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In this study, we introduce the Channa Argus Optimizer (CAO), a novel swarm-based meta-heuristic 
algorithm that draws inspiration from the distinctive hunting and escaping behavior observed in 
Channa Arguses in the natural world. The CAO algorithm mainly emulates the hunting and escaping 
behavior of Chinna Argus to realize a tradeoff between exploitation and exploration in the solution 
space and discourage premature convergence. The competitiveness and effectiveness of CAO are 
validated utilizing 29 typical CEC2017 and 10 CEC2020 unconstrained benchmarks and 5 real-world 
constrained optimization mechanical engineering issues. The CAO algorithm was tested on CEC2017 
and CEC2020 functions and compared with 7 algorithms to evaluate performance. In addition, the 
CAO algorithm is tested on the CEC2017 benchmark functions with dimensions of 10-D, 30-D, 50-D, 
and 100-D. It is then compared and evaluated against other algorithms, using the Wilcoxon rank-sum 
test and Friedman mean rank. Finally, the CAO algorithm is utilized to tackle five intricate engineering 
problems to show its robustness. These results have demonstrated the effectiveness and potential of 
the CAO algorithm, yielding outstanding results and ranking first among other algorithms.
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As society and technology have advanced, scientists now face a vast array of challenges1,2. These issues get 
more complicated with time. Problems in optimization can be roughly divided into a number of categories, 
including single-objective or multi-objective, continuous or discrete and static or dynamic3. These categories 
make it feasible to create resolution techniques that are as effective as possible while taking into account the 
inherent characteristics of the situations. In order to identify the optimal solution, resolution techniques scan the 
search space or solution space. They frequently call for iterative procedures that enhance one or more solutions 
simultaneously. As a result, the search space is explored and gradually advances in the direction of the best 
answer.

Numerous techniques have been developed throughout time to address optimization issues, which may be 
generally divided into two families: meta-heuristics and heuristics4–6. When obtaining an accurate solution in a 
finite amount of time is not feasible, heuristics are employed as an approach.

Although it might not be the precise answer, using heuristics yields a good approximation of the issue in 
a reasonable amount of time7,8. When it comes to tackling situations that call for approximations, heuristics 
are helpful. Conversely, meta-heuristics are higher-level heuristics that are employed to address optimization 
issues, especially those using partial data, such as those in machine learning and artificial intelligence9–11. Meta-
heuristics can be used in situations where the solution set is too big to test thoroughly. They may also be used in 
combinatorial optimization and stochastic optimization, where they look for a sizable, discrete set of workable 
solutions. Meta-heuristics are a generic technique used to create a broad range of optimization algorithms and 
need less computing power than conventional approaches12. Any problem can be solved using meta-heuristic 
algorithms, even if the result isn’t always the best or most precise.

Real-world optimization problems frequently have uncertain search spaces and stochastic behavior. As a 
result, meta-heuristic algorithms without derivatives and without limiting assumptions have been developed. 
Because of their great adaptability, metaheuristic algorithms may be used for a wide range of optimization issues. 
In complex and dynamic situations, metaheuristic algorithms offer helpful answers to a wide range of optimization 
issues due to their great degree of flexibility. There are two types of mathematical optimization techniques: 
deterministic and stochastic13. Deterministic methods, including linear and non-linear programming, explore 
the issue space and identify a solution by using the gradient knowledge of the problem14. These methods work 
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well for linear search space problems, but when used for non-linear search space problems—like real-world non-
convex problems—they are susceptible to local optima entrapment. To solve these problems, these algorithms 
must be modified or hybridized15,16.

One well-known class of algorithms created especially to handle complex optimization problems is called 
a metaheuristic. They are founded on human-based (HU), physics-based (PH), swarm intelligence (SI), and 
evolutionary algorithms (EA)17–19. One of the primary causes of the SI’s increased acceptance across all courses 
is the mathematical models’ simplicity. In optimization as well as many other fields, metaheuristics have become 
increasingly prominent20. This category includes stochastic optimization methods, which are useful in many 
sectors and scientific fields. More and more new algorithms have emerged in recent years, such as Builder 
Optimization Algorithm(BOA)21, Candle Flame Optimization(CFA)22, Greylag Goose Optimization(GGO)23, 
Makeup Artist Optimization Algorithm(MAO)24, Tailor Optimization Algorithm (TOA)25, Orangutan 
Optimization Algorithm(OOA)26, Paper Publishing Based Optimization(PPBO)27, Perfumer Optimization 
Algorithm(POA)28, Revolution Optimization Algorithm(ROA)29, Singer Optimization Algorithm(SOA)30, 
Spider-Tailed Horned Viper Optimization(SHVO)31. However, the applications of these algorithms are not 
thoroughly discussed because the theoretical component of this study is its primary focus. Other pertinent sites 
are recommended for researchers who wish to investigate the real-world applications32.

The primary objective of this research paper is to introduce a novel metaheuristic algorithm named Channa 
Argus Optimizer (CAO), which is specifically designed to address optimization problems characterized by 
extensive search spaces. It is based on animals’ behavior and mimics Channa Argus’ behavior. The proposed 
algorithm is evaluated against five popular and recent metaheuristic algorithms using CEC2017, CEC2020, 
and industrial engineering problems. It is crucial to remember, nonetheless, that the No Free Lunch theorem 
for optimization states that an algorithm’s performance on one optimization issue does not ensure that it will 
succeed on another problem with distinct features. Therefore, in order to maximize the efficiency and usefulness 
of metaheuristic algorithms, it is essential to carefully examine and modify them to fit specific problem domains.

The main contributions of this paper are presented as follows.

	1.	 An innovative optimization algorithm named Channa Argus Optimizer is introduced for global optimiza-
tion industrial engineering problems.

