifier 
algorithms of Yang’s IDS using linear regression. The routing of RSR-IDS is modeled from the AODV protocol. 
This section examines data pre-processing techniques, linear regression, basic IDS, and routing protocol. Table 
3 shows notations used in the equations of the system model to facilitate understanding.

Data pre-processing techniques
Various techniques are presented to pre-process data in IDSs. RSR-IDS uses MinMaxScaler and PCC techniques 
for data pre-processing. These two techniques are examined in the following:

MinMaxScaler technique: MinMaxScaler is one of the scaling techniques in data pre-processing to normal-
ize data in a fixed range34. In addition to equating the scale of data, the limits of their change should also be 
within a fixed range. This rescaling is obtained through Eq. (1)34:

	
Xnorm = Xold − Xmin

Xmax − Xmin
� (1)

where Xmin represents the minimum value, Xmax represents the maximum value and Xold is the original data.

PCC technique: PCC is a data pre-processing technique to measure the dependency between features in data 
without labels35. By determining the correlation of features, it is possible to estimate their efficiency in identi-
fying normal and abnormal data35. Suppose a dataset has N  samples with f1,f2,..,fd features. The number of 
classes in this dataset is equal to w. Also, f1 has xi values, and f2 has yi values. According to these, the PCC 
between f1 and f2 features is calculated through Eq. (2)35:

	

P CC (f1, f2) = cov (f1, f2)
σf1 .σf2

=
∑N

i=1(xi − Mf1 )(yi − Mf2 )√∑N

i=1(xi − Mf1 )2.

√∑N

i=1(yi − Mf2 )2
� (2)

Ref Challenge Innovation Advantage Disadvantage Future work

21

Evaluating the efficiency 
of the proposed ODMRP 
and improving the 
security in VANETs

Proposing 
ODMRP using 
an encryption 
algorithm

✓ Reducing the protocol’s complexity by 
encryption ratio
✓ Increasing the throughput and PDR
✓ Reducing PLR and the packet delivery time

✓ Participation of attacking vehicles in 
routing
✓ Higher encryption time than AES

Using ODMRP in 
security-sensitive 
applications such as 
government and police 
agencies

20

Low computational and 
bandwidth overheads in 
routing while covering 
node mobility

Cluster-based 
routing protocol 
using GnR

✓ Supporting stable communication
✓ Maintaining efficiency by increasing nodes

✓ Ignoring the routing reliability in V2V 
communications
✓ Worse overhead and PDR ePRIVO

✓ Using clustering 
algorithms to estimate the 
number of clusters
✓ Finding the optimal 
location of RSUs

19 Routing while detecting 
the black hole attack

AODV used a 
cryptographic 
function

✓ Removing malicious vehicles from the network
✓ Higher performance than the default AODV

✓ Low efficiency with high overhead in real 
scenarios
✓ Failure to detect other attacks

Using the proposed 
approach to detect end-
to-end rounding overhead 
attacks

18
Routing while detecting 
black hole and wormhole 
attacks

CVLP and 
HKH-BO

✓ Reducing energy consumption and packet 
delay
✓ Improving the overload, delay, and sent 
packets

✓ Ignoring the security of members in the 
cluster
✓ Decreasing throughout while increasing 
vehicles
✓ Failure to detect other attacks

-

Table 2.  A summary of studied protocols.
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Notations Phrase

Xnorm Normalized data using MinMaxScaler

Xold Original data in MinMaxScaler

Xmin Minimum value of data in MinMaxScaler

Xmax Maximum value of data in MinMaxScaler

N Number of data samples

f1 ,f2 ,..,fd Features of data in PCC

w Number of data classes in PCC

xi Values of f1  feature in PCC

yi Values of f2  feature in PCC

cov() Covariance

σ Standard deviation

x Input data value in linear regression

y Class of data in linear regression

Table 3.  Notations of equations in the system model section.

 

Fig. 1.  The diagram of the RSR-IDS system model.

 

Scientific Reports |        (2025) 15:25709 7| https://doi.org/10.1038/s41598-025-08228-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


where cov() is the covariance and σ is the standard deviation. Also, Mf1  and Mf2  are calculated through Eqs. 
(3–4)35:

	
Mf1 =

∑N

i
xi

N
� (3)

	
Mf2 = N

N∑
i

yi� (4)

The PCC output is a number between -1 and 1. Values close to -1 or 1 indicate a strong correlation of features. 
Values close to 0 also indicate no correlation between features35.

Linear regression
In VANETs, not all data traffic is binary numbers. Tree-based ML algorithms need a technique to categorize 
feature values for drawing their trees. RSR-IDS uses linear regression to draw trees and categorize data. This 
technique looks for a linear function among feature values, as shown in Eq. (5)36:

	 y = ax + b� (5)

where a is the correlation coefficient, and b is the constant parameter. The correlation coefficient and constant 
parameter are calculated from Eq. (6–7)36:

	
Coefficient =

N
∑

xy −
∑

x
∑

y

N
∑

x2 − (
∑

x)2 � (6)

	
ConstantT erm =

∑
y

∑
x2 −

∑
x

∑
xy

N
∑

x2 − (
∑

x)2 � (7)

where x represents the input data value and y represents the data class. N  indicates the number of samples.

Baseline IDS
RSR-IDS is inspired by the detection system of Yang et al.24. Their suggested IDS detects abnormal data for 
IVC and external networks. The proposed IDS in24 uses the K-means clustering, the SMOTE, and the z-score 
techniques in the pre-processing. Moreover, their proposed detection system uses the information gain method 
and the fast correlation-based filter (FCBF) algorithm in the feature engineering step. The classifier is trained 
for signature-based and anomaly-based detection steps using four tree-based ML algorithms and K-means 
cluster labeling, respectively. These algorithms include the decision tree, random forest, extra trees, and XGboost 
ensembled as a model. Signature-based and anomaly-based detection systems are optimized using two Bayesian 
algorithms. Yang’s IDS can detect normal data, unknown/known attacks, and their type. We modified Yang’s 
detection system to match the RSR-IDS protocol. The pre-processing of RSR-IDS is completely different from 
Yang’s system. RSR-IDS includes the decision tree, random forest, and extra trees for classification. The detection 
system of RSR-IDS obtains final outputs through the voting technique.

