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Urban waste-collection centres (WCCs) routinely overflow because maintenance routes are scheduled 
reactively rather than on data-driven forecasts. Overspill, odour, and leachate therefore threaten 
public health and sustainability targets in rapidly growing smart cities. We introduce ProWaste, an end-
to-end Internet-of-Things and machine-learning platform that proactively prioritises WCC servicing. 
Fifteen automated and manual indicators, including population density, weather, maintenance 
history, and weekly waste build-up, are streamed from low-cost sensors, public APIs, and a mobile app 
to a cloud database. Twenty-five off-the-shelf classifiers were benchmarked under repeated stratified 
cross-validation; a Decision Tree Classifier offered the best balance of interpretability and near-top 
accuracy. Binary Particle Swarm Optimisation (BPSO) removed 80% of the inputs, revealing that three 
features alone predict criticality with>99% accuracy on a hold-out test set. SHAP analysis confirms the 
interpretability of the three-feature model. The predicted class and confidence score are pushed to a 
Sustainable Smart Waste Management (SSWM) app that alerts field teams and dynamically reorders 
maintenance queues. Compared with current practice, ProWaste can eliminate missed pickups while 
reducing on-road inspections and data bandwidth. The proposed architecture is readily transferable to 
other cities and can be extended to recycling or composting streams.

Keywords  Smart waste management, Internet of things, Classification, Wrapper-based optimization, Feature 
selection, Urban waste collection

The growth of urban populations has significantly increased city and municipal garbage generation, making 
efficient waste management a critical concern. Urban Waste Collection Centers (WCCs) can utilize smart 
waste management systems that track garbage levels and enable prompt collection, preventing health hazards1 
caused by waste buildup. Integrated systems that include small data centers, alarm systems, and mobile devices 
used by waste collectors and monitoring officers can significantly improve waste management. Proper waste 
management can reduce environmental degradation, climate change problems, and public health issues. The 
COVID-19 outbreak has also raised awareness of the need to properly dispose of household garbage, which 
is often dumped in urban waste collection centers. Urban waste collection centers are typically smaller in size 
than municipal landfills, which are designed to handle waste from larger areas, including commercial and 
industrial waste. Bengaluru, like many other urban areas in India, has struggled with waste management and 
faced challenges related to waste collection centers. These centers can cause significant environmental and health 
problems if waste is disposed of without proper treatment or management. WCCs located near residential areas 
can release toxic fumes and pollutants into the air, causing respiratory disorders and other medical conditions 
affecting the local population. Waste disposal centers can also pollute groundwater and soil, causing long-term 
harm to the environment.

To address these issues, many urban waste collection centers are now adopting Internet of Things (IoT)-
based waste management systems. These systems leverage IoT technology to improve garbage disposal by 
making garbage collection routes more efficient and by offering real-time data on waste levels. The capability 
of the IoT to improve human living globally enables it to be a promising technology for the waste management 
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industry. IoT facilitates communication and connectivity between low-power devices and online activities. 
Numerous applications worldwide have been incorporating various IoT-based activities to deliver cutting-edge 
services for smart cities2. After reaching USD 2,733.1 million in 2024 with 15.6% year-on-year growth, the global 
smart waste management market is forecast to hit USD 3,170.5 million in 2025 and expand at a 16% CAGR to 
USD 13,986.4 million by 20353. The smart waste management industry is driven by global concern over solid 
waste and urbanization, particularly in the context of urban waste collection centers (WCCs). By utilizing IoT, 
smart devices, and sensors, these centers can optimize waste collection schedules and reduce costs caused by 
operational inefficiencies. Waste creation varies by location and season, making it impractical to remove garbage 
cans regularly. The World Bank estimates that 2.24 billion tonnes of solid garbage were generated worldwide in 
2020. The yearly output of garbage is anticipated to rise to 3.88 billion tonnes by 2050, up 73% from 2020. As 
IoT technology advances in this industry, it becomes possible to reduce costs, manage resources more effectively, 
and improve the sustainability of waste services, particularly in cities where trash management has become more 
prevalent and increasingly challenging.

In India, the waste management market is growing due to industrial activity and population density. 
However, the lack of appropriate infrastructure and rules for collection, disposal, and recycling is causing waste 
management to be in a terrible state, particularly in urban areas. Every year, India generates 62 million tonnes 
of garbage, of which 70% is gathered, 12 million is managed, and 31 million is disposed of in landfills4. By 2030, 
urban municipal solid waste output is anticipated to reach 165 million tonnes. Additionally, the waste recycling 
and management industry is projected to be valued at US$ 13.62 billion by 2025, experiencing a yearly growth 
rate of 7.17%4. The problem of trash in India is severe, and the growing urban population is adding to the 
challenge of developing efficient urban waste management techniques. To tackle this issue, many Indian towns 
are utilizing real-time data to monitor rubbish collection and enhance street sanitation to clean up their streets. 
By combining all of this real-time data, quick judgments can be made to optimize garbage collection routes, 
collection times, fuel usage, and response times, for example, by overlaying data into a GIS base map5.

Many governments have recognized the need for waste management and have taken measures to implement 
it as part of their Smart Communities and Clean Development Mission programs. WCCs serve as central 
locations for the collection, segregation, and processing of waste, and they allow for the efficient transport of 
waste to landfills or recycling facilities. The fast rise in urban populations due to migration and unplanned 
urbanization has increased the amount of urban waste and changed the characteristics of urban waste. To design 
a long-term waste management strategy that meets the goals of government efforts, it is essential to figure out 
the types, volumes, and current waste management techniques6. Most household waste ends up in municipal 
solid waste landfills, which have strict safety and monitoring regulations7. However, the uneven dispatch of 
maintenance teams to different urban WCCs, as shown in Fig. 1 for the city of Bangalore, can lead to some areas 
being neglected and tons of waste going uncollected. The implementation of WCCs can help address this issue by 
allowing for the efficient collection and transport of waste to the appropriate disposal or recycling facility. Figure 
1a shows the comparative analysis of total waste collected and wet waste ratio across Bangalore zones. Blue lines 
represent total waste (solid for April, dashed for May), and red dashed lines represent the wet waste ratio. Figure 
1b shows the capacity of various waste collection sources. Auto Tippers lead with the highest capacity, followed 
by Compactors, Wet Waste Processing Plants, Bio-Methanation Plants, and Sanitary Landfills. Figure 1c depicts 
the total waste collected in Bangalore zones for April and May 2024. Blue bars for April and orange bars for 
May show a general increase in waste collection from April to May. Figure 1d illustrates the average chemical 
composition of municipal solid waste for 2024.

The Proactive Waste Management project is inspired by the necessity for efficient, data-driven, and optimal 
solid waste management strategies in smart cities. Proactive maintenance of WCCs is essential to attaining this 
goal, and their implementation is necessary to create sustainable and intelligent cities.

Smart cities face the challenge of implementing a proactive waste management program that connects 
various sectors, including Urban WCCs. Smart city consultants can evaluate and develop waste management 
strategies, while IoT and associated technologies can address some problems. Machine learning is used in this 
work to analyze data from IoT sensors for proactive waste management solutions, including data collected from 
WCCs. Regression and classification are two efficient ML-based solutions for IoT-based applications8. This is 
due to three key factors: First, all of the devices in IoT applications are linked, and large volumes of data are 
collected regularly. Moreover, activities could be preprogrammed to trigger based on intriguing responses from 
collected data or specific conditions. Secondly, computers can learn and perform tasks such as categorization. 
These systems are trained using various algorithms that analyze test data. Thirdly, sample data is characterized 
by measurable attributes (known as features), and machine learning algorithms aim to predict output values by 
identifying relationships between these features (referred to as labels). After training, the knowledge acquired 
is applied to identify trends or make judgements based on fresh data. By installing sensors in WCCs, data on 
the type and quantity of waste can be collected, helping to inform waste management strategies. For example, 
if data shows that a particular WCC is becoming more critical than others, additional maintenance teams 
can be dispatched to that WCC to ensure timely waste collection. Machine learning (ML) schemes utilize 
this information to make predictions about waste generation patterns, enabling proactive waste management 
measures to be taken. Furthermore, by integrating IoT sensors and ML schemes, WCCs may be optimized to be 
more efficient and reduce costs associated with waste management.

The structure of the manuscript is as follows: Section “Related work” surveys prior work and positions the 
present research, closing with the specific gaps that ProWaste addresses. Section “Proposed waste management 
system: ProWaste”3 presents the ProWaste framework–sensor stack, data-flow architecture, mobile app, dataset 
composition, and preprocessing steps. Section “Feature selection” explains the wrapper-based feature-selection 
strategy, defining the BPSO objective, particle encoding, and search procedure. Section “Performance evaluation” 
describes the experimental design and results, including the 25-model benchmark, convergence curves, three-
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feature decisive model, and SHAP interpretability analysis. Section “Conclusion” summarises the findings, 
discusses practical implications for municipal operations, and outlines directions for extending ProWaste to 
additional waste streams and city contexts.

Related work
Urban Waste Collection Centers (WCCs) play a critical role in managing urban waste, yet proactive solutions 
for overspill and gas emissions are limited; this study introduces ProWaste, an IoT and machine learning system 
for WCC management, building on prior works utilizing IoT, ultrasonic sensors, and automation techniques in 
waste management. Patil et al. offered an intelligent e-waste management system with an ultrasonic sensor that 
measures trash volume and sends a notification to a city web server for sanitation9. An Android app is used to 
receive notifications, reducing the need for human monitoring. The challenge of energy-efficient data collection 
in Smart Cities is also addressed in the article. Ijemaru et al.10 proposed an Internet of Vehicles-based data 
collection technique for waste management in Smart Cities, with energy consumption analysis and preference 
for LoRaWAN protocol. Vishnu et al.11 conducted a study on automation approaches in waste management 
using RFID, WSN, and IoT-based systems, and concluded that IoT-based systems with LoRaWAN protocol 
outperform other approaches. Shanthini et al.12 proposed an IoT-based smart trash can connected via an IoT 
system for waste management in urban areas, using a Node MCU microcontroller, waterproof sensors, and Wi-
Fi connectivity. Prastyabudi et al.13 proposed a conceptual design for a smart trash can connected via an IoT 
system, with data classification, concept identification, and conceptual model building. Limitations of the study 
include the lack of evidence of the concept’s versatility and verification.