	2.	 The performance of the Channa Argus Optimizer is calculated utilizing three challenging problems: 
CEC2017, CEC2020, and industrial engineering problems.

	3.	 The performance of the Channa Argus Optimizer is analyzed with the state-of-the-art swarm intelligence 
(SI) algorithms, physical inspiration algorithms, and biological inspiration-based algorithms.

The subsequent sections of the paper are structured as follows: Sect. "Literature review" presents an elaborate 
literature review, while Sect. "Channa argus optimizer(CAO)" provides a comprehensive explanation of the 
inspiration behind and the mathematical model of the newly proposed Channa Argus Optimizer. The outcomes 
derived from the experimentation are discussed in Sect. "Results on benchmark functions". The paper concludes 
by summarizing the findings and outlining potential future directions for research in Sect. "Engineering 
optimization test problems".

Literature review
Due to the increasing popularity of metaheuristic algorithms in solving different types of problems, various 
types of metaheuristic algorithms have been proposed. Each algorithm has its own characteristics and methods 
for solving optimization problems33,34. The inspiration for optimizing algorithms can include different types of 
natural phenomena, including animals and humans, physics, and evolution35,36. Various algorithms have been 
proposed based on the source of inspiration. In the context of mathematical modeling of natural behavior, these 
algorithms have led to the emergence of new methods and technologies in optimization methods37. Several 
optimization methods have been proposed in the literature, each with unique inspirations38,39. The inspiration 
for metaheuristic algorithms can be roughly divided into several natural sources. The general classification of 
meta-heuristic algorithms can be seen in Fig. 1.

The main inspiration for metaheuristic algorithms comes from animal life and behavior. These algorithms 
have been influenced by the collective behavior of social insects and animals and have also made significant 
contributions to human evolution40.

The main inspiration for metaheuristic algorithms comes from animal life and behavior. These algorithms 
, influenced by the collective behavior of social insects and animals, have also made significant contributions 
to the development of metaheuristic algorithms in human evolution41. The Puma Optimizer (PO), a heuristic 
metaheuristic algorithm, is essentially such a method42. It is proposed as a new optimization algorithm inspired 
by the intelligence and life of Pumas. Whale Optimization Algorithm (WOA) is a new metaheuristic optimization 
algorithm43–45. Its foam search is a response to the social behavior of Humpback whales. Pied kingfisher optimizer, 
a heuristic metaheuristic algorithm, is inspired by the unique hunting behavior and symbiosis of kingfishers 
in nature. Mayfly Algorithm (MA) is inspired by the flight behavior and the mating process of mayflies. The 
suggested method combines the main benefits of evolutionary algorithms with swarm intelligence46–48. Nature 
has an impact on Ant Lion Optimization (ALO). It mimics the five essential hunting processes that ants and 
lions use when hunting49–52. To handle optimization issues with various structures, another approach called 
the Pathfinder approach (PFA) has been presented. It looks for the best food source or prey, is inspired by the 
collective evolution of animals, and establishes a hierarchical structure of group leadership.

The second source of inspiration is physical processes or mathematical models. For instance, the arithmetic 
optimization algorithm (AOA), a novel metaheuristic technique, was proposed by Abualigah et al53–55. This 
approach makes use of how popular mathematical operations—like multiply, divide, add, and subtract—behave 
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in different search spaces. Optimization algorithms are carried out using the mathematical description of AOA. 
Using mathematical models based on sine and cosine functions, Mirjalili created the56–59 Technique (SCA), 
a population-based optimization method. In order to find and use the search space at different optimization 
milestones, SCA employs a number of random and adaptive factors and fluctuates either outward or towards 
the optimal solution. Furthermore, based on regulated volume and mass, Faramarzi et al. presented a novel 
equilibrium optimizer (EO) that uses each solution as a search agent whose location can reach equilibrium 
state33.

Metaheuristic algorithms also draw inspiration from the motivations of populations and their behaviors. 
People’s driving behavior while learning serves as the basis for the Driving Training Based Optimization 
(DTBO) algorithm, which is based on driving training60. Three phases make up the demonstration: practice, 
teacher-created modes, and instruction by the teacher driving instructor. To assess and test the DTBO 
algorithm, the author used 53 industry-standard features, including CEC 2017 functionality. This work proposes 
a new metaheuristic algorithm, the Group Teaching Optimization Algorithm (GTOA), to tackle a variety of 
optimization problems. It is a mechanism influenced by community teaching. Four fundamental guidelines for 
modifying group instruction, utilizing group technology, and implementing group teaching mode to facilitate 
workflow were described. Presented a novel human behavior-based optimization method for the election and 
leader selection process. On the basis of this, the algorithm guides search agents in two stages: exploration 
and exploitation. The author tested the algorithm using 33 objective functions of different dimensions and 
complexities. The results demonstrate how the algorithm effectively handles a range of optimization problems. To 
solve numerical and structural design optimization problems, Jahangiri et al. Presented an efficient and reliable 
metaheuristic method for a novel called 'Interactive Self-directed Teaching School’. International Accounting 
Standards are group based algorithms inspired by the experience of a self-study school where students can 
enhance their knowledge through self-study, collaborative discourse, feedback, and competition.

