Table 2 Performance-based ranking of the classification models.
From: ProWaste for proactive urban waste management using IoT and machine learning
Model | Accuracy | BalancedAcc. | F1_macro | BestParams | Acc._Rank | BalAcc._Rank | F1_Rank | AvgRank | References |
---|---|---|---|---|---|---|---|---|---|
AdaBoostClassifier | 0.998897 | 0.998086 | 0.998587 | {’n_estimators’: 50, ’learning_rate’: 1.0} | 1 | 1 | 1 | 1.00 | |
BaggingClassifier | 0.998466 | 0.997954 | 0.998039 | {’n_estimators’: 10, ’max_features’: 1.0} | 2 | 2 | 2 | 2.00 | |
LGBMClassifier | 0.998370 | 0.997873 | 0.997917 | {’n_estimators’: 100, ’learning_rate’: 0.1, ’num_leaves’: 31} | 3 | 3 | 3 | 3.00 | |
DecisionTreeClassifier | 0.998226 | 0.997839 | 0.997733 | {’criterion’: ’gini’, ’max_depth’: None, ’min_samples_split’: 2} | 4 | 4 | 4 | 4.00 | |
RandomForestClassifier | 0.997651 | 0.996667 | 0.996993 | {’n_estimators’: 200, ’max_features’: ’sqrt’} | 5 | 5 | 5 | 5.00 | |
ExtraTreesClassifier | 0.985236 | 0.976512 | 0.981340 | {’n_estimators’: 100, ’max_features’: ’sqrt’} | 6 | 6 | 6 | 6.00 | |
SVC | 0.968266 | 0.957637 | 0.960816 | {’C’: 1.0, ’kernel’: ’rbf’} | 7 | 7 | 7 | 7.00 | |
NuSVC | 0.964144 | 0.945881 | 0.954204 | {’nu’: 0.5, ’kernel’: ’rbf’} | 8 | 8 | 8 | 8.00 | |
LinearDiscriminantAnalysis | 0.949957 | 0.941619 | 0.938551 | {’solver’: ’svd’} | 9 | 9 | 9 | 9.00 | |
CalibratedClassifierCV | 0.944205 | 0.919877 | 0.931539 | {’method’: ’sigmoid’} | 10 | 10 | 10 | 10.00 | |
LogisticRegression | 0.932988 | 0.904546 | 0.914007 | {’C’: 1.0, ’penalty’: ’l2’} | 11 | 12 | 11 | 11.33 | |
GaussianNB | 0.922587 | 0.908919 | 0.903256 | {’var_smoothing’: 1e-09} | 12 | 11 | 12 | 11.67 | |
LinearSVC | 0.895697 | 0.855221 | 0.866455 | {’C’: 1.0} | 13 | 13 | 13 | 13.00 | |
KNeighborsClassifier | 0.865543 | 0.829040 | 0.841961 | {’n_neighbors’: 11, ’weights’: ’distance’} | 14 | 15 | 14 | 14.33 | |
NearestCentroid | 0.862429 | 0.849923 | 0.834539 | {’metric’: ’euclidean’} | 15 | 14 | 15 | 14.67 | |
ExtraTreeClassifier | 0.842161 | 0.825114 | 0.824790 | {’criterion’: ’gini’, ’max_depth’: None, ’min_samples_split’: 2} | 16 | 16 | 16 | 16.00 | |
LabelSpreading | 0.813489 | 0.794286 | 0.798710 | {’kernel’: ’rbf’, ’gamma’: 20, ’n_neighbors’: 7} | 17 | 17 | 17 | 17.00 | |
LabelPropagation | 0.813345 | 0.794040 | 0.798565 | {’kernel’: ’rbf’, ’gamma’: 20, ’n_neighbors’: 7} | 18 | 18 | 18 | 18.00 | |
Perceptron | 0.795134 | 0.755192 | 0.745572 | {’alpha’: 0.0001, ’max_iter’: 200} | 19 | 19 | 19 | 19.00 | |
PassiveAggressiveClassifier | 0.771931 | 0.731353 | 0.724623 | {’C’: 1.0, ’loss’: ’hinge’, ’max_iter’: 200} | 20 | 20 | 20 | 20.00 | |
RidgeClassifier | 0.747341 | 0.652367 | 0.643795 | {’alpha’: 1.0, ’tol’: 0.0001} | 21 | 21 | 21 | 21.00 | |
RidgeClassifierCV | 0.747293 | 0.652155 | 0.643434 | {’alphas’: [0.1, 1.0, 10.0], ’store_cv_values’: ’deprecated’} | 22 | 22 | 22 | 22.00 | |
BernoulliNB | 0.702760 | 0.625630 | 0.617116 | {’alpha’: 1.0, ’binarize’: 0.0, ’fit_prior’: True} | 23 | 23 | 23 | 23.00 | |
QuadraticDiscriminantAnalysis | 0.416018 | 0.421123 | 0.365857 | {’reg_param’: 0.0, ’tol’: 0.0001} | 24 | 24 | 24 | 24.00 | |
DummyClassifier | 0.408398 | 0.333333 | 0.193316 | {’strategy’: ’most_frequent’} | 25 | 25 | 25 | 25.00 |