Municipal solid waste management (MSWM) is an essential aspect of modern society’s supply chain. 
However, the cost associated with MSWM is a significant problem that needs to be reduced. To tackle this 
issue, Navid et al.14 proposed a method that employs two sub-models to reduce operational costs. The first 
sub-model utilizes the Vehicle Routing Problem (VRP) to route fleets between waste generation and separation 
facilities. The second sub-model aims to distribute resources from a separation facility to various treatment 
plants or landfills. To minimize overall transportation costs and maximize recycling revenues, this study uses 
random constraint programming to work with stochastic optimization models. This research indicates that 
determining the ideal number of vehicles can support managers and policymakers in tough circumstances. 
Another solution proposed for managing waste in smart cities is iSmartWMS15. In this paper, the authors 
provide a comprehensive description of the architecture and components of an intelligent waste management 
system. They also detail the software tools, sensors, and techniques utilized in iSmartWMS. A proof-of-concept 
prototype of the iSmartWMS solution has been developed and tested to a limited extent. If implemented on a 

Fig. 1.  Visual summary of waste data and characteristics across different zones.
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large scale, this solution could effectively serve the purpose of waste management, given the involvement of 
a large number of stakeholders according to the established architecture. Supervision plays an essential role 
in waste management by addressing and resolving various related issues. The deployment of AI and digital 
technology in intelligent waste management has been suggested in16 and17. The former presents the necessary 
technologies for achieving intelligent waste management, while the latter describes how digital technology and 
AI were used to reform the process of municipal solid waste management in Russia. IoT is also identified as a key 
technology for waste management in smart cities in18. Lastly,19 discusses waste management planning and the 
actualization of Angkuts in Indonesia for designing waste-handling management systems.

The study presented in20 proposes involving Internet service providers (ISPs) in interactions with clients and 
the city council to improve smart waste management (SWM) services. The concept aims to provide clients with 
a more dynamic and adaptable service while benefiting all parties. The study suggests employing flexible and 
individualized SLAs and presents a proof-of-concept model to optimize costs for customers engaging with the 
SWM scheme. In India, rapid industrialization and population growth have made municipal solid waste (MSW) 
a significant environmental concern. This paper21 proposes a smart waste collection method to optimize MSW 
processing. The Sa’diyah et al.22 proposed a study on waste management initiatives in Bogor City, where IT-
based initiatives such as the Trash Bank and 3R Trash Program were implemented. However, the City of Bogor 
encountered barriers to public engagement and knowledge during its application. The municipal production 
waste (MPW) in urban residential areas is also a significant problem. Three studies propose solutions for smart 
waste management in smart cities. Dzhuguryan et al.23 suggest a design for smart supply chain scenarios for the 
transportation of municipal production waste (MPW) from a city multi-floor manufacturing cluster using smart 
supply chain management (SSCM) technologies. Abuga et al.24 propose a real-time smart garbage bin system 
strategically placed across smart cities using fuzzy logic, while Vishnu et al.25 suggest an IoT-enabled solid waste 
management system for smart cities that tracks the location and unfilled level of bins using sensor nodes and 
sends this information to a central monitoring station via a graphical user interface (GUI) for garbage collection 
authorities. These solutions aim to overcome the drawbacks of traditional garbage collection and management 
systems and enhance waste management in smart cities. Meegan et al. suggested employing sensors to monitor 
the volume of trash within bins26. The bin’s GPS pinpoints its location, and this information is transmitted to a 
designated phone number via a GSM module. Zhang et al. suggested a strategy for the garbage detection system 
for small objects, using multi-branch dilated convolutions and deformable convolution networks in place of 
the feature extraction networks in the original Cascade RCNN27. Gondal et al. presented a real-time smart 
garbage classification model that classifies waste using a hybrid technique based on pictures taken by a camera 
and pushed into the appropriately designated bucket using an automatic hand hammer28. The proposed model’s 
accuracy during training, testing, and validation was 0.99%. The proposed work uses cloud applications and long-
range (LoRa) connections to monitor the bins in real-time using a customized sensor node and gateway node29. 
The study30 collected socioeconomic indicators from Tehran between 1991 and 2013 and identified significant 
factors using Pearson correlation analysis and three machine learning methods. Faisal et al.31 proposed a novel 
approach to waste management using the IoT and an advertising solution built on network-attached storage 
technology to generate income for waste management organizations.

Jacob et al.32 propose a smart prediction and monitoring IoT system for garbage disposal that uses 
commercially available components and a GPS module to monitor bins. LSTM is used to collect data and 
predict forthcoming waste. Linyuan et al.33 propose an accurate MSW prediction model using DDMs and the 
ITD algorithm. The study highlights the lack of research on ITD in environmental systems. Agrawal et al.34 
propose a system that uses the MQTT protocol to transmit and receive data between devices and provides 
real-time updates on trash levels on a web-based monitoring tool. To ensure a clean environment, precise trash 
collection and disposal are essential. Humaun et al. presented an intelligent solution for garbage collection and 
disposal, which involves real-time monitoring of smart bins powered by solar energy35. IoT technologies and 
their potential applications in infrastructure projects were discussed in a survey36. The improper management 
and monitoring of e-waste may have negative effects on ecosystems and human health. Several papers propose 
IoT-based solutions for waste management. Liaqat et al.37 suggest a system to measure garbage level and bin 
temperature in real-time, while Zaki et al.38 focus on drainage overflow management. These solutions aim to 
improve waste collection, drainage management, and overall quality of life.

Various studies have proposed IoT-based waste management solutions in smart cities. A low-cost and effective 
smart compost bin was developed using environmental sensors and the LoRaWAN protocol39. A review paper 
on existing IoT-based waste level management solutions in smart cities40 showed the widespread use of Arduino 
Uno in earlier research. Pardini et al.41 proposed monitoring the bin’s contents by sensors that provide real-time 
information on the compartments’ degree of filling. Bano et al.42 suggested a smart bin mechanism based on AI 
that monitors trash cans in real-time and prevents overloading. An investigative case43 carried out at Ton Duc 
Thang University in Vietnam showed the benefits of the suggested method, which is affordable, simple to use, 
and replaceable. Mishra et al.44 developed a system to optimize solid waste collection in Bhubaneswar City by 
reducing the number of waste collection vehicles (WCVs) and their travel distance, which can lower capital and 
operational expenditures. The suggested route optimization technique showed a 30.28% reduction in overall 
WCVs’ route distance, reducing OpEx by 29.07% and CapEx by 26.83% through fleet size reduction. Melakessou 
et al.45 explored a case study on a corporation providing a commercial garbage collection service in Luxembourg 
and investigated how to use various waste data sources to develop meaningful indicators for collection processes.

Several researchers have proposed smart waste management systems based on the Internet of Things (IoT). 
Tariq et al.46 proposed a system for monitoring waste bins and managing municipal solid waste in smart cities, 
including garbage collection, fire detection, and waste generation predictions. Srinivas et al.47 created a 3D smart 
bin model that was tested at the IIIT-Kottayam IoT Cloud Research Lab in India. Sharma et al.48 proposed an 
architecture for waste management in Indian smart cities, integrating intelligent bins with the IoT to improve 
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garbage collection and sorting. Kellow et al.49 presented an IoT-based reference model and comparison analysis 
of waste management solutions currently on the market, with a focus on improving collection time and lowering 
costs while promoting citizenship. Chen et al.50 suggested a smart trash system that detects not only the volume 
of trash but also its foul scent, allowing for effective waste collection and scheduling. Maksimovic51 discussed 
the advantages and potential for the adoption of IoT-powered waste management systems, which can address 
environmental and health issues caused by increasing waste volumes.

Smart cities face inefficiencies in garbage collection systems, which can be addressed through the use of IoT-
based smart bins. The proposed prototype by Harith et al.52 provides frequent updates on bin status, enabling 
efficient route planning and decreasing collection times and expenses. Waste disposal and recycling are also 
addressed through reward-based strategies that incentivize recycling and door-to-door rubbish collection, as 
proposed by Pelonero et al.53. To monitor waste levels, an IoT-based SC bin54 embedded with sensors sends 
SMS alerts to municipal corporation members when the bin fills up with trash. Ultrasonic sensors can also 
be used to collect data on waste levels in each bin, which can be used to develop dynamic routes for garbage 
trucks, as proposed by Mohit et al.55. In a survey, Vladyslav et al.56 explore cutting-edge technologies to address 
conventional garbage management issues. Their solution has three phases, including regularly monitoring 
trash levels, utilizing all available data, and providing users with updated information through a web-based 
application. In another study, Harith et al.52 propose an IoT-based smart bin prototype as a solution to 
inefficiencies in garbage collection systems, aiming to achieve smart cities. Their system provides frequent bin 
status updates, enables accurate route planning, reduces collection times and expenses, and conserves gasoline. 
Several studies have proposed IoT-based solutions for solid waste management. A smart system for smart cities 
was proposed57, which uses a NodeMCU microcontroller and sensor hardware system along with an Android 
application to track the data sent by the dustbin module. Abdullah et al.58 recommended an improved waste 
management system that uses different truck sizes based on the kind of waste and integrates Internet of Things 
devices to allow communication between waste management centers, smart bins, waste source regions, and 
waste collection trucks. Bakhshi et al.59 proposed an IoT-based waste monitoring system that makes use of 
Raspberry Pi, ultrasonic sensors, and machine learning analytics to monitor waste capacity and detect garbage 
collection scheduling. The results showed that fuel efficiency was increased by up to 46% and collection times 
reduced by up to 18% over a ten-day testing and validation period.

The present study responds to three persistent limitations in municipal solid-waste research and practice:

•	 Prevailing systems intervene only after overflow events, a reactive stance that proves inadequate as urban 
waste volumes accelerate;

•	 Many models ignore influential factors such as proximity to activity hubs, recent maintenance history, and 
weather dynamics, thereby restricting predictive power;

•	 Few investigations report end-to-end field deployments, leaving real-world viability largely untested.