Routing requirements
This paper models RSR-IDS from the AODV protocol. Routes are discovered in the AODV protocol only when 
needed. AODV protocol suits wide area networks with high dynamics. This protocol selects a path with the 
least Hc between the source and destination nodes. Table 4 shows abbreviations used in the AODV routing 
protocol to facilitate understanding. Control messages of this protocol include RREQ, RREP, and route error 
(RERR) messages37. The RREQ message includes the route request ID (RREQ_ID), IP addresses (SRC_IP, 
DST_IP), sequence numbers (SRC_SEQ, DST_SEQ), Hc and request flags (Fq) fields38. The RREP message 
contains SRC_IP, DST_IP, DST_SEQ, lifetime (Tl), response flags (Fr), prefix size (Ps), and Hc fields. To start 
routing discovery, a RREQ message is generated and broadcasted by the source node. If the neighbor node is 
the destination, it returns a RREP message to the source. Receiving the RERR message means link failure. This 
message is sent by a node adjacent to the damaged. The RERR message starts the path discovery to remove 
the lost routes. This message contains the unreachable destination count (UNR_DST_CNT), unreachable IP 
Addresses (UNR_DST_IP), and unreachable destination sequence number (UNR_DST_SEQ) fields. We modify 
the AODV protocol to be compatible with RSR-IDS.

Proposed model
The proposed RSR-IDS establishes reliable routing based on the classified data and uses a detection system as the 
scoring mechanism deployed on the fog server. RSR-IDS selects the message path in the routing using extracted 
USs and the investigated Hc from the source to the destination.

RSR-IDS is described in four subsections, including the network architecture and RSR-IDS protocol. Section 
“Network architecture” describes the RSR-IDS network architecture and‌ shows the intelligent transportation 
network strategy in the proposed data-based routing. Section “RSR-IDS” also explains the RSR-IDS routing 
protocol in this paper.
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Network architecture
As shown in Fig. 2, the RSR-IDS network architecture consists of four layers, including the perception layer, 
communication layer, processing layer, and decision layer. The perception layer comprises vehicles with 
different internal/external sensors to collect information39. RSR-IDS supports V2V and V2I communications 
via dedicated short-range communication (DSRC)39–41. The processing layer includes gateways, storage, and fog 
servers for easier data access and management. As depicted in Fig. 2, RSR-IDS deploys a 4-step mechanism in 
the processing layer before the results are sent to the decision layer. The decision layer processes and manages 
the collected data to deploy the scoring mechanism of RSR-IDS.

Deployed RSUs in RSR-IDS communicate to the fog server directly to send the collected data from surrounding 
vehicles. The utilized one-hop communication between RSUs and fog servers makes a real-time location-based 
detection strategy in the proposed RSR-IDS. By collecting and processing data, RSR-IDS tries to enhance the 
security and reliability of VANET communications through the proposed fog-enabled decision-making system. 
Using the fog-assisted computing layer, RSR-IDS can reduce the latency of data transmission and increase the 
performance of the IDS even in such dynamic networks. Customized location-dependent real-time data analysis 
through a deployed fog computing layer leads to the quick identification and response to anomalies.

Figure  3 shows the intelligent transportation network for the RSR-IDS protocol. According to Fig.  3, 
each vehicle sends data to a connected RSU. Then, the collected data are sent to the fog server by RSUs for 
the classification and scoring process of the centralized IDS. During the RSR-IDS routing, calculated USs are 

Fig. 2.  Layers of the VANET network in RSR-IDS.

 

Abbreviations Phrase

RREQ Route request

RREP Route reply

RERR Route error

RREQ_ID Route request ID

SRC_IP Source IP addresses

DST_IP Destination IP addresses

SRC_SEQ Source sequence numbers

DST_SEQ Destination sequence numbers

Hc Hop count

Fq Request flags

Tl Lifetime

Fr Response flags

Ps Prefix size

UNR_DST_CNT Unreachable destination count

UNR_DST_IP Unreachable IP Addresses

UNR_DST_SEQ Unreachable destination sequence number

Table 4.  Abbreviations of the AODV routing protocol.
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provided to vehicles if needed. Vehicles receiving the RREQ message with a lower US send the RREP message 
to the source. Upon receiving the first RREQ message by the destination, the main route with the least total USs 
and Hc is selected.

RSR-IDS
RSR-IDS is a reliable routing protocol organized by a centralized scoring mechanism deployed in the fog 
server. In the path discovery operation of RSR-IDS, the message route is selected considering USs and Hc from 
the source to the destination. Figure 4 shows the flowchart of the RSR-IDS protocol. The RSR-IDS protocol 
is completely studied in the “Data-based scoring mechanism” and “US-based routing protocol” subsections 
to address the proposed scoring strategy and routing protocol, respectively. Section “Data-based scoring 
mechanism” explains the proposed data-based scoring mechanism in five steps. The steps include data pre-
processing and classification, checking the data and vehicle status, and the output of the scoring mechanism. 
Section “US-based routing protocol” explains the proposed US-based routing protocol in six steps. The steps 
include checking the received message, receiving the RREQ and checking the vehicle status, receiving the RREP 
and checking the status of the vehicle, and receiving the RERR message.

Data-based scoring mechanism
In the RSR-IDS protocol, the data-based scoring mechanism is a detection system deployed in the fog server. 
This mechanism calculates the US for each vehicle based on data classification. Algorithm 1 shows the data-
based scoring mechanism of RSR-IDS. This mechanism is described in the following five steps:

Step 1: Data pre-processing
RSR-IDS pre-processes data traffic using two techniques. Data traffic is normalized in RSR-IDS using the 

MinMaxScaler technique. The correlation of data is measured in RSR-IDS using the PCC technique. Section 
“Data pre-processing techniques” describes these techniques.

Fig. 3.  The intelligent transportation network in RSR-IDS.
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Fig. 4.  The flowchart of the proposed RSR-IDS.

 

Scientific Reports |        (2025) 15:25709 11| https://doi.org/10.1038/s41598-025-08228-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


�� Input: Data traffic of vehicles;

�� Output: USs of vehicles;

�� Initialize:
n ← number of vehicles;

m ← number of data with the same identity;
US() ← 0;

Node_Inf() ← variables for recording US();
�� Begin

1: Step1: for (D =  data_traffic()) do
2: Pre-process (D);
3: Split data_traffic() to train_data() and test_data();
4: end for
5: Step2: Train the classifier by giving train_data() to the decision tree, 

6: random forest and extra trees algorithms using regression;

7: while (D =test_data()) do
8: Classify D using tree algorithms of step2;

9: Determine the result of the normality/abnormality using the  

10: voting method;

11: Step3:           for (i←1 to n) do
12: Step4:                         for (t←1 to m) do
13: if D is abnormal then
14: US(i) ← US(i) + 1;
15: Dropping the abnormal data;

16: end if
17: t ← t+1;
18: end for
19: Step5:                        Recording US(i) in Node_Inf(i);
20: i ← i+1;
21: end for
22: end while

�� End

Algorithm 1.   The data-based scoring mechanism of RSR-IDS.