According to all the explanations in this section, each optimization algorithm has its own advantages and 
disadvantages. A significant drawback of optimizer algorithms is their poor performance in intensive and 
diverse components, lack of balance between exploration and development stages, staying at local optima, lack of 
adaptation to different mechanisms to solve discrete problems, and high execution time. The ability of optimizer 
algorithms can be improved by adapting powerful mechanisms that can increase the diversity of output solutions 
or quickly move towards the best solution to easily explore the entire optimization space. However, in order to 
minimize execution time to a reasonable level, these techniques should be as computationally simple as possible. 
In addition, intelligent mechanisms and programs can be used to balance the exploration and development 
stages, significantly improving the performance of algorithms61. Regarding the provided explanation, in these 
cases, it prompts us to provide a powerful algorithm, a powerful mechanism in the exploration and development 
phase with minimal execution time, and then introduce a new intelligent mechanism phase transition to achieve 
maximum performance from the proposed algorithm. Finally, due to its unique functionality, the proposed 
algorithm can be used to solve various optimization problems in different optimization spaces. We studied cases 
of global optimization problems and engineering technical problems.

Fig. 1.  Corresponding classification of meta-heuristic algorithms.
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Channa argus optimizer(CAO)
In this section, the main inspiration for the Channa Argus algorithm was reviewed, followed by a comprehensive 
description of the proposed algorithm and the establishment of a mathematical model.

Inspiration
Channa argus (see Fig. 2 which is Photographed by the corresponding author Da Fang), also known as black 
fish, money fish, mullet and snake head fish, belongs to the perciformes Ophiocephalus genus fish. The adult 
length is about 40 ~ 60 cm, and the maximum length can reach 1 m. The general weight is about 0.5 to 1 kg, 
and the maximum is 8 to 9 kg. The body is fat and elongated, cylindric at the front and flat at the rear. The head 
is large and long pointed, slightly flattened at the front, slightly raised at the back, and the top of the skull is 
covered with irregular scales. The snout is short and blunt, the mouth is large, the mouth cleft is slightly oblique, 
and the jaw is slightly prominent. The teeth in the mouth are clustered, the upper jaw has a fine tooth band, 
and the teeth on both sides of the lower jaw are sharp. The body color is gray-black, the back of the head and 
the back of the body are darker and darker, the abdomen is light white, there are about 11 irregular large black 
spots on the side of the body, and there is 1 small black spot along the middle line of the back. Channa argus 
is a large benthic freshwater fish. It is native to the river basins of the East Asian and Pacific river systems, and 
its worldwide distribution can extend from the Korean Peninsula, the Heilongjiang River basin and the Ussuri 
River basin on the border of China and Russia to the Xingkai Lake and the Yangtze River basin in the south. In 
China, it is mainly distributed in Hunan, Hubei, Anhui, Henan, Shandong, Hebei, Liaoning and other provinces. 
Later, it was widely introduced into Japan, Central Asian countries, and eastern North America. Channa argus 
is a ferocious carnivorous fish that feeds on other fish, frogs, crustaceans, and insects. It has a special structure 
of mouthparts adapted to its predation behavior and mainly adopts ambush mode of predation. Channa argus 
chooses different foods at different stages of growth.

It is a fierce carnivorous fish that feeds mainly on other fish, frogs, freshwater crustaceans, and aquatic insects. 
Channa argus preys by ambush. They usually hide near grass or other cover, and when they spot an approaching 
fish or shrimp, they rush to swallow their prey in one gulp. Their food intake is quite large, and their maximum 
stomach capacity can even reach 60% of their body weight. After laying their eggs, the Channa argus will lurk 
beneath or near the nest, guarding the eggs. This protective behavior continues until the fry hatch and are able 
to swim freely and feed independently, which usually takes about 4 weeks, by which time the fry have reached 2 
cm, at which point the fry have the ability to live independently.

Inspired by the behaviors of Channa argus,  we have developed a novel meta-heuristic algorithm named the 
Channa argus optimizer (CAO). In the subsequent subsection, we establish the mathematical model of CAO as 
follows.

Mathematical model
This section provides a detailed description of the mathematical model for CAO. We first present the mathematical 
expressions for the hunting and escaping strategies, followed by an analysis of the mathematical models for the 
hunting and escaping strategy.

Initialization
CAO starts the search process by creating a set of initial solutions at random from the search space as the first 
trial, much like many other population-based techniques. The initial population was created using the following 
equation:

	
Xi,j = LB + (UB − LB) × rand,
i = 1,2, . . . , Nandj = 1,2, . . . , Dim � (1)

where UB and LB stand for the upper and lower boundaries of the search range, rand is a random value between 
0 and 1, and Xi,j  is the location of the ith individual at the jth dimension.

A fitness function is used to assess each person’s fitness value according to their capacity to solve the challenge 
after the first population has been created.

Fig. 2.  Channa argus in nature(Photographed by the corresponding author Da Fang).
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Hunting strategies (exploration phase)
CAO’s exploratory phase was inspired by the predatory behavior of Channa Argus. The Channa Argus, known 
as the "tiger of the water", holds a top predatory position in the pond ecosystem with its powerful hunting ability 
and unique survival strategy. This carnivorous fish not only preys on various small fish and shrimp, but when 
it is large enough, it may even hunt frogs, young birds and small mammals. They prefer to inhabit still water 
environments with abundant aquatic plants and soft mud substrates, and their range of activities is relatively 
fixed. Channa Argus often lurk quietly in hidden spots at the bottom of the water, patiently waiting for fish, 
shrimp and other prey to pass by. Then they strike with lightning speed, catching the prey in one fell swoop 
without chasing. The Channa Argus will look around for a partner who has found prey, as shown in Fig. 3. The 
optimal solution, the suboptimal solution and the central position of the prey could all be the locations where 
Channa Argus ambushed, and the attack direction was in one direction between the optimal solution and the 
central position.