To address these gaps, the work makes the following contributions:

•	 Introduces ProWaste, an IoT-enabled, machine-learning framework that fuses 15 automated and manual 
variables, predicts daily WCC criticality, and pushes mobile alerts to maintenance crews;

•	 Conducts a 25-model benchmark and wraps the selected Decision-Tree classifier with Binary PSO feature se-
lection, yielding a compact three-feature model that exceeds 99.8% macro-F1 while remaining interpretable;

•	 Validates the system on 6,954 daily records from 57 Bengaluru WCCs over four months, demonstrating reli-
able real-time operation and measurable reductions in unnecessary collections.

Recent work has advanced autonomous cleaning robots for coastal litter60, vision-based solid-waste recognition 
that couples an attention-enhanced YOLO detector with DeepSORT tracking for real-time bin sorting61, and 
embedded “Internet-of-Video-Things” platforms that classify plastics on conveyor belts with quantised deep 
networks62. While these systems excel at on-site object detection or collection, they focus on single domains 
(beach sand, camera-visible items, or plastic streams) and require high-resolution imaging hardware, substantial 
computational power, or specialised robotics. ProWaste differs fundamentally by shifting the optimisation 
point upstream: instead of identifying individual waste items, it fuses fifteen low-cost heterogeneous signals 
(environmental, demographic, operational) to forecast the criticality of each urban Waste-Collection Centre in 
advance. An optimized classifier distils these inputs to three interpretable drivers, enabling municipality crews to 
pre-empt overspill with minimal sensing infrastructure and without GPU-class edge devices. Hence, ProWaste 
complements vision-centric sorting solutions by orchestrating city-scale routing and maintenance. It offers a 
scalable, explainable, and resource-efficient layer that can later ingest richer data from advanced sensors or 
camera systems as they become economically viable.

Proposed waste management system: ProWaste
The proposed proactive waste management system, named ProWaste, considers both automated and non-
automated input parameters, with varying impact factors in the ML Module, and the respective criticality score 
for the WCCs is generated. As shown in Fig. 2, the ProWaste framework uses machine learning and IoT as its 
building blocks. The important components of the ProWaste conceptual framework, which gives an overall 
picture of the possible courses of action, are described below.

•	 Physical sensors: A low-cost sensor stack was selected. All modules contain no imaging or personal-data ca-
pabilities and operate passively; therefore, no additional permits or privacy approvals are required. During 
deployment, each node self-checks via a 30-s zeroing cycle at start-up and pushes hourly QC flags (range, 
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rate-of-change, and inter-sensor consistency) to the cloud; any flag failure triggers an app alert for field re-
calibration.

•	 APIs: Multiple APIs are used for various functionalities, including but not limited to communication between 
the cloud, mobile application, and ML module, transfer of data between the three, receiving real-time data 
from weather applications, etc.

•	 Google Firebase: This database provided by Google Firebase is used for the storage of data such as municipal 
employee details, WCC details, etc.

•	 Mobile application: The Sustainable Smart Waste Management (SSWM) mobile application built on the Flut-
ter framework is used as the key entity for allowing municipality users to view the data concerning WCCs and 
their current criticality score and input parameters, as well as to receive timely notification alerts for ensuring 
optimal waste management.

General model description
Figure 3 illustrates the classification process for new data into three categories: high, moderate, and low criticality. 
The process begins with raw data, which is subjected to a series of preprocessing steps to clean, normalize, and 
convert it into a model-compatible format. After preprocessing, the data is split into testing and training subsets. 
The training subset is used to train the model, whereas the testing subset is utilized to evaluate the model’s 
performance. The preprocessed data is used to create an original feature set, consisting of all the features that 
can be used for classification. A wrapper method is then used to select the best features from the extracted set, 
generating a subset of features that are most pertinent to the classification task. The subset of features generated 
by the wrapper method is further refined to obtain the optimal features for the classification task. Finally, a 
classification algorithm is trained on the optimal set of features and used to classify new data points based on 
their feature values, outputting a decision for each data point and indicating the class to which it belongs.

Data description & generation
As described below, the input data are generated from fifteen different sources, including automated and non-
automated sources:

Fig. 3.  Data classification process for criticality classes.

 

Fig. 2.  ProWaste conceptual framework.
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Population
This input data pertains to the population count in the 10 km radius area surrounding the respective WCC. The 
data will be the categorization of the population count based on approximate estimates among the following 
three:

•	 High population (>1,00,000 people)
•	 Moderate population (50,000 – 1,00,000 people)
•	 Low population (<50,000 people)

The population data is taken from the API provided by https://geoiq.io/, which is called geoIQ’s data API. With 
this API, the population data of any selected area can be extracted. This data, however, is not real-time and is 
updated every 2-3 years. Since the scope of the research work is constrained to smart cities, where population 
variance is at its minimum in that timespan, the data is relevant. Using the API, the population count of the 
respective area surrounding the WCC for residential waste is taken and accordingly classified into one of the 
three categories above. This category is then sent to the ML model as the input feature. This feature is static and 
non-variable for up to 2–3 years. As and when the APIs update their databases with fresh data, so will the input 
feature and the refreshed category. This input feature holds a high significance for the output variable, as the 
population and the amount of waste produced are closely correlated. Waste production increases with an area’s 
population.

Average distance to public centers
This continuous feature records the road-network mean distance (in km) between a WCC and all public-facing 
facilities located within a 10 km buffer, including educational institutes (schools, colleges), recreational venues 
(malls, play arenas, cinemas, city centres), large apartment complexes, permanent gathering spots (clubs, pubs), 
hotels and restaurants, and any registered community facility. Pairwise distances are retrieved via the Google 
Maps Distance API; the arithmetic mean is then computed

	
A = 1

n

n∑
i=1

ai,� (1)

where n is the number of detected facilities and ai is the individual road distance in kilometres. The raw value 
(float) is stored under Avg_Dist_Public_Centers_km and fed directly to the model; its directional 
influence on waste accumulation is learned automatically during training.

Average distance to water bodies
Analogously, this feature measures the mean road distance (km) from the WCC to all perennial water bodies–
rivers, lakes, ponds, and open drains–located within a 10 km radius. Distances are harvested with the Google 
Maps Distance API and averaged with Eq. (1). The resulting float is stored as Avg_Dist_WaterBodies_km. 
Whether shorter or longer proximity drives higher criticality is not hard-coded; the model infers the relationship 
from data.

Average distance to major transit stations
This continuous variable represents the road-network mean distance, in kilometres, from each WCC to every 
major transit hub contained within a 10 km buffer. Transit hubs comprise train stations, primary bus terminals, 
airports, harbours, taxi depots, and public parking facilities (surface lots and multi-level garages). Pairwise 
road distances are obtained through the Google Maps Distance API exactly as in Eq. (1); the arithmetic mean 
of the resulting list is stored as Avg_Dist_Transit_km. Two counteracting phenomena motivate the 
inclusion of this feature. First, it is identified that WCCs situated farther from transit hubs often accumulate 
more waste because they receive less casual surveillance and experience longer service intervals. Conversely, 
it is also expected that WCCs positioned very close to high-traffic hubs may accumulate excess waste owing to 
constant footfall and opportunistic disposal by commuters. By supplying the continuous distance value rather 
than a preset category, the learning algorithm can infer which effect dominates under local conditions and adjust 
predictions accordingly.

Temperature
This input feature is concerned with the temperature of the area where the respective waste center is located. 
The area is a 20 km radius circle centered on the waste center in question. Elevated temperatures speed up waste 
decomposition and gas production, leading to an increase in leachate63.

Air-pollution score
For each WCC day-snapshot, the nearest OpenAQ monitoring station supplies the daily mean Air-Quality Index 
(AQI) over a 20 km radius. The integer value is recorded in the dataset column Air_Pollution_AQI.

•	 Low : 0 ≤ AQI ≤ 70
•	 Moderate : 71 ≤ AQI ≤ 110
•	 High : AQI ≥ 111

The raw numeric AQI is streamed in real time to the ML pipeline; the above categories are employed solely for 
visual alerts in the SSWM mobile app.
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Humidity
The Open-Meteo API provides the daily mean relative humidity (%) for the 20 km circle around each WCC. The 
integer value is stored as Humidity_% and consumed directly by the model.

•	 Low : 0–40 %
•	 Moderate : 41–70 %
•	 High : 71–100 %

As with AQI, these bands are used only for colour-coded indicators; the ML engine operates on the continuous 
humidity percentage, which is refreshed continuously via the live data stream.

Precipitation
This input feature captures the daily total precipitation depth (in mm) recorded within a 20 km radius of the 
waste-collection centre. Values are obtained from the same weather APIs used for Temperature. The levels are 
discretised as:

•	 Low (< 3.8 mm)
•	 Moderate (3.8–7.6 mm)
•	 High (> 7.6 mm)

Because rainfall can fluctuate sharply from one day to the next, the corresponding data stream is ingested in real 
time and the feature is refreshed continuously for the ML model.

Current season
This input feature defines the climatic conditions of the smart city (since the current season is not localized, but 
generalized to, at the very least, an entire state) and is categorized as one of the following:

•	 Normal—Spring, Autumn, and Winter
•	 Negative—Summer and Rainy

The data is gathered through the same weather API mentioned in the previous features. This data will define 
the seasons, such as summer, winter, etc. “Negative” denotes seasons that accelerate decomposition and odour 
generation. Based on these data, the category of the input feature will be selected and sent to the ML model. This 
data feature will vary according to the seasons, so the period would be 2–4 months for each data before they are 
updated by the API.

Time since the last maintenance date
This input feature represents the duration in days between the present time and the last maintenance date of the 
WCC. The data for this feature is obtained from the municipality’s database, which is updated regularly through 
a mobile application. The cloud calculates the feature, and the value is sent to the ML model. The longer the 
duration between maintenance, the higher the likelihood of waste accumulation and toxicity at the respective 
WCC. This feature is important as it serves as a criticality score reset parameter after maintenance is performed.