Step 2: Data classification
The trained classifier classifies data as normal or abnormal after the pre-processing step of RSR-IDS. This 

classifier is trained using the labeled dataset and three ML algorithms. These three algorithms include the 
decision tree, random forest, and extra trees. These algorithms categorize feature values using linear regression. 
The final outputs of this classifier are calculated based on the voting technique in the testing phase.

Step 3: Checking the data status
After the data classification into normal or abnormal categories, one of the following two situations occurs 

in this step:

	1.	 If the input data of the i th vehicle (Vi) at the moment T1 are identified as abnormal, the fog server drop it 
and update the US of Vi( US(i)) according to Eq. (8):

	 UST1 (i) = UST0 (i) + b� (8)

where b is a small value (such as 1) in the proposed IDS.

	2.	 If the input data of Vi at the moment T1 are identified as normal, US(i) is unchanged.

Step 4: Checking the data status of vehicles
Vehicles generate time-variant data traffic, and the fog server receives and classifies all the data from all 

vehicles. The US of Vi is calculated based on the classification results of all data with the same ID until the 
desired time (Tt). This step checks whether vehicle data at all times are classified. In this step, one of the following 
two situations occurs:

	1.	 If all data of Vi  are not classified at all times, data of Vi are checked at different times by adding to the time 
counter (t).

	2.	 If all data of Vi are classified at all times, the US(i) is recorded in a variable. Data traffic of other vehicles is 
also checked by adding to the vehicle counter (i).

Step 5: Output of scoring mechanism
RSR-IDS deploys a detection system in the fog server to use the USs of vehicles and record the calculated 

scores in variables. The USs are always available, and vehicles can access them through RSUs during route 
discovery of RSR-IDS. Based on the above, the detection system of RSR-IDS is a data-based scoring mechanism 
in message routing.

US-based routing protocol
RSR-IDS is an untrusted score-based routing protocol that selects a route with a lower Hc and minimal USs 
compared to other routes. RSR-IDS uses the AODV protocol but proposes a different method for route discovery. 
The routing protocol in RSR-IDS is performed if the source and destination vehicles are not in the same RSU 
range. Algorithm 2 shows the US-based routing protocol of RSR-IDS.
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Step 1: Checking the received message
The neighboring vehicle checks the message type after receiving a message. This message can be an RREQ, 

RREP, or RERR message.
Step 2: Receiving the RREQ message
The source vehicle generates and broadcasts an RREQ message at the beginning of the route discovery 

process. The Hc value of this message is 0. At the beginning of the route discovery, the Minimum value of US 
(Min_US) equals 1000. Min_US is a variable to determine the lowest US. The Min_US variable leads to selecting 
the route with the lowest total USs compared to others.

Step 3: Checking the vehicle status after receiving the RREQ message
After receiving an RREQ message, the vehicle checks whether it is the destination. In this step, one of the 

following two situations occurs:

	(A)	 If the vehicle is the destination, the RREQ message is stopped from being broadcast. This vehicle gener-
ates and sends an RREP message to the source. In the message, Hc and DST_SEQ are equal to 0 and the 
DST_SEQ of the destination, respectively.

	(B)	 If the vehicle is not the destination, it checks whether it knows a valid route to the destination. In this case, 
one of the following two situations occurs:

	 1.	 If the vehicle has a valid route to the destination, it compares the Min_US value and its US variable (Node_
Inf). If the Node_Inf value of this vehicle is smaller than the Min_US, the Min_US is updated to it. This 
vehicle also generates and sends an RREP message to the source. In the RREP message, Hc equals Hc from 
this vehicle to the destination. The DST_SEQ of the RREP message equals the DST_SEQ of this vehicle.

	 2.	 If the vehicle has no valid route to the destination, its US is added to the Node_Inf value. The Hc of the 
RREQ message is also increased. After modifying the RREQ message, this vehicle broadcasts it to neigh-
bors.

 

� Input: Control packets ( ; ; );

�� Output: Unicast main route from source to destination;

�� Initialize:
S ← Source vehicle; US (i) ← US of the vehicle (i);

D ← Destination vehicle; Min_US ← Minimum US ();
← Vehicle (i); Node_Inf (i) ← Variable for US (i);

CP ← Control packet; Dest_seq ← Destination sequence number;
I () ← vehicles receiving CP; Org_seq ← Originator sequence number;

← Route request; ← Destination only flag;
← Route reply; ← Hop count;
← Route Error; RT ← Routing table;

�� Begin
1:    Step1: S create and broadcast ;

2:                   ( ) ← 0; Min_US ← 1000;
3:               while ( = I ()) do
4: Step2:     if (CP = ) then
5:                       if invalid then
6:                              Discard old or duplicate ;

7:                         end if
8: Step3:           if ( = D) then
9:                              D create and send it to S;
10:                                Dest_seq ( ) ← Dest_seq (D); ( ) ← 0;
11:       else if ( has an active route to D) then
12: if (Node_Inf (i) < Min_US) then
13:                                Min_US ← Node_Inf (i);
14:                            end if
15: if (DOF = FALSE) then
16: if (Node_Inf (i) < Min_US) then
17:                                  Create and send it to S for the main route;

18:                                Dest_seq ( ) ← Dest_seq ( ); ( ) ← ( );
19:                                end if
20:                            end if
21:                       else
22:                           Node_Inf (i) ← Node_Inf (i) + US (i);
23:                RT ← Org_seq ( ); ← +1;
24:          Setup reverse route and rebroadcast ;
25:                       end if
26:  Step4:   else if (CP = ) then
27:                       Remove lost routes and rediscover the route;

28:  Step5:     else if (CP = ) then
29:  Step6:           if ( = S) then
30:                           Send data to D;
31:                       else
32:                           ( ) ← ( ) + 1; Forward towards S;
33:                      end if
34:                 end if
35:             end while

�� End
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Algorithm 2.  US-based routing of RSR-IDS.

Step 4: Receiving the RREP message
After receiving an RREP message, the vehicle creates a reverse route entry to the source in its routing table.
Step 5: Checking the vehicle status after receiving the RREP message
After receiving an RREP message, the vehicle checks whether it is the source. Therefore, one of the following 

two situations occurs:

	(A)	 If the vehicle is the source, it sends data to the destination.
	(B)	 If the vehicle is not the source, the Hc of the RREP message is increased. After modifying the RREP mes-

sage, this vehicle sends it again.