In CAO, the location of the search agent is determined by the location of the parent and the center, and the 
direction is determined by the optimal prey and Channa argus center. The center location of Channa arguses is 
updated according to the following equation:

	 Zi(t + 1) = S(t) + P (t) ⊗ (r × (G(t) − Zi(t)) + (1 − r) × (Z(t) − Zi(t)))� (2)

Among them, Zi(t) denotes the i th individual during the t th iteration, P(t) indicates a vector including random 
numbers on the basis of Gaussian distribution denoting the Brownian motion, the sign ⊗ represents entry-
wise multiplications, r indicates a number randomly chosen from [0,1]. Furthermore, G(t) refers to the current 
best solution, S(t) is a random individual selected from a set of three elites in the swarm, and Z(t) denotes 
the centroid position of the whole swarm. The corresponding mathematical expressions are presented in the 
following:

	
Z(t) = 1

N

N∑
i=1

Zi(t)� (3)

	 S(t) ∈ [G (t) , Zsecond (t) , Zc(t)]� (4)

where Zsecond (t) represent the second-best individual in the current population, respectively. Zc(t) denotes 
the centroid position of individuals whose fitness values ranked in the top 50%. In this study, for simplicity, 
the individuals whose fitness values ranked in the top 50% are named leaders. Additionally, Zc (t) is calculated 
utilizing the mathematical expression in Eq. (5).

	
Zc(t) = 1

N1

N1∑
i=1

Zi(t)� (5)

Fig. 3.  The predatory behavior of the Channa argus.
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where N1 indicates the number of leaders, that is, N1 is equal to half the size of the whole swarm, and Zi(t) 
represents the ith best leader. Therefore, during each iteration, the Elite(t) is randomly selected from a set that 
consists of the current best solution, second-best individual, and centroid position of leaders.

Escaping strategy (exploitation phase)
As shown earlier, Channa argus seedlings will swim into the mouth of large Channa argus if they are in danger 
while prowling. But it is not in order to save the mother, the mother Channa argus will not be blind because of 
production, the big Channa argus rise fierce, has a strong attack ability, but the small Channa argus is easy to 
become the prey of other fish, so when the fish found danger, it will suck the small Channa argus into the mouth. 
Wait for the danger to pass, and then spit out the baby Channa argus. The baby Channa argus will also react 
normally and will swim into the mouth of the adult Channa argus when danger comes, so that it can be safe. 
After becoming a mother, a Channa argus will exhibit a completely different instinct—an extreme protection of 
its children. Black fish protecting their young usually lasts for about a month. When they protect their young, 
they usually show these two behaviors: first, they will act like dogs protecting their food. As soon as a strange 
object approaches their cubs, they will be particularly fierce and launch an attack at any time. Second, when they 
sense danger approaching, they will put their cubs in their mouths. This is also a normal phenomenon of the law 
of survival. Figure 4 shows the escape of the Channa argus.

In this part, the exploitative characteristic of CAO is introduced. Instead of expanding with a high-
decentralized feature in the solution space, search agents are encouraged to exploit high-quality solutions around 
the current best solution when Channa argus encounter danger. The escaping strategy can be mathematically 
modeled in Eq. 6 and K(t) parameter can be calculated as follows:

	 Zi(t + 1) = K(t) × G(t) + P (t) ⊗ (r × (G(t) − Zi(t)) + (1 − r) × (Z(t) − Zi(t)))� (6)

	 K (t) = 0.1 ∗ (e
t

maxIter − 1)� (7)

where K(t) is the Original position inertia, r indicates the random number chosen from [0,1], Zi(t) denotes the i 
th individual during the t th iteration, P(t) indicates a vector including random numbers on the basis of Gaussian 
distribution denoting the Brownian motion, the sign ⊗ represents entry-wise multiplications, t indicates current 
iteration value, maxIter indicates maximum iteration value. Furthermore, G(t) refers to the current best solution, 
S(t) is a random individual selected from a set of three elites in the swarm, and Z(t) denotes the centroid position 
of the whole swarm.

Computational complexity analysis of CAO
This section explains the operational capabilities of the proposed CAO in terms of its time and space complexity.

Time complexity
To properly describe the computational complexity of an optimization algorithm, a function is typically utilized 
to relate the algorithm’s running time to the size of the input problem. This function is commonly expressed 
using Big-O notation. The time complexity of the algorithm is influenced by various factors, including the 
population size (N), the dimensions of the problem (Dim), the number of iterations (T), and the cost of function 
evaluations (C).Thus, the time complexity of the CAO algorithm can be more precisely expressed as:

	 O(CAO)& = O(Initialization) + O(cost function) + O(Updating strategy)� (8)

Fig. 4.  The escaping behavior of the Channa argus.
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where the components of Eq. (8) can be characterized by their time complexities as follows:

	(1)	 The generation of the population initialization requires O(N × Dim).
	(2)	 The evaluation of the cost function requires O(T × N) time.
	(3)	 The position updating in exploration or exploitation phase requires O(T × N × Dim) time.

Therefore, the overall time complexity of CAO can be formulated as follows:

	 O(P KO) = O(NDim + T N + T NDim)� (9)

Space complexity
The space complexity of CAO is determined by two parameters: the number of Channa arguses and the 
dimensions of the problem, and it affects the memory space.

In short, CAO’s model of behavior involves constantly exploring and using the surface of the water to find 
potential prey, then moving toward the prey to capture the prey, while encountering predators that swim quickly 
like the motherfish in search of safety. Mathematical models have been proposed for CAO to demonstrate 
its ability to solve optimization problems. It is important to note that the framework of CAO for addressing 
optimization problems bears a resemblance to other meta-heuristic algorithms. The optimization process starts 
with a randomly generated population of potential solutions, which is subject to iterative improvements until 
a predefined termination condition is met (i.e., when t < T + 1). The specific operators used to update the 
population are what distinguish one algorithm from another.