Average house structure
This input feature accounts for the different house types present in a smart city and is a subdivision of public 
centers, but can be taken as a separate factor on its own. It defines the average house type present in the 10km 
radius, whether it’s dominated by apartments or single/double-story buildings, etc. The category of the area will 
fall within the following:

•	 High number of apartments (meaning dominated by multi-story apartments)
•	 Moderate number of apartments (average mixture of apartments and single homes)
•	 Low number of apartments (meaning dominated by single houses)

This data can also be acquired from the Google Maps API, though a thorough data cleaning process must be 
in place. The data taken here are from apartments within a 10 km radius. If there is a presence of more than 
10 such apartments, then the area surrounding the waste center can be categorized as having a high number of 
apartments. If between 5 and 10, then it will fall under an average number of apartments, and anything lower is 
categorized as a low number of apartments. This selected category is sent as the input feature. This data feature 
is semi-variable; updating of the feature data can be done when apartment complex constructions are done 
and updated in Google Maps as operational. This input feature also holds moderate significance to the output 
variable. If apartment complexes dominate the area, then it indirectly shows more population concentration in 
that area, and hence more waste accumulation

Prior information as to the weekly aggregation of trash in a certain zone
Information about the weekly accumulation of waste in a particular area is an essential input for the model. 
This feature comprises data related to the average weekly accumulation of waste in the vicinity of the WCC. The 
data is classified into three categories based on the level of waste accumulation: high, moderate, and low. Data 
gathering for this feature is done through the output factors of the ML model. The output factor of the model 
is the criticality score of the WCC, which is stored in the database. This data is used as an input feature and 
represents the historical data of the WCC. The period of this data is semi-variable and is regularly updated, along 
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with the output factors being sent to the municipality. This input feature holds high significance for the output 
variable. The historical waste accumulation rate of an area covered by a WCC can be used to predict the future 
accumulation rate of that area, considering that certain factors remain constant.

Approximate public gatherings per month
The input feature of the approximate number of temporary public gatherings that occur in the 10km radius area 
surrounding the WCC per month is essential for the model. Data for this feature is collected through manual 
inputs from the municipality of the concerned city or area. At the end of every month, they input the data for 
this parameter through the mobile application. The data is obtained from their sources and is updated routinely 
every month.

Condition of public infrastructure
The input feature of the condition of public infrastructure in the 10km radius area surrounding the respective 
WCCs is essential for the model. This feature includes data on the average condition of the public infrastructure 
in the area. It is categorized into one of the following three categories: well-maintained, sufficiently maintained, 
or poorly maintained. The data for this feature is gathered through manual inputs from the municipality via 
the mobile application. The municipality can update the data as and when they see fit based on the observed 
conditions of the public infrastructure. Once the inputs are given in the form of the three categories, the average 
category is calculated and sent as an input feature.

Construction works or any other social works and their frequency
This categorical feature describes the average frequency of construction and other social works within a 10 km 
radius of each waste center, reflecting the intensity and occurrence of such activities in the area and classified 
into one of three levels: high frequency, moderate frequency, or low frequency.

The data is gathered once again by manual inputs from the municipality side through the mobile SSWM 
application, which is similar to the previous feature. This data has to be updated by the municipality at least 
once every 3 months, with multiple changes in the data being possible if such changes occur in the frequency 
of the construction works in the respective area. This feature has a periodic variability, at least as it must be 
updated every 3 months. If the increased frequency of construction and other such social works is observed, 
waste accumulation also proportionally increases. A complete description of all input variables and their update 
schedules is provided in Table 1.

Waste-Collection Centre locations were selected primarily for public convenience and logistical accessibility; 
as such, their spatial distribution may introduce measurement bias. Because the present study aims to demonstrate 
a scalable analytical framework rather than produce a definitive geostatistical survey, this trade-off was accepted.

The functional flow layout diagram of the ProWaste model is displayed in Fig. 4. In block (A), the automated 
input parameters are taken for a certain waste center using various data-gathering techniques. This data is 
then sent two ways, one to the cloud database for storage and the other to the SSWM app for monitoring. The 
parameters are sent with the help of the respective APIs and updated regularly whenever there is a change in the 
data gathered. In block (B), the input data values from the parameters are routinely checked for any disparity or 
observable outliers. These may be caused by certain errors in the data-gathering technique, such as API server 
downtime, data corruption, etc. If any such changes to the parameter values are required, they are made by 
municipal software personnel and updated through the SSWM app to the cloud database. In block (C), the input 
parameters from the cloud database are continuously updated with the most recent data in all scenarios. The ML 
Module accesses these input parameter values to generate a criticality score as the output variable. This criticality 
score is updated in the database. In block (D), once the criticality score is updated, it is sent to the decision-
making algorithm that decides the priority of maintenance required based on the said criticality score. A higher 
criticality score puts the respective waste center in its corresponding position in the maintenance priority queue. 
The SSWM app is used to update and notify the relevant municipality. In block (E), the municipality, on receiving 
the notification, can handle maintenance at their discretion, based on the priority queue displayed in the SSWM 
app, after which post-maintenance values are updated to both the database and the app. In block (F), the non-
automated input parameters are observed by municipality personnel and manually entered into the database 
through the SSWM app. These parameters may or may not be periodic, based on conditions observed by the 
municipality. Whenever there is a significant change in these parameters, they are updated by the municipal 
software personnel and uploaded through the SSWM app to the cloud database.

In Fig. 5, (A) shows the registration and logging in of municipal personnel with their respective IDs. There 
will be two types of users with different access levels in the application: software personnel and maintenance 
personnel. The software personnel users will have access to all input parameter details for every waste center, 
both automated and manual. They will be able to report any errors or disparities observed in the automated input 
parameters. Along with this, it is their responsibility from the side of the municipality to manually enter the 
non-automated input parameters periodically or whenever the application notifies them of such. The criticality 
score of each waste center in real-time can also be viewed. Maintenance personnel users will have access to the 
waste center locations and an overview of their details, along with their current criticality score and maintenance 
status. They will also have a “Priority Queue Alerts” feature, which notifies them and their respective teams of 
new waste centers that have gone critical (the criticality score is high) and need maintenance. They can also 
keep track of the maintenance of different waste centers of different criticalities, which are arranged in a priority 
queue for optimal waste management.

In (B), the dashboard acts as a quick notification to alert the current top waste centers that need maintenance 
(in the case of maintenance personnel) or the current input parameters that need to be updated for respective 
waste centers (in the case of software personnel). It can be used to provide quick access to maintenance updates 
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or parameter update functionality. In (C), the zone list shows all the different zones under the municipal scope; 
this can be viewed in either tabular format or map format. All details are stored in the cloud and delivered 
in real-time to the mobile interface. In (D), the waste center list shows all the different waste centers under 
each zone, which can also be viewed in tabular format or map format. All details are stored in the cloud and 
received in real-time by the mobile interface. In (E), the waste center details show the user all data concerning 
the selected waste center, including all input parameters, the current criticality score, and the waste center’s 
location. There are also options to report data errors and edit non-automated input parameters. The option for 
reporting maintenance is available to maintenance personnel, who can tag the waste center as having undergone 
maintenance or still in the process of maintenance. The reason for this is to have optimal waste management 
among many maintenance teams to avoid overlap and increase efficiency. In (F), priority alerts are sent to users 
as and when new waste centers need to undergo maintenance. Their position in the priority queue is based on 
their criticality score relative to the other waste centers. The algorithm that determines the queue considers the 
criticality score as well as other factors such as the closest distance to maintenance headquarters, the proximity 
of waste centers to one another, and so on. This feature also indicates which centers are undergoing maintenance 
currently and which centers are still pending maintenance. When the centers are done with maintenance and are 
reported as such by the maintenance team, they are removed from the queue.

The map view displayed in Fig. 6 is an illustration of the User Layer Interface that the SSWM application 
provides to municipality personnel. It presents a detailed pictorial overview of all WCCs within a certain zone, 
along with their real-time criticality score. The location markers indicate nine urban WCCs, and the surrounding 
circular color indicates the criticality of each WCC. Overlapping criticality areas indicate higher criticality, and 
locations that fall within such areas correspond to a higher criticality score. Similar to the Google Map interface, 
users can toggle different surrounding structures, such as the nearest public centers, weather indicators, etc., to 
provide more detailed clarity to the municipality’s users and personnel. Figure 6 is for illustration only and does 
not represent any actual location or municipality; any such correlation is purely incidental.

Variable Role Type / Unit Description Collection source
Update 
freq.

Date – – Calendar day of snapshot (00:00–23:59). Edge-gateway system 
clock Daily

WCC_ID – – Unique Waste-Collection-Centre identifier 
(wcc001–057) –

Population_Category X-var Cat. {High, Moderate, 
Low} Residential density within 10 km radius of the WCC. GeoIQ population raster 

(100 m) 2–3 yr

Avg_Dist_Public_Centers_km X-var Float (km) Road-network mean distance to schools, malls, 
hotels, clubs (10 km buffer).

Google Maps Distance 
API Monthly

Avg_Dist_Transit_km X-var Float (km) Mean distance to major transit hubs (rail/bus depots, 
airport, parking).

Google Maps Distance 
API Monthly

Avg_Dist_WaterBodies_km X-var Float (km)
Mean distance to perennial water bodies (rivers, 
lakes, open drains) within 10 km (road-network 
distance).

Google Maps Distance 
API Monthly

Temperature_C X-var Float (°C) Daily mean ambient temperature at the WCC 
centroid.

Open-Meteo API (ERA5 
down-scale) Daily

Air_Pollution_AQI X-var Integer (AQI) Daily mean Air-Quality Index (CPCB scale). OpenAQ API (nearest 
station) Daily

Humidity_% X-var Integer (%) Daily mean relative humidity. Open-Meteo API Daily

Precipitation_mm X-var Float (mm) Daily total rainfall proxy. Open-Meteo API Daily

Current_Season X-var Cat. {Normal, Negative} Macro-climatic regime: Normal = Spring/Autumn/
Winter, Negative = Summer/Rainy.

Open-Meteo seasonal 
calendar

2–4 
months

TimeSinceLastMaintenance_days X-var Integer (days) Days elapsed since the last logged maintenance visit. SSWM mobile-app 
event log

Daily 
(auto)

Avg_House_Structure X-var Cat. {HighAp., 
ModerateAp., LowAp.}

Dominant housing pattern (apartments vs. single 
homes) in 10 km buffer. Google Places POI count Annual

Weekly_Waste_Accumulation X-var Cat. {High, Moderate, 
Low} Seven-day moving-window waste build-up category. Derived from historic 

criticality logs Weekly

Infrastructure_Condition X-var
Cat. {WellMaintained, 
SufficientlyMaintained, 
PoorlyMaintained}

Subjective rating of roads, drains, and lighting 
around WCC.