Step 6: Receiving the RERR message
After receiving a RERR message, the route discovery operation is restarted to remove lost routes.

Performance evaluation
The OMNeT +  + 6.0.1 simulator42 is used to evaluate RSR-IDS in this paper. OMNeT +  + is a framework-based 
open-source platform for easily simulating a wide variety of modern network configurations with supported 
real-world communication protocols. To simulate a time-variant high-dynamic VANET, we used Veins43, an 
event-driven open-source framework to simulate a vehicular network. Moreover, we used SUMO, a road traffic 
simulator on OMNET +  +. In the detection strategy of VANETs, many datasets like VeReMi, CICIDS2017, and 
UNSW-NB15 were extracted from real scenarios or vehicles. These datasets can be chosen based on specific 
requirements, like attack scenarios, to cover the dynamics and unique challenges of VANETs. We used the 
UNSW-NB15 dataset with 49 features containing normal data and nine kinds of attack data. These attacks include 
fuzzers, analysis, backdoors, DoS, exploits, generic, reconnaissance, shellcode, and worms. Therefore, a trained 
IDS with the UNSW-NB15 dataset is expected to detect these attacks (like DoS, worms, etc.) as an intrusion 
at least accurately. Due to the diversity of attack data, the UNSW-NB15 dataset is suitable for evaluating IDSs. 
UNSW-NB15 dataset contains 100 GB of data samples collected using the tcpdump tool. The simulation of RSR-
IDS is run on a 64-bit system with Windows 11 core (TM) i7-10750H CPU, 2.60 GHz main frequency, and 16 G 
memory. Considering this system’s processor power and memory space, a reduced dataset from UNSW-NB15 is 
used to speed up the training and testing phases of the RSR-IDS simulation. The reduced UNSW-NB15 was pre-
processed by removing null values, converting them to numerical, and using two techniques, MinMaxScaler and 
PCC. Table 5 shows the summary of simulation parameters. The testing dataset contains 10,000 data samples, 
14 features, and one class feature to run the simulation smoothly. Some of these selected features include sttl 
(source to destination lifetime), sload/dload (source/destination bits per second), state (state and the related 
protocol), and is_sm_ips_ports (same source, destination, IP addresses, and port numbers means value one 
else 0), etc. Samples have two normal (0) and abnormal (1) classes. The common abnormal-to-normal data 
ratio in the testing dataset is 35% to 65%. In the testing dataset, samples labeled 1 and 0 equal 3500 and 6500, 
respectively. After trial and error, 1000 samples are considered the training dataset for fast and robust drawing 
of classification trees. The common ratio of abnormal to normal data in the training dataset is 70–30%. In the 
training dataset, samples labeled 1 and 0 are equal to 700 and 300, respectively. OMNeT +  + supports integration 
with simulation tools and heterogeneous networks for realistic mobility in urban scenarios. The Ostad Moin area 
of Tehran city was selected for the RSR-IDS simulation due to the authors’ better knowledge and the clarity of 
the paths of vehicles. Figure 5 shows the Ostad Moein urban area, which is extracted using OpenStreetMap44. 
For establishing RSR-IDS routing between vehicles in different ranges, the number of RSUs is considered three 
units (1 <), which can be changed. RSUs are located 1000 m from each other based on the real scenarios of the 
intelligent transportation network. Due to the mentioned number of RSUs and their distance, the simulated 
geographic area is considered 3300 ∗ 3300 m2. The Unit Disk Radio model is a simple wave propagation model 
used in RSR-IDS. In the Unit Disk Radio model, vehicles communicate within a specific range. The simulation 

Parameters Values

Simulator OMNeT +  + 6.0.1

Scenario area Urban area

Simulation dimensions 3300*3300 m2

Dataset UNSW-NB15

Number of vehicles 10, 20, 30, 40, 50, 60

Number of training samples 1000 sample

Number of testing samples 10,000 sample

Communication protocol IEEE 802.11p

Communication channel delay 100 ms

Simulation time 100 s

Table 5.  The summary of simulation parameters.

 

Scientific Reports |        (2025) 15:25709 14| https://doi.org/10.1038/s41598-025-08228-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


time is considered 100  s in this paper. Communication channels in this network also have a 100  ms delay, 
according to the default in VANETs.

Based on realistic and varied mobility behaviors of vehicles in urban environments, this network includes 
a special movement policy for each one (ID) with different speeds, angles (directions), and coordinates. The 
initial coordinates and the next movements of each vehicle are determined with coordinates (x, y) axes values. 
The movement speed of vehicles is uniformly set randomly between 20 and 60 units per second. The angle 
of vehicles’ movement in streets until reaching the intersection is considered unchanged. When reaching the 
intersection, the angle of vehicles changes to 360° for the opposite direction, + 90° for moving up, and − 90° for 
moving down. The movement scripts are repeated to continue motion patterns for each vehicle.

Evaluation criteria
RSR-IDS is an IDS-based routing protocol for selecting the best route regarding shortness and reliability. This 
section investigates the evaluation criteria of routing and detection in the RSR-IDS simulation. The detection 
evaluation criteria include accuracy, F1-score, and FNR. Parameters like true positive (TP), true negative (TN), 
false positive (FP), and false negative (FN) are used to calculate detection criteria7. The number of samples 
correctly identified as abnormal by an IDS is called TP. The number of samples correctly identified as normal by 
an IDS is called the TN. The number of samples incorrectly identified as abnormal by an IDS is called FP. The 
number of samples incorrectly identified as normal by an IDS is called FN. Evaluation criteria of routing include 
PDR, PLR, E2E-delay, and throughput. The evaluation criteria of this article are expressed as a percentage, except 
for E2E-delay, which is expressed in milliseconds. The evaluation criteria of this article are defined below:

Accuracy: In evaluating an IDS, the detection accuracy or accuracy rate is calculated through Eq. (9)45:

	
Accuracy (%) = T P + T N

T P + T N + F P + F N
× 100� (9)

F1-score: In evaluating an IDS, the F1-score or F1-measure is the average harmonic of recall and precision, 
which is calculated through Eq. (10)7:

	
F 1 − score (%) = 2 ∗ P recision ∗ Recall

P recision + Recall
× 100� (10)

where precision and recall are calculated through Eqs. (11–12)45,46:

	
P recision(%) = T P

T P + F P
× 100� (11)

	
Recall(%) = T P

T P + F N
× 100� (12)

FNR: In evaluating an IDS, the FNR is calculated through Eq. (13)47:

Fig. 5.  The urban scenario of RSR-IDS with 40 vehicles, 3 RSUs, and one fog server in OMNET +  +.
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F NR(%) = F N

T P + F N
× 100� (13)

PDR: In evaluating a routing protocol, the rate of the received packet number by the destination vehicle 
compared to the total number of packets sent is called the PDR. This metric is calculated through Eq. (14)19:

	
P DR(%) =

∑n

i=0 P acketReceivedi∑m

j=0 P acketSent
× 100� (14)

PLR: In evaluating a routing protocol, the rate of the number of lost packets to the total number of sent packets 
is called the PLR. This metric is calculated through Eq. (15)48:

	
P LR(%) =

∑n

i=0 P acketLoss∑m

j=0 P acketSent
× 100� (15)

E2E-delay: In evaluating a routing protocol, the required time to receive a message packet from the source to the 
destination is E2E-delay19. This metric is usually checked as an average in milliseconds (ms).