Pseudo-code and flowchart of CAO
This section describes the pseudo-code and flowchart of CAO. In our study, the mechanism is devised to reflect 
this situation and maintain exploitation and exploration. As presented in Algorithm 1, in the early stages of the 
iteration, individuals from the entire population are randomly exploited and explored.

Algorithm 1.Main steps of CAO algorithm.

The above procedure is shown in Fig. 5.

Results on benchmark functions
Assessment of CAO on CEC-2017 benchmark test functions
Description of the benchmark test functions
We employ the well-known CEC-2017 test suite to assess the CAO algorithm’s global exploration, local 
extremum avoidance, local mining, and other performance metrics. Due to space constraints, we concentrate 
on the Dim = 10, 30, 50, and 100 dimensions situation in this experiment. The specifics of the CEC-2017 test 
functions, which are separated into four groups as indicated, are given in Table 1.

The algorithms’ capacity for exploration is examined using multimodal functions Fun4–Fun10, while their 
capacity for exploitation is assessed using unimodal functions Fun1 and Fun3. The more challenging test 
functions used to assess the algorithms’ local extremum avoidance are the composition functions Fun21–Fun30 
and hybrid functions Fun11–Fun20. Note that because of its unpredictable nature, we did not utilize the Fun2 
test function from the CEC-2017 benchmark.

Experimental setup
We compared the proposed CAO algorithm with seven well-known algorithms, namely Mayfly Algorithm 
(MA)46, Loin Swarm Optimization (LSO)58, Grey Wolf Optimizer(GWO)62,63, Harris Hawks Optimization 
(HHO)64–66,Whale Optimization Algorithm (WOA)43,44, Equilibrium Optimizer (EO)33, and Marine Predators 
Algorithm (MPA)50. Table 2 displays the parameter settings for all algorithms. The parameters of CAO, in 
addition to the consistent parameters for all algorithms, r is a random number of 0 and 1, as well as original 
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position inertia, which is set to 0.2 here. The comparison algorithm parameters were set based on their respective 
literature. To ensure a fair comparison, each function was executed separately for 20 trials. The statistical analysis 
was performed using the mean fitness value (Mean) and the standard deviation (Std) of the 20 trials. The 
experiments were implemented on MATLAB 2018b on a Windows 11 Operating System, utilizing a core R7 
CPU and 32 GB RAM.

Qualitative analysis
To better understand how the CAO algorithm improves with each iteration, this section of the paper provides a 
qualitative assessment of the CAO’s performance. Specifically, in this experiment, the convergence behavior of 
CAO is reflected by the search history, convergence graph, history of average fitness, and diagram of trajectory 
in the first dimension. As depicted in Fig. 6, the first column is the description of the parametric space, and 
it reveals the smooth structure of unimodal problems such as C20171 and C20173. Meanwhile, a substantial 
number of local optima exist in simple multimodal problems and complicated hybrid problems well emulate the 
real solution space. The convergence graph in the second column is the most broadly utilized metric to validate 
the performance of metaheuristic techniques. As described in Fig. 6, the convergence graphs attained by CAO 
suggest that the algorithm has a rapid convergence rate on all benchmarks. For unimodal problems, due to 
the interaction and learning between individuals, CAO presents a good exploitative characteristic to approach 
the global optimum. When handling simple multimodal problems and hybrid problems, CAO sometimes falls 
temporarily into local optima, but the algorithm achieves a high precision under the guidance of the elites in 
the swarm. Meanwhile, in the last steps of iteration, the dynamic step length generated by Brownian motion 
can discourage premature convergence effectively. Also, in the third column, the descending behavior can be 
observed in the diagrams of average fitness history. Then in the fifth column, the search history diagram visually 
presents all individuals’ position history during the iteration procedure. Note that individuals tend to discover 
potential and promising areas in early iterations and finally cluster around the global optimal solution, which 
indicates CAO realizes a great tradeoff between exploration and exploitation. Especially for hybrid problem 
C201724, the CAO has focused on exploiting the left region in the solution space for a long time, whereas the best 
outcomes are attained in the right space. Actually, this shows the excellent exploration capability possessed by the 
develop technique, which enables the swarm’s diversity to be preserved and facilitates local optima avoidance.

Fig. 5.  The flow chart of Channa arguses optimizer.
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Method Parameter Value

MA

Attraction coefficient of male mayfly a1 = 1

Attraction coefficient of female mayfly a2 = 1

Visibility coefficient of male mayfly beta = 2
Dance coefficient dance = 5

LSO

Probability factor of the lion cub behavior q ∈ [01]

Lioness movement range perturbation factor af = a1 (xmax − xmin) exp(−30t/T )10

Lion cub movement range perturbation factor ac = a2 (xmax − xmin) (T − t)/T

GWO Convergence parameter Linear reduction from 2 to 0

HHO Beta 1.5

WOA

Convergence parameter Linear reduction from 2 to 0

Random vector r ∈ [01]

Random number l ∈ [−11]

EO
exploration quantity factor a1 = 2

exploitation quantity factor a2 = 1
MPA Fish gathering device F ADs = 0.2

Table 2.  Parameter setting of each algorithm.