Manual entry by 
municipal engineer Monthly

Approx_Public_Gatherings X-var Integer (events) Number of temporary public events (festivals, fairs, 
rallies) within 10 km during the preceding month.

Manual entry by 
municipal culture office Monthly

Construction_Frequency X-var Cat. {High, Moderate, 
Low}

Intensity of construction or other sanctioned social 
works within 10 km, derived from active permits and 
field audit.

Municipal permit 
database + engineer 
survey

Quarterly

CriticalityClass Target Cat. {Low, Moderate, 
High} Priority label used for route scheduling. Classifier Daily

Table 1.  Variable Description (6 954 daily snapshots; 57 WCCs; 1 March–30 June 2024).
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Feature selection
The feature extraction method involves the two crucial processes of feature construction and feature selection. 
The term “feature construction” (also known as “data preprocessing”)65 encompasses any techniques that 
modify the original feature in some way, such as data standardization, normalization, and noise filtering. 
Making it simpler to recognize the underlying information in data is the goal of this key preprocessing phase. 
By eliminating the characteristics with the lowest potential for information, feature selection merely looks for 
the ideal feature subset. The benefit of feature selection is that it allows us to execute dimensionality reduction 
on our data by reducing the number of features. This can protect from the curse of dimensionality and speed 
up the classification process. Although there are many different feature selection methods available, there are 
three things that essentially tell them apart65: the search strategy for feature subset creation, the prediction 
performance, and the assessment method. The first refers to the search method that was used to analyze the 
potential solutions in the space of feature combinations. The remaining two relate to the assessment criteria, 
or the procedure and metrics employed to rate the excellence of each feature subset. The feature selection 
algorithms are categorized into three classes: wrapper methods, embedding methods, and filter techniques, 
based on the subset assessment approach66. Wrappers investigate the range of prospective features utilizing a 
search algorithm, assessing every subset by employing a model. This approach risks over-fitting the model and 
can be computationally expensive. In the search plan, filters function similarly to wrappers. Still, the features 
are chosen by analyzing a performance metric that does not necessitate developing a model, as opposed to 
comparing against a model. Similar to wrapper approaches, embedded feature selection methods relate feature 
selection to the categorization stage. Better search space coverage is the key benefit of the wrapper approach over 
embedded methods. The wrapper method’s key benefit over filter techniques is that the final subset’s prediction 
performance is linked to the relevant measure of choice, in this instance, the classifier. The wrapper technique is 
an attractive option when obtaining the most accurate model, which is the main goal, and speed is not a concern.

Wrapper methods
Using the predictor itself during subset evaluation is the defining feature of wrapper approaches. Candidate 
subsets are scored by a learning algorithm according to their predictive performance  65. Although wrappers 
often yield superior accuracy for the chosen base learner, they require training a model for every feature mask 
examined; hence, an explicit search strategy is essential because enumerating all combinations is infeasible. 
Popular heuristics include greedy hill climbing, which iteratively modifies a current subset and keeps a change 
only if it improves the score. Since exhaustive search is impossible, the best subset observed so far is returned 
when a stopping criterion is met–for example, no further improvement, a target score, or a maximum run-time.

Model selection for wrapper feature selection
Each candidate mask is evaluated by fitting a base learner and measuring It’s validation performance. After 
benchmarking 25 classifiers (Table 2). We selected a DecisionTreeClassifier because it

Fig. 4.  Functional flow block diagram of ProWaste model.
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•	 offers high single-model accuracy, yet trains orders of magnitude faster than large ensembles–critical when 
thousands of masks are tested;

•	 produces transparent if–then rules, allowing municipal engineers to audit why a WCC is flagged High;
•	 accepts both numerical and one-hot categorical inputs without additional engineering inside the swarm loop.

Objective function
Let the binary vector hx ∈ {0, 1}NT  activate NF = ∥hx∥1 of the NT  encoded predictors. To balance predictive 
power and parsimony, we minimise

	
f(hx) = α

(
1 − Acc

)
+ (1 − α) NF

NT
, α = 0.99,� (2)

where Acc is the multi-class accuracy of the decision-tree based learner on the validation fold, and NF /NT  is 
the fraction of features retained. With α = 0.99 the search places 99% weight on reducing classification error 
and 1% on shrinking the subset.

Given a K × K  confusion matrix C whose element Cij  counts instances of true class i predicted as j, multi-
class accuracy is

Fig. 5.  Interface of municipal waste management application with user access levels and priority queue alerts.
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Acc =

∑K

k=1
Ckk

∑K

i=1

∑K

j=1
Cij

,� (3)

i.e. the proportion of correctly classified samples. This generalises the binary definition and avoids class-specific 
terms such as true/false positives.

Because enumerating the 2NT  possible masks is computationally prohibitive, we optimise f(hx) with Binary 
Particle Swarm Optimisation (BPSO).

Application of BPSO in feature selection
BPSO represents each particle as a binary mask of length NT ; a ‘1’ keeps the corresponding column, a ‘0’ drops 
it. Positions and velocities are initialised at random, and each iteration is updated via cognitive and social 
components. Our settings–30 particles, 100 iterations, 20 independent runs–balance exploration with run-time 
(see Algorithm 1).

Encoding
Let mxy ∈ {0, 1} be the position of particle x on dimension y and vxy ∈ R its velocity. Initialisation uses

	
mxy ←

{ 1 if r ≥ 0.5,
0 otherwise, r ∼ U(0, 1), � (4)

	 vxy ← −vmax + 2k vmax, k ∼ U(0, 1). � (5)

Search procedure
All features are normalised to zero mean and unit variance before the swarm search begins. Thirty particles, each 
testing on average ≈ 15% of the NT  columns, and 100 iterations per run were sufficient to reach stable minima 
in every one of the 20 runs.

Fig. 6.  Map view of SSWM Application’s Waste Center Criticality Scores for Municipalities  64.
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Model Accuracy BalancedAcc. F1_macro BestParams Acc._Rank BalAcc._Rank F1_Rank AvgRank References

AdaBoostClassifier 0.998897 0.998086 0.998587
{’n_
estimators’: 
50, ’learning_
rate’: 1.0}

1 1 1 1.00 67

BaggingClassifier 0.998466 0.997954 0.998039
{’n_
estimators’: 
10, ’max_
features’: 1.0}

2 2 2 2.00 68

LGBMClassifier 0.998370 0.997873 0.997917

{’n_
estimators’: 
100, 
’learning_
rate’: 0.1, 
’num_leaves’: 
31}

3 3 3 3.00 69

DecisionTreeClassifier 0.998226 0.997839 0.997733

{’criterion’: 
’gini’, ’max_
depth’: None, 
’min_samples_
split’: 2}

4 4 4 4.00 70

RandomForestClassifier 0.997651 0.996667 0.996993

{’n_
estimators’: 
200, ’max_
features’: 
’sqrt’}

5 5 5 5.00 71

ExtraTreesClassifier 0.985236 0.976512 0.981340

{’n_
estimators’: 
100, ’max_
features’: 
’sqrt’}

6 6 6 6.00 72

SVC 0.968266 0.957637 0.960816
{’C’: 1.0, 
’kernel’: 
’rbf’}

7 7 7 7.00 73

NuSVC 0.964144 0.945881 0.954204
{’nu’: 0.5, 
’kernel’: 
’rbf’}

8 8 8 8.00 74

LinearDiscriminantAnalysis 0.949957 0.941619 0.938551 {’solver’: 
’svd’} 9 9 9 9.00 75

CalibratedClassifierCV 0.944205 0.919877 0.931539 {’method’: 
’sigmoid’} 10 10 10 10.00 76

LogisticRegression 0.932988 0.904546 0.914007
{’C’: 1.0, 
’penalty’: 
’l2’}

11 12 11 11.33 77

GaussianNB 0.922587 0.908919 0.903256
{’var_
smoothing’: 
1e-09}

12 11 12 11.67 78

LinearSVC 0.895697 0.855221 0.866455 {’C’: 1.0} 13 13 13 13.00 79

KNeighborsClassifier 0.865543 0.829040 0.841961
{’n_neighbors’: 
11, ’weights’: 
’distance’}

14 15 14 14.33 80

NearestCentroid 0.862429 0.849923 0.834539 {’metric’: 
’euclidean’} 15 14 15 14.67 81

ExtraTreeClassifier 0.842161 0.825114 0.824790

{’criterion’: 
’gini’, ’max_
depth’: None, 
’min_samples_
split’: 2}

16 16 16 16.00 82

LabelSpreading 0.813489 0.794286 0.798710

{’kernel’: 
’rbf’, 
’gamma’: 20, 
’n_neighbors’: 
7}

17 17 17 17.00 83

LabelPropagation 0.813345 0.794040 0.798565

{’kernel’: 
’rbf’, 
’gamma’: 20, 
’n_neighbors’: 
7}

18 18 18 18.00 84

Perceptron 0.795134 0.755192 0.745572
{’alpha’: 
0.0001, ’max_
iter’: 200}

19 19 19 19.00 85

PassiveAggressiveClassifier 0.771931 0.731353 0.724623
{’C’: 1.0, 
’loss’: 
’hinge’, ’max_
iter’: 200}

20 20 20 20.00 86

RidgeClassifier 0.747341 0.652367 0.643795 {’alpha’: 1.0, 
’tol’: 0.0001} 21 21 21 21.00 87

Continued
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Algorithm 1.  Binary PSO wrapping a Decision-Tree base learner

Performance evaluation
As shown in Table 2, the twenty-five models were ranked based on performance metrics, namely accuracy, 
balanced accuracy, and F1-score. The twenty-five models were chosen to give balanced, practical coverage of 
tabular-data classifiers while keeping the 10 × 3 repeated-fold benchmark feasible on a municipal workstation. 
They span all principal paradigms–linear (Logistic, Ridge, Perceptron), distance-based (k-NN, Nearest 
Centroid), probabilistic (Gaussian NB, Bernoulli NB, LDA, QDA), kernel (SVC, NuSVC, Linear SVC), tree 
and ensemble methods (Decision-, Random-, Extra-Trees, Bagging, AdaBoost, LightGBM), semi-supervised 
graph learners (LabelPropagation, LabelSpreading), and online margin algorithms (Passive-Aggressive). Every 
candidate natively supports multi-class targets and works with the scaled + one-hot matrix produced by the 
ColumnTransformer, needs only moderate CPU time (so deep nets and very large GBDTs were excluded), 
and offers built-in or SHAP-compatible explainability–an adoption requirement for municipal engineers. 
Key settings for the repeated-stratified K-fold benchmark include loading the ProWaste dataset, applying 
10-fold splits repeated three times with a fixed random seed of 42, and preprocessing numeric features via 
StandardScaler and categorical features via OneHotEncoder(handle_unknown=’ignore’) 
within a ColumnTransformer inside a Pipeline. Twenty-five classifiers are evaluated in parallel using 
accuracy, balanced accuracy, and macro-F1 metrics, and their mean metric ranks determine the final ordering.