Throughput: Throughput is the ratio of the delivered data bits to the total simulation time49. Therefore, the 
throughput percentage is calculated through Eq. (16):

	
T hroughput(%) =

∑n

i=0
P acketReceivedi

T otalSimulationT ime
× P acketSize

MaximumT hroughput
× 100� (16)

Percentage improvement: The percentage improvement of RSR-IDS over others in terms of criteria like 
accuracy, F1-score, PDR, and throughput, where a higher value is better, is used through Eq. (17):

	
P ercentageImprovement(%) = V alueRSR−IDS − V alueother

V alueother
× 100� (17)

where V alueRSR−IDS  and V alueother  show the average value of RSR-IDS and other methods for an evaluation 
criterion, respectively. The percentage improvement of RSR-IDS over others in terms of criteria like FNR, PLR, 
and E2E-delay, where a lower value is better, is used through Eq. (18):

	
P ercentageImprovement(%) = V alueother − V alueRSR−IDS

V alueother
× 100� (18)

Simulation and results
This section shows simulation results for RSR-IDS by investigating various numbers of vehicles, including 10, 
20, 30, 40, 50, and 60 veh. This section compares RSR-IDS with cooperative and misbehavior-aware on-demand 
collaborative IDSs50,51 regarding accuracy, F1-score, and FNR. Cooperative IDSs (CIDSs) and Misbehavior-
aware on-demand collaborative IDSs (MACIDSs) are based on XGBoost, SVM, and random forest.

Table 6 compares the accuracy of RSR-IDS with CIDSs (i.e., SVM-based CIDS and XGBoost-based CIDS) and 
MACIDSs (i.e., SVM-based MACIDS and XGBoost-based MACIDS) considering various numbers of vehicles. 
The detection accuracy of RSR-IDS in the simulation scenario with 10, 20, 30, 40, and 50 veh equals 99.56%, 
99.62%, 99.43%, 99.57%, and 99.45%, respectively. RSR-IDS has an average accuracy of 99.52%. XGBoost-based 
and SVM-based CIDSs have an average accuracy of 93.85% and 87.2%, respectively. The average accuracy of 
XGBoost-based and SVM-based MACIDSs is equal to 95.8% and 94.53%, respectively. Random forest-based 
CIDS and MACIDS are ensemble models with average accuracy of 86.35% and 97.54%, respectively. Therefore, 
RSR-IDS has a higher average accuracy than CIDSs and MACIDSs. Indeed, RSR-IDS can detect normal and 
abnormal data with greater accuracy and better performance than other ensemble models. The high accuracy 
of RSR-IDS directly impacts the accuracy of the calculated US for each vehicle and, ultimately, the reliability of 
routing.

Accuracy

IDS

Number of vehicles

10 20 30 40 50

XGBoost-based CIDS 88.42% 94.14% 95.48% 96.26% 94.99%

SVM-based CIDS 82.05% 85.98% 87.02% 90.05% 91.04%

XGBoost-based MACIDS 94.72% 95.37% 96.88% 95.63% 96.85%

SVM-based MACIDS 94.05% 93.85% 95.03% 94.96% 94.75%

RSR-IDS 99.56% 99.62% 99.43% 99.57% 99.45%

Table 6.  Accuracy evaluation of RSR-IDS compared to CIDSs and MACIDSs considering various numbers of 
vehicles.
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Figure 6 shows the simulation results for RSR-IDS, CIDSs, and MACIDSs in terms of accuracy, wherein the 
RSR-IDS outperforms the other detection systems under the various vehicle densities. The simulation results 
also show that RSR-IDS keeps the accuracy high by increasing the number of vehicles. The results depict a 
significant improvement in the accuracy of RSR-IDS compared to SVM-based CIDS, with an increase of 14.1%. 
The slight improvement in the accuracy of RSR-IDS is compared to XGBoost-based MACIDS, with an increase 
of 3.8%.

Table 7 compares the F1-score of RSR-IDS with CIDSs and MACIDSs under various numbers of vehicles. 
The F1-score of RSR-IDS in the simulation scenario with 10, 20, 30, 40, and 50 veh equals 99.47%, 99.39%, 
99.31%, 99.42%, and 99.3%, respectively. The average F1-score of RSR-IDS is 99.37%, whereas XGBoost-based 
and SVM-based CIDSs have an average of 93.96% and 89.16%, respectively. Moreover, the average F1-score 
of XGBoost-based and SVM-based MACIDSs equals 95.77% and 95.03%, respectively. Random forest-based 

Fig. 7.  Comparison of RSR-IDS, CIDSs, and MACIDSs regarding F1-score under the number of vehicles.

 

F1-score

IDS

Number of vehicles

10 20 30 40 50

XGBoost-based CIDS 87.92% 94.41% 95.88% 96.39% 95.19%

SVM-based CIDS 84.99% 88.04% 89% 91.92% 91.85%

XGBoost-based MACIDS 94.06% 95.02% 97.05% 95.7% 97.01%

SVM-based MACIDS 94.41% 94.58% 95.29% 95.49% 95.41%

RSR-IDS 99.47% 99.39% 99.31% 99.42% 99.3%

Table 7.  F1-score evaluation of RSR-IDS compared to CIDSs and MACIDSs.

 

Fig. 6.  Comparison of RSR-IDS, CIDSs, and MACIDSs regarding accuracy under the number of vehicles.
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CIDS and MACIDS also have the average F1-score of 88.07% and 97.73%, respectively. Therefore, RSR-IDS has 
a higher average F1-score than CIDSs and MACIDSs.

Figure  7 shows the F1-score simulation results for RSR-IDS, CIDSs, and MACIDSs under various traffic 
flows. RSR-IDS demonstrates a better result than other detection systems. RSR-IDS maintains the F1-score high 
by increasing the number of vehicles. The great improvement of RSR-IDS is compared to SVM-based CIDS, with 
an increase of 11.4% in the F1-score. The low F1-score improvement of RSR-IDS is compared to XGBoost-based 
MACIDS with a rise of 3.7%.