 

No Function Range FunBest

Unimodal functions
C20171 Shifted & Rotated Bent Cigar Function [-100 100] 100

C20173 Shifted & Rotated Zakharov Function [-100 100] 300

Simple multimodal functions

C20174 Shifted & Rotated Rosenbrock’s Function [-100 100] 400

C20175 Shifted & Rotated Rastrigin’s Function [-100 100] 500

C20176 Shifted & Rotated Expanded Scaffer’s Function [-100 100] 600

C20177 Shifted & Rotated Lunacek Bi_Rastrigin Function [-100 100] 700

C20178 Shifted & Rotated Non-Continuous Rastrigin’s Function [-100 100] 800

C20179 Shifted & Rotated Levy Function [-100 100] 900

C201710 Shifted & Rotated Schwefel’s Function [-100 100] 1000

Hybrid functions

C201711 Hybrid-Function-1(N = 3) [-100 100] 1100

C201712 Hybrid-Function-2(N = 3) [-100 100] 1200

C201713 Hybrid-Function-3(N = 3) [-100 100] 1300

C201714 Hybrid-Function-4(N = 4) [-100 100] 1400

C201715 Hybrid-Function-5(N = 4) [-100 100] 1500

C201716 Hybrid-Function-6(N = 4) [-100 100] 1600

C201717 Hybrid-Function-6(N = 5) [-100 100] 1700

C201718 Hybrid-Function-6(N = 5) [-100 100] 1800

C201719 Hybrid-Function-6(N = 5) [-100 100] 1900

Composition functions

C201720 Hybrid-Function-6(N = 6) [-100 100] 2000

C201721 Composition-Function-1(N = 3) [-100 100] 2100

C201722 Composition-Function-2(N = 3) [-100 100] 2200

C201723 Composition-Function-3(N = 4) [-100 100] 2300

C201724 Composition-Function-4(N = 4) [-100 100] 2400

C201725 Composition-Function-5(N = 5) [-100 100] 2500

C201726 Composition-Function-6(N = 5) [-100 100] 2600

C201727 Composition-Function-7(N = 6) [-100 100] 2700

C201728 Composition-Function-8(N = 6) [-100 100] 2800

C201729 Composition-Function-9(N = 3) [-100 100] 2900

C201730 Composition-Function-10(N = 3) [-100 100] 3000

Table 1.  Summary of the CEC2017 benchmark functions.
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More investigation into the exploration and exploitation balance of the CAO algorithm is required to better 
understand why particular metaheuristics perform better for global optimization issues. Therefore, an empirical 
analysis was carried out to identify the factors influencing the CAO’s capacity for exploration and exploitation, 
and the findings were presented. Figures 7 and 8 display the CAO’s diversity and balance analyses, respectively. 
As observed in Fig. 7, CAO showed high exploration and low exploitation at the start of the iterations. It became 
increasingly exploitative as the iterations went on. As can be seen in Fig. 8, every graph has a declining trend, 
signifying a shift from early exploration to late exploitation.

Fig. 6.  Trajectory in two dimensions, convergence curve , average fitness, and search history.
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In conclusion, Fig. 6's convergence and average fitness graphs show that CAO can accomplish consistent 
optimization for issues with varying degrees of complexity. The diversity, trajectory, and search history data 
show that CAO can appropriately strike a balance between exploitation and exploration. The capacity of CAO to 
identify the global optimum solution is due to this characteristic.

Fig. 7.  Exploration and exploitation phases of CAO under CEC-2017 test suite.
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Statistical results
In this subsection, CAO and other compared algorithms have been evaluated. A total of 29 standard functions 
have been used for evaluation, each of which has been discussed in its respective sections. Firstly, the scalability 
analyses have been done using functions F1 to F13, which are scalable functions, and their dimensions can be 
changed. For this evaluation, functions were tested with dimensions of 10, 30, 100, 500, and 1000, respectively, 
in four separate implementations and the corresponding results are depicted in four Tables 3, 4, 5, 6. This 

Fig. 8.  Diversity of CAO under CEC-2017 test suite.
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Fun Indice CAO MA LSO GWO HHO WOA EO MPA

Fun1

Mean 3.343E + 03 1.182E + 07 3.362E + 08 6.378E + 07 1.861E + 10 1.016E + 07 8.780E + 09 3.073E + 05

Std 3.389E + 03 4.167E + 06 2.318E + 08 1.466E + 08 3.841E + 10 8.475E + 06 1.700E + 09 1.235E + 06

Fun3

Mean 3.000E + 02 1.460E + 04 5.177E + 03 1.330E + 03 2.054E + 04 2.582E + 03 1.322E + 04 7.108E + 03

Std 0 4.870E + 03 1.978E + 03 1.422E + 03 1.609E + 03 1.456E + 03 1.919E + 03 3.294E + 03

Fun4

Mean 4.029E + 02 4.113E + 02 4.371E + 02 4.152E + 02 2.327E + 03 4.517E + 02 9.498E + 02 4.454E + 02

Std 7.318E−01 1.404E + 01 2.588E + 01 1.326E + 01 1.109E + 03 4.414E + 01 1.183E + 02 4.338E + 01

Fun5

Mean 5.138E + 02 5.325E + 02 5.336E + 02 5.195E + 02 6.516E + 02 5.539E + 02 6.066E + 02 5.411E + 02

Std 6.678E + 00 5.929E + 00 8.586E + 00 8.477E + 00 2.283E + 01 1.842E + 01 1.293E + 01 1.166E + 01

Fun6

Mean 6.000E + 02 6.019E + 02 6.194E + 02 6.013E + 02 6.802E + 02 6.368E + 02 6.531E + 02 6.187E + 02

Std 3.641E−03 5.361E−01 3.433E + 00 1.632E + 00 1.148E + 01 1.149E + 01 6.684E + 00 1.116E + 01

Fun7

Mean 7.212E + 02 7.463E + 02 7.699E + 02 7.304E + 02 8.689E + 02 7.929E + 02 8.219E + 02 7.510E + 02

Std 4.361E + 00 5.342E + 00 1.620E + 01 1.066E + 01 1.123E + 01 2.198E + 01 1.093E + 01 2.012E + 01

Fun8

Mean 8.138E + 02 8.310E + 02 8.328E + 02 8.154E + 02 8.872E + 02 8.446E + 02 8.569E + 02 8.487E + 02