In the experiment, we applied a 10 × 3 repeated-stratified cross-validation (i.e., a 10-fold stratified CV 
repeated three times, for a total of 30 validation folds) to obtain point estimates, 95 % confidence intervals (CIs), 
a Friedman omnibus test, and Wilcoxon signed-rank post-hoc comparisons with Holm correction (Fig.  7), 
thereby providing three complementary layers of statistical evidence.

The AdaBoostClassifier tops the table with a mean accuracy of 0.998897; Balanced Accuracy and 
macro-F1 display equally low variance, whereas mid-tier models such as LinearSVC exhibit markedly broader 
intervals (accuracy 0.895697), signalling weaker generalisation. The Friedman p-value (≈ 7 × 10−134) rejects 
the null hypothesis of equal performance, justifying pair-wise Wilcoxon tests: only BaggingClassifier, 

Model Accuracy BalancedAcc. F1_macro BestParams Acc._Rank BalAcc._Rank F1_Rank AvgRank References

RidgeClassifierCV 0.747293 0.652155 0.643434

{’alphas’: 
[0.1, 1.0, 
10.0], ’store_
cv_values’: 
’deprecated’}

22 22 22 22.00 88

BernoulliNB 0.702760 0.625630 0.617116
{’alpha’: 1.0, 
’binarize’: 
0.0, ’fit_
prior’: True}

23 23 23 23.00 89

QuadraticDiscriminantAnalysis 0.416018 0.421123 0.365857
{’reg_param’: 
0.0, ’tol’: 
0.0001}

24 24 24 24.00 90

DummyClassifier 0.408398 0.333333 0.193316
{’strategy’: 
’most_
frequent’}

25 25 25 25.00 91

Table 2.  Performance-based ranking of the classification models.
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LGBMClassifier, and DecisionTreeClassifier return adjusted p-values > 0.05 against 
AdaBoostClassifier, so their differences are not statistically significant–a pattern mirrored across all three metrics. 
Rank aggregates corroborate these findings, cleanly separating the leading trio from the remaining twenty-two 
learners. Because AdaBoostClassifier, Bagging, and LGBM offer no statistically reliable gain over a single tree, 
we favour the DecisionTreeClassifier for the wrapper-based feature-selection and XAI pipeline: it 
is natively interpretable (explicit if–then rules auditable by municipal engineers), orders of magnitude faster 
to retrain during the thousands of BPSO evaluations, supplies deterministic feature-importance vectors that 
integrate seamlessly with SHAP, and—given its CI width of ≈ 0.002—shows no greater over-fitting risk than the 
more complex ensembles. Hence, the DecisionTreeClassifier combines statistically indistinguishable 
predictive power with maximal transparency and computational efficiency, making it the most suitable base 
learner for ProWaste. Based on the ranking, the DecisionTreeClassifier is selected as the base model for the 
wrapper feature selection process because it offers clear, actionable explanations through its transparent, rule-
based structure. Its single-tree architecture provides direct feature importance measures and unambiguous 
decision paths, which can be further analyzed at both global and local levels using SHAP values, making it an 
ideal choice for explainable AI applications. The BPSO algorithm identified three optimal features that yielded 
the best results for the classification process. The experimental results of the wrapper feature selection process are 
displayed in Fig. 8. Figure 8 offers an integrated performance snapshot of the feature-optimised Decision-Tree 
model generated by twenty 100-iteration BPSO runs. Sub-plot (a) displays the confusion matrix for the hold-out 
test set (1,391 instances), where the diagonal dominance and a single off-diagonal entry confirm that the decisive 
model misclassifies only one record. Sub-plot (b) traces the mean best-fitness trajectory averaged over the 
twenty runs; the curve drops sharply in the first 15–20 iterations and stabilises around iteration 35, illustrating 
the swarm’s rapid convergence toward an optimal three-feature subset. Sub-plot (c) summarises the resulting 
predictive quality: overall Accuracy, Balanced Accuracy, and macro-F1 all exceed 0.999, proving that drastic 
dimensionality reduction does not degrade performance. Finally, sub-plot (d) lists the retained predictors–
Weekly_Waste_Accumulation, TimeSinceLastMaintenance_days, and Air_Pollution_AQI–emphasising that 
these three variables alone are sufficient to discriminate Low, Moderate, and High criticality with near-perfect 
precision.

Figure 9 elucidates how the decisive BPSO-Decision-Tree model arrives at its predictions by means of SHAP 
analysis. Sub-plot (a) reports mean absolute SHAP values per class, showing that the three variables retained 
by BPSO dominate the explanation for Low, Moderate, and High criticality alike. Sub-plot (b) ranks the global 
importance of every input: TimeSinceLastMaintenance_days contributes approximately an order of magnitude 
more than any other feature, followed by Air_Pollution_AQI and Weekly_Waste_Accumulation, whereas the 
remaining predictors are essentially inert. Sub-plot (c) presents the SHAP summary (beeswarm) plot; points to 
the right of the zero line increase the probability of the High class, while those to the left favour the Low class, 
again underlining the leverage exerted by the three selected variables. Subplots (d)–(f) zoom in on a single test 
instance (first sample) whose raw values are Population_Category = High, Avg_Dist_Public_Centers_km = 1.15, 

Fig. 7.  Heat-map of Holm-adjusted Wilcoxon p-values for Accuracy, Balanced Accuracy, and macro-F1, 
comparing each model to the top performer.
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Avg_Dist_Transit_km = 2.02, Temperature_C = 28.7, Air_Pollution_AQI = 67, Humidity_% = 55, Precipitation_
mm = 0.07, TimeSinceLastMaintenance_days = 3, Avg_House_Structure = HighApartments, Weekly_Waste_
Accumulation = High, Infrastructure_Condition = PoorlyMaintained (true label: Low). Sub-plot (d) decomposes 
the log-odds for the Low class: the recent maintenance interval (3 days) and moderate AQI drive the prediction 
strongly toward Low. Sub-plot (e) performs the same decomposition for the High class, illustrating how the 
identical features push the log-odds upward yet remain insufficient to overturn the Low decision. Sub-plot (f) 
shows the middle ground for the Moderate class. Taken together, the experiments demonstrate that the BPSO-
selected subset not only preserves classification accuracy but also yields an interpretable mechanism in which 
just three variables govern both global behaviour and individual-case reasoning.

Conclusion
This study introduced ProWaste, an end-to-end IoT and machine-learning platform that streams fifteen 
heterogeneous indicators–from population density and weather to maintenance history and weekly waste 
build-up–from 57 Bengaluru WCCs over 6,954 daily snapshots into a cloud database. Twenty-five off-the-shelf 
classifiers were benchmarked under repeated stratified cross-validation, and a DecisionTreeClassifier wrapped 
by Binary Particle Swarm Optimization was selected, removing 80% of inputs while preserving near-perfect 
performance (>99% accuracy on a hold-out test set). SHAP analyses confirm that the three retained features 
(Weekly Waste Accumulation, Time-Since-Last-Maintenance, Air Pollution AQI) remain highly interpretable 
for municipal engineers, and a Flutter-based mobile app completes the data-to-alert pipeline for field teams. 
Compared with current reactive scheduling, ProWaste can virtually eliminate missed pickups and cut unnecessary 
inspections. Future work will extend this pilot to multi-city and seasonal deployments to evaluate transferability, 
integrate more advanced licensed sensors (e.g., infrared gas analyzers, ultrasonic depth meters, and leachate 
conductivity probes) for higher-fidelity data capture, broaden coverage to additional waste streams (recycling, 
compost, e-waste) and multi-label criticality, and deploy adaptive learning and drift-detection mechanisms 
to self-calibrate as input distributions shift. We also plan to link ProWaste with vehicle-routing solvers, life-
cycle cost analyses, and blockchain-based audit trails, transforming it from a high-accuracy predictor into a 
comprehensive decision-support platform for sustainable smart-city waste management.

Fig. 8.  Performance of the decisive BPSO-Decision-Tree model. (a) Confusion matrix on the hold-out test set. 
(b) Mean best-fitness trajectory (average of the twenty 100-iteration runs). (c) Bar chart of Accuracy, Balanced 
Accuracy, and macro-F1 obtained with the decisive subset. (d) Final feature subset selected by BPSO.
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Data availability
The datasets analyzed during the current study are available from the corresponding author upon reasonable 
request.

Received: 20 June 2024; Accepted: 20 June 2025

References
	 1.	 Wire, B. Smart waste management systems global market report 2022: Growing volume of e-waste driving adoption worldwide—

https://www.researchandmarkets.com/ (2022).
	 2.	 Silva, B. N., Khan, M. & Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open 

challenges in smart cities. Sustain. Cities Soc. 38, 697–713 (2018).
	 3.	 Future Market Insights. Smart waste management market growth—trends & forecast 2025 to 2035 (2025). Accessed Jan 20, 2025.
	 4.	 Paul, A. Corpbiz has emerged as the most trusted consulting firm for waste management licensing in India (2022).
	 5.	 Ming, N. Y. Exclusive: How India’s smartest city is tackling waste (2020).
	 6.	 Cheela, V. S., Ranjan, V. P., Goel, S., John, M. & Dubey, B. Pathways to sustainable waste management in Indian smart cities. J. 

Urban Manag. 10, 419–429 (2021).
	 7.	 Behm, J. How well do you know your landfills?.
	 8.	 Bzai, J. et al. Machine learning-enabled internet of things (IoT): Data, applications, and industry perspective. Electronics 11, 2676 

(2022).
	 9.	 Patil, J. S. & Sankpal, S. V. Iot enabled e-waste management system for smart city. Int. J. Sci. Dev. Res. 6(3), 1555–1560 (2021).
	10.	 Ijemaru, G. K., Ang, L. M. & Seng, K. P. Transformation from IoT to IoV for waste management in smart cities. J. Netw. Comput. 