Table 8 investigates the FNR results for RSR-IDS, CIDSs, and MACIDSs, considering the different numbers 
of vehicles. The FNR results for RSR-IDS in the various simulation scenarios with 10, 20, 30, 40, and 50 veh 
equal 1.04%, 1.2%, 1.35%, 1.15%, and 1.38%, respectively. The average FNR for RSR-IDS is 1.22%, whereas the 
XGBoost-based and SVM-based CIDSs have an average of 5.2% and 0.46%, respectively. Moreover, the average 
FNR for XGBoost-based and SVM-based MACIDSs equals 3.03% and 0.45%, respectively. Random forest-based 
CIDS and MACIDS have an average FNR of 5.85% and 1.65%, respectively. RSR-IDS has an acceptable average 
FNR. In fact, RSR-IDS has a low false detection of normal data. Therefore, untrusted vehicles are less likely to 
participate in VANET routing messages than trusted vehicles.

Figure 8 shows the FNR of IDSs and RSR-IDS under the number of vehicles. RSR-IDS has a better result 
than XGBoost-based detection systems, but the SVM-based CIDS and SVM-based MACIDS outperform RSR-
IDS regarding the FNR. Figure 9 shows the average performance of RSR-IDS, CIDSs, and MACIDSs in terms 
of accuracy, F1-score, and FNR. As depicted in Figs. 6 and 7, RSR-IDS shows better performance in terms of 
accuracy and F1-score, respectively. According to Fig. 8, RSR-IDS also outperforms XGBoost-based CIDS and 
MACIDS in terms of FNR.

Figure 10 summarizes the evaluated improvement results of the proposed IDS and depicts that in the accuracy 
and F1-score factors, the RSR-IDS outperforms SVM-based CIDS, XGBoost-based CIDS, Random forest-based 
CIDS, SVM-based MACIDS, XGBoost-based MACIDS, and Random forest-based MACIDS. The maximum 
accuracy improvement of RSR-IDS is 15.25% compared to Random forest-based CIDS, while the minimum is 
2.03% compared to Random forest-based MACIDS. Random forest-based MACIDS also achieved the highest 
F1-score (12.83%), while the lowest was related to Random forest-based CIDS (1.68%).

The routing evaluation criteria of the RSR-IDS include the PDR, PLR, E2E-delay, and throughput. We 
considered three RSUs to communicate with 20, 40, and 60 veh in different traffic-centric scenarios to evaluate 
RSR-IDS routing. The following section compares RSR-IDS with the fuzzy assisted location aided routing using 
cache (FLAR-C)52,53, the directional cache agent-based location-aided routing (D-CALAR)54, and CALAR using 
distance and direction (CALAR-DD)55 in an urban scenario. Figure 11 shows the PDR of RSR-IDS, FLAR-C, 

Fig. 8.  Comparison of RSR-IDS, CIDSs, and MACIDSs regarding FNR under the number of vehicles.

 

FNR

IDS

Number of vehicles

10 20 30 40 50

XGBoost-based CIDS 11.98% 5.63% 3.63% 0.22% 4.45%

SVM-based CIDS 1.07% 0.31% 0.33% 0.24% 0.35%

XGBoost-based MACIDS 4.08% 2.59% 2.29% 4.61% 1.59%

SVM-based MACIDS 0.79% 0.41% 0.29% 0.25% 0.51%

RSR-IDS 1.04% 1.2% 1.35% 1.15% 1.38%

Table 8.  FNR evaluation of RSR-IDS compared to CIDSs and MACIDSs.
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Fig. 11.  Comparison of RSR-IDS, FLAR-C, D-CALAR, and CALAR-DD regarding PDR under various 
numbers of vehicles.

 

Fig. 10.  Improvement percentage of RSR-IDS compared to CIDSs and MACIDSs.

 

Fig. 9.  Comparison of the average performance of RSR-IDS with CIDSs and MACIDSs.
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D-CALAR, and CALAR-DD under the number of vehicles. The PDR of RSR-IDS in the simulation scenario with 
20, 40, and 60 veh equals 82.17%, 90.86%, and 93.94%, respectively. RSR-IDS has an average PDR of 89%. The 
FLAR-C, D-CALAR, and CALAR-DD protocols have average PDR of 74.84%, 84.41%, and 91.02%, respectively.

Based on the results, RSR-IDS improves PDR by increasing the number of vehicles. RSR-IDS achieves the 
greatest PDR in the scenario with 60 veh, while CALAR-DD has better results in 20 and 40 veh scenarios. 
RSR-IDS has better PDR than FLAR-C and D-CALAR protocols. The PDR of RSR-IDS has an 18.9% increase 
compared to the FLAR-C protocol. RSR-IDS also increases PDR by 5.4% compared to the D-CALAR protocol. 
However, the PDR of RSR-IDS has decreased by 2.2% compared to the CALAR-DD protocol.

Figure 12 shows the PLR results for RSR-IDS, FLAR-C, D-CALAR, and CALAR-DD. The PLR of RSR-IDS 
in the simulation scenario with 20, 40, and 60 veh equals 9.08%, 4.98%, and 3.32%, respectively. RSR-IDS has 
an average of 5.79% for PLR, whereas FLAR-C, D-CALAR, and CALAR-DD protocols have an average PLR 
of 9.45%, 7.47%, and 6.5%, respectively. Thus, RSR-IDS has a much lower PLR than other protocols, especially 
FLAR-C and D-CALAR. The simulation results show that RSR-IDS decreases PLR by increasing the number of 
vehicles. RSR-IDS achieves a lower PLR in 40 and 60 veh scenarios, while FLAR-C has better results in the 20 
veh scenario. The simulation results show a 10.9% decrease in the PLR of RSR-IDS compared to the CALAR-DD 
protocol.

Figure 13 shows the E2E-delay for various traffic flows for RSR-IDS, FLAR-C, D-CALAR, and CALAR-DD. 
E2E-delay of RSR-IDS in the simulation scenario with 20, 40, and 60 veh equals 413 ms, 420 ms, and 443 ms, 
respectively. Based on the results, the average E2E-delay of RSR-IDS is 425 ms, while FLAR-C, D-CALAR, and 
CALAR-DD protocols have an average E2E-delay of 649 ms, 619 ms, and 478 ms, respectively. RSR-IDS greatly 
reduces E2E-delay compared to others, especially FLAR-C and D-CALAR protocols. RSR-IDS also reduces E2E-

Fig. 13.  Comparison of RSR-IDS, FLAR-C, D-CALAR, and CALAR-DD regarding E2E-delay under the 
number of vehicles.