Std 6.451E + 00 5.877E + 00 7.905E + 00 9.487E + 00 6.666E + 00 1.174E + 01 5.092E + 00 1.434E + 01

Fun9

Mean 9.008E + 02 9.034E + 02 1.054E + 03 9.120E + 02 2.420E + 03 1.438E + 03 1.650E + 03 1.386E + 03

Std 3.170E + 00 1.274E + 00 9.794E + 01 1.870E + 01 1.347E + 02 3.421E + 02 1.378E + 02 2.512E + 02

Fun10

Mean 1.689E + 03 2.269E + 03 2.309E + 03 1.676E + 03 2.938E + 03 2.221E + 03 2.438E + 03 1.819E + 03

Std 2.679E + 02 1.900E + 02 1.416E + 02 3.655E + 02 9.835E + 01 2.804E + 02 1.351E + 02 2.403E + 02

Fun11

Mean 1.128E + 03 8.276E + 03 2.099E + 03 8.041E + 05 4.336E + 04 1.489E + 03 2.244E + 03 6.686E + 03

Std 8.567E + 01 1.399E + 04 1.153E + 03 7.489E + 05 1.854E + 04 6.316E + 02 6.513E + 02 5.436E + 03

Fun12

Mean 1.335E + 04 3.250E + 06 6.213E + 06 8.923E + 05 1.426E + 09 2.980E + 06 1.122E + 08 4.383E + 06

Std 1.006E + 04 2.530E + 06 6.859E + 06 1.283E + 06 6.669E + 08 3.235E + 06 4.805E + 07 4.112E + 06

Fun13

Mean 1.174E + 04 1.040E + 04 1.697E + 04 1.959E + 04 1.204E + 08 1.600E + 04 1.789E + 06 1.039E + 04

Std 8.674E + 03 5.943E + 03 2.235E + 04 2.076E + 04 1.288E + 08 1.057E + 04 1.672E + 06 1.067E + 04

Fun14

Mean 8.953E + 03 1.823E + 03 1.955E + 03 3.041E + 03 1.772E + 03 2.284E + 03 1.598E + 03 2.327E + 03

Std 9.106E + 03 4.572E + 02 5.646E + 02 1.855E + 03 2.593E−01 1.128E + 03 4.631E + 01 1.141E + 03

Fun15

Mean 8.573E + 03 3.724E + 03 7.660E + 03 4.279E + 03 1.221E + 04 1.001E + 04 8.128E + 03 5.930E + 03

Std 9.212E + 03 2.232E + 03 5.213E + 03 1.880E + 03 2.613E + 01 6.924E + 03 1.710E + 03 7.112E + 03

Fun16

Mean 1.723E + 03 1.657E + 03 1.793E + 03 1.684E + 03 2.498E + 03 1.939E + 03 2.121E + 03 1.763E + 03

Std 1.106E + 02 3.679E + 01 6.895E + 01 6.904E + 02 2.530E + 02 1.476E + 02 6.658E + 01 1.360E + 02

Fun17

Mean 1.769E + 03 1.764E + 03 1.775E + 03 1.759E + 03 2.108E + 03 1.805E + 03 1.844E + 03 1.797E + 03

Std 4.819E + 01 8.414E + 00 1.451E + 01 2.402E + 01 8.168E + 01 5.612E + 01 2.749E + 01 4.736E + 01

Fun18

Mean 1.500E + 04 3.015E + 04 9.704E + 04 3.388E + 04 4.194E + 08 1.587E + 04 4.557E + 07 3.551E + 04

Std 1.043E + 04 1.471E + 04 1.864E + 05 2.642E + 04 4.165E + 08 1.315E + 04 4.447E + 07 1.400E + 04

Fun19

Mean 1.022E + 04 4.062E + 03 1.481E + 04 7.418E + 03 2.727E + 07 4.752E + 04 4.045E + 05 1.357E + 04

Std 1.047E + 04 1.971E + 03 5.506E + 03 6.107E + 03 6.126E + 07 9.819E + 04 4.055E + 05 1.340E + 04

Fun20

Mean 2.082E + 03 2.317E + 03 2.167E + 03 2.059E + 03 2.424E + 03 2.175E + 03 2.248E + 03 2.124E + 03

Std 6.553E + 01 3.083E + 01 4.001E + 01 2.962E + 01 9.617E + 01 8.005E + 01 3.723E + 01 5.807E + 01

Fun21

Mean 2.292E + 03 2.317E + 03 2.274E + 03 2.315E + 03 2.429E + 03 2.350E + 03 2.298E + 03 2.207E + 03

Std 4.728E + 01 3.083E + 01 4.974E + 01 2.725E + 01 2.471E + 01 3.690E + 01 3.560E + 01 1.165E + 00

Fun22

Mean 2.301E + 03 2.308E + 03 2.357E + 03 2.300E + 03 3.756E + 03 2.364E + 03 2.870E + 03 2.305E + 03

Std 1.881E + 00 1.281E + 01 2.835E + 01 2.749E + 01 5.696E + 02 2.200E + 02 1.452E + 02 1.062E + 01

Fun23

Mean 2.617E + 03 2.622E + 03 2.650E + 03 2.650E + 03 2.790E + 03 2.655E + 03 2.723E + 03 2.635E + 03

Std 6.868E + 00 2.397E + 01 8.830E + 00 7.458E + 00 1.352E + 01 2.069E + 01 1.132E + 01 1.396E + 01

Fun24

Mean 2.732E + 03 2.763E + 03 2.772E + 03 2.748E + 03 2.947E + 03 2.777E + 03 2.913E + 03 2.731E + 03