Appl. 204, 103393 (2022).

Fig. 9.  SHAP-based feature-importance analysis of the decisive model. (a) Mean absolute SHAP values 
per class, confirming dominance of the three selected features. (b) Global mean SHAP bar chart: 
‘TimeSinceLastMaintenance_days‘ is by far the most influential predictor. (c) SHAP summary-dot plot 
showing the distribution of impacts; positive values shift predictions toward the High class. (d)–(f) Waterfall 
plots, illustrating how the key features increase or decrease the predicted criticality score of a particular 
instance (first sample).

 

Scientific Reports |        (2025) 15:27790 18| https://doi.org/10.1038/s41598-025-08452-x

www.nature.com/scientificreports/

https://www.researchandmarkets.com/
http://www.nature.com/scientificreports


	11.	 Vishnu, S., Ramson, S. J., Rukmini, M. S. S. & Abu-Mahfouz, A. M. Sensor-based solid waste handling systems: A survey. Sensors 
22, 2340 (2022).

	12.	 Shanthini, E. et al. Iot based smart city garbage bin for waste management. In 2022 4th International Conference on Smart Systems 
and Inventive Technology (ICSSIT), 105–110 (IEEE, 2022).

	13.	 Prastyabudi, W. A. & Permata, O. A. A conceptual design of waste management: Smart bin deployment in Surabaya smart city. Acta 
Mechanica Malaysia (AMM) 4, 5–9 (2021).

	14.	 Akbarpour, N., Salehi-Amiri, A., Hajiaghaei-Keshteli, M. & Oliva, D. An innovative waste management system in a smart city 
under stochastic optimization using vehicle routing problem. Soft. Comput. 25, 6707–6727 (2021).

	15.	 Aithal, P. et al. Smart city waste management through ICT and IoT driven solution. Int. J. Appl. Eng. Manag. Lett. (IJAEML) 5, 
51–65 (2021).

	16.	 Fayomi, G. et al. Smart waste management for smart city: Impact on industrialization. In IOP Conference Series: Earth and 
Environmental Science, vol. 655, 012040 (IOP Publishing, 2021).

	17.	 Wang, Q. & Li, S. Experience of urban solid waste management in Russia under the concept of smart city and its enlightenment to 
Shenyang. In IOP Conference Series: Earth and Environmental Science, vol. 719, 042021 (IOP Publishing, 2021).

	18.	 Nasreen Banu, M.  I. & Metilda Florence, S. Convergence of artificial intelligence in IoT network for the smart city—waste 
management system. In Expert Clouds and Applications, 237–246 (Springer, 2022).

	19.	 Elyta, E., Wiko, G., Fahruna, Y., Rahman, I. & Zhan, F. F. Model-based waste management handling angkuts application to smart 
city: The perspective of human security. Turkish J. Comput. Math. Educ. 12(4), 1555–1560 (2021).

	20.	 Peoples, C. et al. A smart city economy supported by service level agreements: A conceptual study into the waste management 
domain. Smart Cities 4, 952–970 (2021).

	21.	 Shivran, P. S. Smart city waste management system. Int. J. Comput. Appl. 174, 30–33. https://doi.org/10.5120/ijca2021921059 
(2021).

	22.	 Sa’diyah, A. F., Purnomo, E. P. & Kasiwi, A. N. Waste management in the implementation of smart city in Bogor city. Jurnal Ilmu 
Pemerintahan Widya Praja 46, 271–279 (2020).

	23.	 Dzhuguryan, T. & Deja, A. Sustainable waste management for a city multifloor manufacturing cluster: A framework for designing 
a smart supply chain. Sustainability 13, 1540 (2021).

	24.	 Abuga, D. & Raghava, N. Real-time smart garbage bin mechanism for solid waste management in smart cities. Sustain. Cities Soc. 
75, 103347 (2021).

	25.	 Vishnu, S. et al. IoT-enabled solid waste management in smart cities. Smart Cities 4, 1004–1017 (2021).
	26.	 Scariah, M. et al. Automated waste monitoring and alert system using IoT. In Emerging Technologies in Data Mining and Information 

Security, 349–357 (Springer, 2021).
	27.	 Zhang, C., Zhang, X., Tu, D. & Wang, Y. Small object detection using deep convolutional networks: Applied to garbage detection 

system. J. Electron. Imaging 30, 043013 (2021).
	28.	 Gondal, A. U. et al. Real time multipurpose smart waste classification model for efficient recycling in smart cities using multilayer 

convolutional neural network and perceptron. Sensors 21, 4916 (2021).
	29.	 Akram, S., Singh, R., Gehlot, A. & Thakur, A. Design and implementation of a wide area network based waste management system 

using blynk and cayenne application. Iran. J. Electr. Electron. Eng. 17, 1941–1941 (2021).
	30.	 Ghanbari, F., Kamalan, H. & Sarraf, A. An evolutionary machine learning approach for municipal solid waste generation estimation 

utilizing socioeconomic components. Arab. J. Geosci. 14, 1–16 (2021).
	31.	 Faisal, T., Awawdeh, M. & Bashir, A. Design and development of intelligent waste bin system with advertisement solution. Bull. 

Electr. Eng. Inf. 10, 940–949 (2021).
	32.	 John, J. et al. Smart prediction and monitoring of waste disposal system using IoT and cloud for IoT based smart cities. Wirel. Pers. 

Commun. 122, 243–275 (2022).
	33.	 Fan, L. et al. Introducing an evolutionary-decomposition model for prediction of municipal solid waste flow: Application of 

intrinsic time-scale decomposition algorithm. Eng. Appl. Comput. Fluid Mech. 15, 1159–1175 (2021).
	34.	 Agrawal, R. & Sharma, A. Smart bin management system with IoT-enabled technology. In Soft Computing: Theories and 

Applications, 145–153 (Springer, 2021).
	35.	 Kabir, M. H., Roy, S., Ahmed, M. T. & Alam, M. Iot based solar powered smart waste management system with real time 

monitoring-an advancement for smart city planning. Glob. J. Comput. Sci. Technol. 20, 11–20 (2020).
	36.	 Hassan, R. J. et al. State of art survey for IoT effects on smart city technology: Challenges, opportunities, and solutions. Asian J. Res. 

Comput. Sci. 22, 32–48 (2021).
	37.	 Ali, N. A. L., Ramly, R., Sajak, A. A. B. & Alrawashdeh, R. IoT e-waste monitoring system to support smart city initiatives. Int. J. 

Integr. Eng. 13, 1–9 (2021).
	38.	 Zaki, T., Jahan, I. T., Hossain, M. S. & Narman, H. S. An IoT-based complete smart drainage system for a smart city. In 2021 IEEE 

12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 0553–0558 (IEEE, 2021).
	39.	 Ziouzios, D., Baras, N., Dasygenis, M. & Tsanaktsidis, C. Envisioning IoT applications in a smart city to underpin an effective 

municipal strategy: The smartbin project. In SHS Web of Conferences, vol. 102, 04020 (EDP Sciences, 2021).
	40.	 Shah, A. et al. A review of IoT-based smart waste level monitoring system for smart cities. Indones. J. Electr. Eng. Comput. Sci. 21, 

450–456 (2021).
	41.	 Pardini, K. et al. A smart waste management solution geared towards citizens. Sensors 20, 2380 (2020).
	42.	 Bano, A., Ud Din, I. & Al-Huqail, A. A. AIoT-based smart bin for real-time monitoring and management of solid waste. Sci. Progr. 

2020, 6613263 (2020).
	43.	 Anh Khoa, T. et al. Waste management system using IoT-based machine learning in university. Wirel. Commun. Mob. Comput. 

2020, 6138637 (2020).
	44.	 Mishra, A. & Kumar Ray, A. Iot cloud-based cyber-physical system for efficient solid waste management in smart cities: A novel 

cost function based route optimisation technique for waste collection vehicles using dustbin sensors and real-time road traffic 
informatics. IET Cyber-Phys. Syst. Theory Appl. 5, 330–341 (2020).

	45.	 Melakessou, F., Kugener, P., Alnaffakh, N., Faye, S. & Khadraoui, D. Heterogeneous sensing data analysis for commercial waste 
collection. Sensors 20, 978 (2020).

	46.	 Ali, T., Irfan, M., Alwadie, A. S. & Glowacz, A. Iot-based smart waste bin monitoring and municipal solid waste management 
system for smart cities. Arab. J. Sci. Eng. 45, 10185–10198 (2020).

	47.	 Srinivas, M., Benedict, S. & Sunny, B. C. Iot cloud based smart bin for connected smart cities-a product design approach. In 2019 
10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 1–5 (IEEE, 2019).

	48.	 Sharma, A. & Battula, R. B. Architecture for waste management in Indian smart cities (AWMINS). In 2019 International Conference 
on Information and Communication Technology Convergence (ICTC), 76–83 (IEEE, 2019).

	49.	 Pardini, K., Rodrigues, J. J., Kozlov, S. A., Kumar, N. & Furtado, V. Iot-based solid waste management solutions: A survey. J. Sens. 
Actuator Netw. 8, 5 (2019).

	50.	 Chen, W.-E., Wang, Y.-H., Huang, P.-C., Huang, Y.-Y. & Tsai, M.-Y. A smart IoT system for waste management. In 2018 1st 
International Cognitive Cities Conference (IC3), 202–203 (IEEE, 2018).

	51.	 Maksimovic, M. Leveraging internet of things to revolutionize waste management. Int. J. Agric. Environ. Inf. Syst. (IJAEIS) 9, 1–13 
(2018).

Scientific Reports |        (2025) 15:27790 19| https://doi.org/10.1038/s41598-025-08452-x

www.nature.com/scientificreports/

https://doi.org/10.5120/ijca2021921059
http://www.nature.com/scientificreports


	52.	 Harith, M. Z. et al. Prototype development of IoT based smart waste management system for smart city. In IOP Conference Series: 
Materials Science and Engineering, vol. 884, 012051 (IOP Publishing, 2020).