 

Fig. 12.  PLR Comparison of RSR-IDS, FLAR-C, D-CALAR, and CALAR-DD under various numbers of 
vehicles.
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delay by 11% compared to the CALAR-DD protocol. Of course, increasing the number of vehicles raises the 
E2E-delay of RSR-IDS.

Figure 14 shows the throughput of RSR-IDS, FLAR-C, D-CALAR, and CALAR-DD under the number of 
vehicles. The throughput of RSR-IDS in the simulation scenario with 20, 40, and 60 veh equals 71.76%, 85.57%, 
and 92.03%, respectively. RSR-IDS has an average throughput of 83.12%. The FLAR-C, D-CALAR, and CALAR-
DD protocols have average throughputs of 76.47%, 82.37%, and 86.4%, respectively. Based on the results, RSR-
IDS improves throughput by increasing the number of vehicles. RSR-IDS achieves the greatest throughput in the 
scenario with 60 veh. RSR-IDS has better throughput than FLAR-C and D-CALAR protocols. The throughput 
of RSR-IDS has an 8.7% increase compared to the FLAR-C protocol. RSR-IDS also increases throughput by 0.9% 
compared to the D-CALAR protocol. However, the throughput of RSR-IDS has decreased by 3.8% compared to 
the CALAR-DD protocol.

Discussion
In this paper, we suggested RSR-IDS as a routing protocol to select the suitable route based on calculated USs 
and Hc in VANETs. RSR-IDS classified data using the voting technique among three tree-based algorithms. 
Using the voting technique in tree-based classification has reduced overfitting. RSR-IDS accurately detected the 
normality/abnormality of data and dropped abnormal items. RSR-IDS also calculated the US for each vehicle 
based on the detection results. The high US indicated unreliability. RSR-IDS ensures the reliability and security 
of communications by selecting a route based on the lowest USs and hop count. It was possible to access USs 
through RSUs and the fog server. Integrating fog computing with VANETs allows for the deployment of IDS 
in the fog server, adapting to the scalable and dynamic nature of vehicular networks. Deploying the detection 
strategy of RSR-IDS on the fog server solves the data diversity problem compared to deploying it on the OBU 
of each vehicle. Of course, RSR-IDS requires a relatively large amount of memory. Providing the required 
memory for RSR-IDS is less expensive than the deployed IDS in the physical data center. Using a fog-assisted 
IDS increases the distributed and decentralized nature of fog computing. Despite fog computing’s potential to 
reduce latency, achieving low-latency performance for routing protocols in dynamic VANET environments is 
necessary. Selecting a reliable and efficient path by the routing protocol maintains high throughput and low delay 
in VANETs. Ensuring real-time detection and response with high-mobility and dense scenarios is also a research 
challenge for VANETs. Using a lightweight IDS can improve the scalability of the urban scenario. Dense areas, 
especially city centers, always have many connected vehicles in their intelligent transportation system. In such 
high-demand environments where the low time of processing data and identification is essential, a lightweight 
RSR-IDS detection system can be suggested.

RSR-IDS is a score-based multi-hop protocol using the classification results of an IDS. RSR-IDS just classifies 
data into normal and abnormal classes without detecting their type. We added the detection results of IDS for 
each vehicle’s data to its US. Therefore, if abnormal data was detected, RSR-IDS only added one unit to the 
vehicle’s US detection result. This point may decrease the computing complexity and time in the urban scenario 
of VANET, while approaches with the ability to detect attack types are more complex. Indeed, unlike other 
score-based protocols, RSR-IDS didn’t use complex equations to calculate the USs of vehicles. Therefore, we 
conclude that RSR-IDS has an acceptable computational complexity compared to score-based routing protocols. 
Of course, designing a multi-class classifier that can detect attack types can be examined for RSR-IDS in the 
future. Identifying the attack type can help assign specific weights for each attack type in the scoring mechanism 
of RSR-IDS. For example, black hole and Sybil attacks can be more important in disrupting message routing. 
Therefore, assigning high-weight values for special attacks like black hole and sybil in the US can make the RSR-
IDS routing more reliable. Finally, the RSR-IDS routing mechanism has also selected vehicles with lower scores 
to broadcast RREQ messages by comparing USs of single-hop vehicles.

Fig. 14.  Comparison of RSR-IDS, FLAR-C, D-CALAR, and CALAR-DD regarding the throughput under the 
number of vehicles.
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The time complexity of IDSs is also calculated based on their classification algorithms, especially in the 
training phase. Tree-based models (like XGBoost, Decision Tree, Random Forest, Extra Trees, etc.) are 
scalable and fast on large datasets because they can parallelize computation. RSR-IDS identified data based 
on the decision tree, random forest, and extra trees algorithms. The time complexity of training RSR-IDS is 
almost equal to O(2NtdNslogNs + dNslogNs), where Nt, d, and Ns are the number of trees, features, and 
training samples, respectively. The time complexity of training MACIDS and CIDS based on XGBoost is equal 
to O(NtdNslogNs). The time complexity of training non-linear SVM is also between O(N2

s d) and O(N3
s d). 

Therefore, MACIDS and CIDS based on XGBoost are highly efficient and scalable with a logarithmic combination 
to handle large datasets. RSR-IDS is also efficient and scalable, particularly with logarithmic complexity, making 
it suitable for large datasets. However, its efficiency might be slightly less compared to XGBoost when dealing 
with huge datasets due to the optimized boosting process in XGBoost. MACIDS and CIDS based on SVM are 
typically the most computationally intensive, especially with large datasets. Therefore, SVM-based IDSs have a 
high time complexity and less scalability than others due to the quadratic or cubic dependency on the number 
of samples.

