Table 2 Performance-based ranking of the classification models.

From: ProWaste for proactive urban waste management using IoT and machine learning

Model

Accuracy

BalancedAcc.

F1_macro

BestParams

Acc._Rank

BalAcc._Rank

F1_Rank

AvgRank

References

AdaBoostClassifier

0.998897

0.998086

0.998587

{’n_estimators’: 50, ’learning_rate’: 1.0}

1

1

1

1.00

67

BaggingClassifier

0.998466

0.997954

0.998039

{’n_estimators’: 10, ’max_features’: 1.0}

2

2

2

2.00

68

LGBMClassifier

0.998370

0.997873

0.997917

{’n_estimators’: 100, ’learning_rate’: 0.1, ’num_leaves’: 31}

3

3

3

3.00

69

DecisionTreeClassifier

0.998226

0.997839

0.997733

{’criterion’: ’gini’, ’max_depth’: None, ’min_samples_split’: 2}

4

4

4

4.00

70

RandomForestClassifier

0.997651

0.996667

0.996993

{’n_estimators’: 200, ’max_features’: ’sqrt’}

5

5

5

5.00

71

ExtraTreesClassifier

0.985236

0.976512

0.981340

{’n_estimators’: 100, ’max_features’: ’sqrt’}

6

6

6

6.00

72

SVC

0.968266

0.957637

0.960816

{’C’: 1.0, ’kernel’: ’rbf’}

7

7

7

7.00

73

NuSVC

0.964144

0.945881

0.954204

{’nu’: 0.5, ’kernel’: ’rbf’}

8

8

8

8.00

74

LinearDiscriminantAnalysis

0.949957

0.941619

0.938551

{’solver’: ’svd’}

9

9

9

9.00

75

CalibratedClassifierCV

0.944205

0.919877

0.931539

{’method’: ’sigmoid’}

10

10

10

10.00

76

LogisticRegression

0.932988

0.904546

0.914007

{’C’: 1.0, ’penalty’: ’l2’}

11

12

11

11.33

77

GaussianNB

0.922587

0.908919

0.903256

{’var_smoothing’: 1e-09}

12

11

12

11.67

78

LinearSVC

0.895697

0.855221

0.866455

{’C’: 1.0}

13

13

13

13.00

79

KNeighborsClassifier

0.865543

0.829040

0.841961

{’n_neighbors’: 11, ’weights’: ’distance’}

14

15

14

14.33

80

NearestCentroid

0.862429

0.849923

0.834539

{’metric’: ’euclidean’}

15

14

15

14.67

81

ExtraTreeClassifier

0.842161

0.825114

0.824790

{’criterion’: ’gini’, ’max_depth’: None, ’min_samples_split’: 2}

16

16

16

16.00

82

LabelSpreading

0.813489

0.794286

0.798710

{’kernel’: ’rbf’, ’gamma’: 20, ’n_neighbors’: 7}

17

17

17

17.00

83

LabelPropagation

0.813345

0.794040

0.798565

{’kernel’: ’rbf’, ’gamma’: 20, ’n_neighbors’: 7}

18

18

18

18.00

84

Perceptron

0.795134

0.755192

0.745572

{’alpha’: 0.0001, ’max_iter’: 200}

19

19

19

19.00

85

PassiveAggressiveClassifier

0.771931

0.731353

0.724623

{’C’: 1.0, ’loss’: ’hinge’, ’max_iter’: 200}

20

20

20

20.00

86

RidgeClassifier

0.747341

0.652367

0.643795

{’alpha’: 1.0, ’tol’: 0.0001}

21

21

21

21.00

87

RidgeClassifierCV

0.747293

0.652155

0.643434

{’alphas’: [0.1, 1.0, 10.0], ’store_cv_values’: ’deprecated’}

22

22

22

22.00

88

BernoulliNB

0.702760

0.625630

0.617116

{’alpha’: 1.0, ’binarize’: 0.0, ’fit_prior’: True}

23

23

23

23.00

89

QuadraticDiscriminantAnalysis

0.416018

0.421123

0.365857

{’reg_param’: 0.0, ’tol’: 0.0001}

24

24

24

24.00

90

DummyClassifier

0.408398

0.333333

0.193316

{’strategy’: ’most_frequent’}

25

25

25

25.00

91