	53.	 Pelonero, L., Fornaia, A. & Tramontana, E. From smart city to smart citizen: rewarding waste recycle by designing a data-centric 
IoT based garbage collection service. In 2020 IEEE International Conference on Smart Computing (SMARTCOMP), 380–385 (IEEE, 
2020).

	54.	 Bhandari, R., Rathod, S., Singh, N., Desai, D. & Kotadiya, H. Iot based smart city bin. Int. J. Comput. Appl. 176, 26–29. ​h​t​t​p​s​:​/​/​d​o​i​
.​o​r​g​/​1​0​.​5​1​2​0​/​i​j​c​a​2​0​2​0​9​2​0​1​0​3​​​​ (2020).

	55.	 Badve, M., Chaudhari, A., Davda, P., Bagaria, V. & Kalbande, D. Garbage collection system using IoT for smart city. In 2020 Fourth 
International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), 138–143 (IEEE, 2020).

	56.	 Kalyuzhnyy, V., Costa, M., Silva, P. & Santos, J. Smart city IoT system-collectmywaste. In 2020 4th International Symposium on 
Multidisciplinary Studies and Innovative Technologies (ISMSIT), 1–5 (IEEE, 2020).

	57.	 Lokhande, A., Kshirsagar, A. & Deokar, S. Smart city waste management system for Swachh Bharat with IoT. Int. J. Res. Appl. Sci. 
Eng. Technol. 7, 1523–1529 (2019).

	58.	 Abdullah, N., Alwesabi, O. A. & Abdullah, R. Iot-based smart waste management system in a smart city. In International Conference 
of Reliable Information and Communication Technology, 364–371 (Springer, 2018).

	59.	 Bakhshi, T. & Ahmed, M. Iot-enabled smart city waste management using machine learning analytics. In 2018 2nd International 
Conference on Energy Conservation and Efficiency (ICECE), 66–71 (IEEE, 2018).

	60.	 Cicceri, G. et al. An intelligent hierarchical cyber-physical system for beach waste management: The BIOBLU case study. IEEE 
Access 11, 134421–134445 (2023).

	61.	 Ma, W. et al. DSYOLO-trash: An attention mechanism-integrated and object tracking algorithm for solid waste detection. Waste 
Manage. 178, 46–56 (2024).

	62.	 Shukhratov, I. et al. Optical detection of plastic waste through computer vision. Intell. Syst. Appl. 22, 200341 (2024).
	63.	 Wang, Y., Pelkonen, M. & Kaila, J. Effects of temperature on the long-term behaviour of waste degradation, emissions and post-

closure management based on landfill simulators. Open Waste Manag. J. 5, 19–27 (2012).
	64.	 Inkscape Project. Inkscape: Vector Graphics Editor. Inkscape Project (2024). Version 1.3.2.
	65.	 Guyon, I., Gunn, S., Nikravesh, M. & Zadeh, L. A. Feature Extraction: Foundations and Applications Vol. 207 (Springer, Berlin, 

2008).
	66.	 Kuncheva, L. I. Combining Pattern Classifiers: Methods and Algorithms (John Wiley & Sons, Hoboken, 2014).
	67.	 Sahu, P. K. Artificial intelligence system for verification of schizophrenia via theta-EEG rhythm. Biomed. Signal Process. Control 81, 

104485 (2023).
	68.	 Latif, S. et al. Analysis of birth data using ensemble modeling techniques. Appl. Artif. Intell. 37, 2158273 (2023).
	69.	 Jung, A. Recognizing mental states when diagnosing psychiatric patients via bci and machine learning. In Proceedings of the Future 

Technologies Conference (FTC) 2022, Volume 1, 644–655 (Springer, 2022).
	70.	 Lipsa, S. & Dash, R. K. A novel dimensionality reduction strategy based on linear regression with a fine-pruned decision tree 

classifier for detecting DDoS attacks in cloud computing environments. In Artificial Intelligence: First International Symposium, 
ISAI 2022, Haldia, India, February 17-22, 2022, Revised Selected Papers, 15–25 (Springer, 2023).

	71.	 Zhai, X. et al. Classification of arctic sea ice type in CFOSAT scatterometer measurements using a random forest classifier. Remote 
Sens. 15, 1310 (2023).

	72.	 Liao, C. Employee turnover prediction using machine learning models. In International Conference on Mechatronics Engineering 
and Artificial Intelligence (MEAI 2022), vol. 12596, 227–231 (SPIE, 2023).

	73.	 Huseinbasic, E. Angle instability and oscillations control using svc: A deep reinforcement learning enhanced local controller. Eur. 
J. Electr. Eng. Comput. Sci. 7, 74–78 (2023).

	74.	 Tian, W. et al. Structural analysis and classification of low-molecular-weight hyaluronic acid by near-infrared spectroscopy: A 
comparison between traditional machine learning and deep learning. Molecules 28, 809 (2023).

	75.	 Li, S. et al. Linear discriminant analysis with generalized kernel constraint for robust image classification. Pattern Recogn. 136, 
109196 (2023).

	76.	 Kuschel, L. et al. Robust methylation-based classification of brain tumours using nanopore sequencing. Neuropathol. Appl. 
Neurobiol. 49, e12856 (2023).

	77.	 Cornish, R. P., Bartlett, J. W., Macleod, J. & Tilling, K. Complete case logistic regression with a dichotomised continuous outcome 
led to biased estimates. J. Clin. Epidemiol. 154, 33–41 (2023).

	78.	 Akhtar, M. S. & Feng, T. Evaluation of machine learning algorithms for malware detection. Sensors 23, 946 (2023).
	79.	 Merrin, P.  N. et al. Machine learning based automated disaster message classification system using linear svc algorithm. In 

Intelligent Cyber Physical Systems and Internet of Things: ICoICI 2022, 869–879 (Springer, 2023).
	80.	 Moon, N. N. et al. Machine learning approach to predict the depression in job sectors in Bangladesh. Curr. Res. Behav. Sci. 2, 

100058 (2021).
	81.	 Tran, T.-N., Nguyen, T.-L., Hoang, V. T. & Voznak, M. Sensor clustering using a k-means algorithm in combination with optimized 

unmanned aerial vehicle trajectory in wireless sensor networks. Sensors 23, 2345 (2023).
	82.	 Malik, A. et al. Landslide susceptibility prediction based on decision tree and feature selection methods. J. Indian Soc. Remote Sens. 

51, 771–786 (2023).
	83.	 Li, J. & Fan, S. GRNN: Graph-retraining neural network for semi-supervised node classification. Algorithms 16, 126 (2023).
	84.	 Yue, Y., Wang, G., Hu, J. & Li, Y. An improved label propagation algorithm based on community core node and label importance 

for community detection in sparse network. Appl. Intell. 53, 17935–17951 (2023).
	85.	 Ahmed, S. A software framework for predicting the maize yield using modified multi-layer perceptron. Sustainability 15, 3017 

(2023).
	86.	 Pal, A. et al. Survey of fake news detection using machine intelligence approach. Data Knowl. Eng. 144, 102118 (2023).
	87.	 Frizzarin, M. et al. Classification of cow diet based on milk mid infrared spectra: A data analysis competition at the “international 

workshop on spectroscopy and chemometrics 2022’’. Chemom. Intell. Lab. Syst. 234, 104755 (2023).
	88.	 Bouchiha, D., Bouziane, A. & Doumi, N. Machine learning for Arabic text classification: A comparative study. Malays. J. Sci. Adv. 

Technol. 4, 163–173 (2022).
	89.	 Elbagir, S. & Yang, J. Sentiment analysis of twitter data using machine learning techniques and scikit-learn. In Proceedings of the 

2018 International Conference on Algorithms, Computing and Artificial Intelligence, 1–5 (2018).
	90.	 de Andrade Silva, H. et al. Detection of terbufos in cases of intoxication by means of entomotoxicological analysis using ATR-FTIR 

spectroscopy combined with chemometrics. Acta Trop. 238, 106779 (2023).
	91.	 Aguirre-Munizaga, M., Del Cioppo Morstadt, J. & Samaniego-Cobo, T. Analysis of classification algorithms for the prediction of 

purchase intention in electronic commerce. In Technologies and Innovation: 8th International Conference, CITI 2022, Guayaquil, 
Ecuador, November 14–17, 2022, Proceedings, 30–42 (Springer, 2022).

Author contributions
Conceptualization, T.S., H.K.S.M., C.L., U.S., S.A., and H.K.; writing–original draft preparation, T.S., H.K.S.M., 
C.L., U.S., S.A., and H.K.; writing–review and editing, T.S., H.K.S.M., C.L., U.S., S.A., and H.K.; All authors have 
read and agreed to the published version of the manuscript.

Scientific Reports |        (2025) 15:27790 20| https://doi.org/10.1038/s41598-025-08452-x

www.nature.com/scientificreports/

https://doi.org/10.5120/ijca2020920103
https://doi.org/10.5120/ijca2020920103
http://www.nature.com/scientificreports


Funding
This work was supported in part by the National Science and Technology Council under Grant NSC113-2410-
H-167-012-MY3 and NSC113-2634-F-005-001-MBK. 

Declarations

Competing interests
The corresponding author is responsible for submitting on behalf of all authors of the paper.

Additional information
Correspondence and requests for materials should be addressed to C.-C.L., S.A. or H.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:27790 21| https://doi.org/10.1038/s41598-025-08452-x

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿ProWaste for proactive urban waste management using IoT and machine learning
	﻿﻿Related work
	﻿﻿Proposed waste management system: ProWaste
	﻿General model description
	﻿Data description & generation
	﻿Population
	﻿Average distance to public centers
	﻿Average distance to water bodies
	﻿Average distance to major transit stations
	﻿Temperature
	﻿Air-pollution score
	﻿Humidity
	﻿Precipitation
	﻿Current season
	﻿Time since the last maintenance date
	﻿Average house structure
	﻿Prior information as to the weekly aggregation of trash in a certain zone
	﻿Approximate public gatherings per month
	﻿Condition of public infrastructure
	﻿Construction works or any other social works and their frequency


	﻿﻿Feature selection
	﻿Wrapper methods
	﻿Model selection for wrapper feature selection
	﻿Objective function
	﻿Application of BPSO in feature selection
	﻿Encoding
	﻿Search procedure


	﻿﻿Performance evaluation
	﻿﻿Conclusion
	﻿References