The simulator was OMNeT +  +, continuously updating libraries and fixing bugs for better scalability and 
performance in VANETs. In the detection strategy of RSR-IDS, UNSW-NB15 was also chosen as an available 
dataset in VANETs. Using the preprocessed UNSW-NB15 dataset, which contains 14 features and nine types 
of attack (like DoS, worms, etc.), should lead to detecting them accurately (99.52%). The 14 selected features 
were important items to train the RSR-IDS. Of course, some of these, especially time and connection features, 
must be effective in other attack detection, such as delay and deception attacks. However, it’s necessary to use a 
training dataset with the related features and data to detect other attack types more accurately, such as delay and 
deception attacks. The simulation scenario was an urban area with different vehicle density scenarios, including 
20, 40, and 60 veh. Based on the average results, RSR-IDS has achieved an accuracy of 99.52%, an F1-score of 
99.37%, and an FNR of 1.22%. Due to fog-assisted IDS, RSR-IDS was able to keep its accuracy and F1-score high 
by increasing the number of vehicles. In this paper, RSR-IDS had higher accuracy and F1-score than other IDSs. 
RSR-IDS has improved a 3.8% accuracy and a 3.7% F1-score compared to XGBoost-based MACIDS. The RSR-
IDS improvement of accuracy and F1-score to SVM-based MACIDS has achieved 5.2% and 4.5%, respectively. 
RSR-IDS has improved 2.03% accuracy and 1.68% F1-score compared to random forest-based MACIDS. RSR-
IDS has significantly improved accuracy and F1-score compared to CIDS models. RSR-IDS had a lower value 
than XGBoost-based and random forest detection systems while it had a higher result of FNR than SVM-based 
IDSs. In security scenarios where preventing attacker penetration is particularly important, using SVM-based 
IDSs has a higher priority than RSR-IDS. Based on the average results, RSR-IDS has achieved a PDR of 89%, PLR 
of 5.79%, E2E-delay of 425 ms, and throughput of 83.12% in routing. RSR-IDS has improved PDR, PLR, and 
throughput while increasing the number of vehicles in the urban environment. RSR-IDS had the highest PDR 
in dense urban scenarios (60 veh), while CALAR-DD had better PDR in low-density (20 veh) and medium-
density (40 veh) scenarios. RSR-IDS also achieved the greatest throughput in the dense scenario (60 veh). RSR-
IDS has improved PDR by 5.4% compared to D-CALAR, while CALAR-DD has increased PDR by 2.2%. The 
throughput of RSR-IDS also had an 8.7% increase compared to FLAR-C. Therefore, the CALAR-DD protocol is 
more suitable than others for dense urban scenarios in terms of PDR and throughput. According to the CALAR-
DD protocol, using distance and direction as important parameters in routing scenarios can help to increase 
packet delivery. RSR-IDS had a lower PLR in medium-density (40 veh) and dense (60 veh) urban scenarios, 
while FLAR-C had a better PLR in low-density (20 veh) scenarios than others. RSR-IDS also had better E2E-
delay compared to other protocols. With the increase in the number of vehicles, the E2E-delay of RSR-IDS has 
also increased. To improve the E2E-delay in scale-up urban scenarios, the number of RSUs can be increased 
slightly in RSR-IDS to increase network coverage more widely and faster. Moreover, using unmanned aerial 
vehicles (UAVs) is another way to control E2E-delay in dense environments. UAVs are cost-effective mobile 
infrastructures that can be utilized in time-variant traffic conditions and can handle messages to guarantee 
RSR-IDS scalability. Therefore, we can conclude that the proposed RSR-IDS would be more scalable by using 
extra RSUs or UAV-assisted solutions, specifically in dense urban areas. In the urban scenario, the mobility and 
dynamics of many vehicles are also covered using RSR-IDS. RSR-IDS selected a route with a lower Hc and USs 
for communication in VANETs. The routing reliability and security of vehicles were increased using RSR-IDS 
in VANETs.

Real-time management of urban traffic for densely populated smart cities is crucial. RSR-IDS is a multi-hop 
protocol in urban environments that consumes short times to detect attacks, process data, and calculate USs. On 
the other hand, the excessive speed of vehicles on highways, especially outside of cities (roads between villages), 
may hamper the opportunity for intrusion detection and scoring. The low number of vehicles on the highways 
also contradicts the multi-hop nature of RSR-IDS. Therefore, designing RSR-IDS for rural or highway areas to 
cover the mentioned challenges is suggested for the future. Implementing RSR-IDS in a real-time industrial 
scenario involving self-driving vehicles can show this protocol’s security and efficiency. RSR-IDS can also be 
deployed efficiently in real-time scenarios of intelligent transportation systems like emergency vehicles, critical 
response management, and logistic operations. Emergency response vehicles require rapid and secure message 
routing quickly. Establishing communication priority for emergency vehicles in the RSR-IDS algorithm can 
ensure that real-time information is received free from security threats. RSR-IDS can also establish a dedicated 
communication channel between emergency vehicles, RSUs, and fog servers to provide real-time updates. 
Deploying with a logistics firm collaboration is one of the RSR-IDS applications in real scenarios. Installing fog 
servers near traffic signals also facilitates real-time data processing and communication. Lightweight encryption/
decryption methods are also suggested in some secure and sensitive situations where maintaining the privacy of 
messages is more critical than delay.
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Conclusion
This paper proposed a reliable score-based routing protocol called RSR-IDS in vehicular networks. We deployed 
a centralized fog-assisted detection system to propose a score-based unreliability-calculation methodology for 
vehicles. The suggested fog-enabled intrusion detection strategy solved the data traffic problem compared to 
an infrastructure-less strategy. RSR-IDS selected the appropriate route based on the scores and hop counts. 
The chosen route was reliable and short for establishing inter-vehicle communications. RSR-IDS increased 
the routing reliability and security in vehicular networks. Simulation results on OMNeT +  + showed a 14.1% 
increase in the accuracy of RSR-IDS compared to the baseline works focused on the support vector machine-
based cooperative detection systems.

The proposed model increased the F1-score by 11.4% compared to the investigated baseline method. RSR-
IDS showed a better false negative rate than XGBoost-based detection systems. RSR-IDS also reduces end-to-
end delay by 11% compared to the cache agent-based protocol using distance and direction, while decreasing 
packet loss ratio by 10.9% and packet delivery ratio by 2.2%.

In future work, we suggest an attack-aware routing protocol with a multi-class classifier to detect attack types 
and assign specific weights for each one, especially black-hole and Sybil attacks, in the scoring mechanism. 
Moreover, we propose a low-computational intrusion detection strategy as a scoring mechanism to deal with 
attacks in the routing. We also suggest designing a lightweight IDS to support scalability in high-demand and 
dense transportation systems like city centers. Designing RSR-IDS for rural or highway areas is suggested for 
the future.

Data availability
The basic datasets during the current study are available in the UNSW research repository, ​h​t​t​p​s​:​​​/​​/​r​e​s​e​a​r​c​​h​.​u​n​
s​​w​.​e​​​d​u​.​​a​​u​/​p​r​o​j​​e​​c​t​s​/​u​​​n​s​w​-​​​n​b​1​5​-​d​a​t​a​s​e​t. The generated datasets used during the current study are also available 
from the corresponding author on reasonable request.
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