Std 5.507E + 01 5.499E + 00 1.863E + 01 1.162E + 01 9.912E + 01 4.674E + 01 8.106E + 01 8.262E + 01

Fun25

Mean 2.937E + 03 2.943E + 03 2.973E + 03 2.938E + 03 4.066E + 03 2.957E + 03 3.400E + 03 2.979E + 03

Std 3.052E + 01 1.510E + 01 1.176E + 01 1.293E + 01 4.631E + 02 3.442E + 02 2.022E + 02 3.240E + 01

Fun26

Mean 3.065E + 03 2.960E + 03 3.154E + 03 2.999E + 03 4.593E + 03 3.351E + 03 3.962E + 03 3.005E + 03

Std 3.207E + 02 3.647E + 01 5.267E + 01 1.082E + 02 4.178E + 02 4.215E + 02 1.689E + 02 6.733E + 01

Fun27

Mean 3.104E + 03 3.095E + 03 3.104E + 03 3.079E + 03 3.354E + 03 3.144E + 03 3.199E + 03 3.096E + 03

Std 2.853E + 01 2.265E + 00 3.124E + 00 1.562E + 01 8.754E + 01 4.448E + 01 2.921E + 01 4.239E + 00

Fun28

Mean 3.380E + 03 3.363E + 03 3.377E + 03 3.281E + 03 3.861E + 03 3.422E + 03 3.770E + 03 3.339E + 03

Std 9.584E + 01 7.216E + 01 6.115E + 01 1.096E + 01 9.255E + 01 1.470E + 02 4.815E + 01 8.124E + 01

Fun29

Mean 3.217E + 03 3.320E + 03 3.248E + 03 3.186E + 03 3.825E + 03 3.316E + 03 3.458E + 03 3.242E + 03

Std 5.361E + 01 3.746E + 01 2.892E + 01 4.630E + 01 1.313E + 02 9.634E + 01 4.545E + 01 6.524E + 01
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experiment shows whether the proposed algorithm can maintain its search capacities if facing problems with 
large dimensions.

The statistics from this analysis can be seen in Table 3. CAO proved to be superior to the other algorithms 
on CEC-2017 benchmark functions for 25 out of 58 indicators and for 13 out of 29 functions. Through the 
observation of experimental results, we find that CAO algorithm is better than other algorithms in solving 
unimodal functions. For multimodal functions, CAO was the most effective for two out of seven functions in 
terms of mean indicators. For functions, Fun6 and Fun9, CAO can reach the global optimal value, whereas the 
other algorithms such as MA, LSO, GWO, HHO, WOA, EO, and MPA can only go as far as a lower precision. 
For Fun10 function, GWO ranked first according to the mean metric, and CAO ranked second. For standard 
deviation, HHO has the minimum value, but its mean is the maximum among the 8 algorithms. For Fun5, Fun6, 
and Fun7 functions, the mean metric and standard deviation results of CAO were better than those of other 
algorithms. Regarding hybrid functions, CAO demonstrated outstanding exploration capabilities. Compared to 
the other algorithms, CAO achieved superior results for the Fun11, Fun12, and Fun18 functions. MA obtains the 
optimal value in functions 15,16 and 19, GWO obtains the optimal value in functions 17,20,22,28,29 and 30, EO 
obtains the optimal value in functions 14,and EO obtains the optimal value in functions 13,21 and 24. As can be 
seen from the Table 3, CAO is second only to GWO in the complex hybrid functions, and the performance of 
EO is comparable to that of other functions. By expanding the spatial dimension to 30, 50 and 100 dimensions, 
we can get a conclusion similar to that of 10 dimensions from Table 4,5 and 6. CAO is far better than other 
algorithms in unimodal and multimodal functions, while only GWO is better than the other 6 algorithms except 
EO in the complex hybrid functions.

Boxplot analysis
The distribution of the thirty findings is depicted in Fig. 9 using boxplots of the various approaches applied to the 
CEC-2017 benchmark functions. Instances when the method was run 20 times are indicated by the ( +) symbols 
outside the boxplots’ edges. It indicates that the algorithm successfully searched the search space when the ( +) 
signs are outside the lower border. The CAO algorithm’s interim results outperform those of the eight competing 
algorithms, as illustrated in Fig. 9. However, especially for the whole set of functions, there is little variation 
between the top and lower bounds of CAO. There are fewer ( +) signs in CAO, and there is no discernible 
difference between the upper and lower bounds. This suggests that even for difficult situations, CAO continues 
to produce satisfactory optimization outcomes. Additionally, the boxplot confirms the previously indicated 
analysis by reaffirming the consistency and robustness of CAO.

Convergence analysis
We performed a convergence analysis in order to assess the exploration and exploitation of the CAO and seven 
other comparison algorithms. The convergence curves of these eight algorithms on the CEC-2017 benchmark 
functions at 10 dimensions are shown in Fig. 10 and include unimodal (Fun1;F3), multimodal (Fun4; F5; F6), 
hybrid (Fun10; F16; F17), and composition functions (Fun23), which represent the differences in the iterative 
optimization of the algorithms on different functions. Other optimizers tend to approach a point of stagnation 
as the number of iterations grows, as seen in Fig. 10. However, even after other optimizers have reached the 
point of convergence, CAO continues to look for newer optimum values. This suggests that CAO can assist the 
channa argus in jumping out of the local optimum value and is more reliable in terms of exploration abilities 
when compared to the competing algorithms.

The reason is that CAO avoids using existing optimal values from the beginning, diligently searching for 
new spaces, discovering a new potential optimal value, evaluating it against the original optimal value, and then 
greedily retaining the one with the best optimization result. The convergence curves of different algorithms 
exhibit different potentials in global optimization, especially in the case of multimodal functions. Most notably, 
this method skips local optima at the beginning and then converges precisely to the global optimum. On the 
other hand, other algorithms require longer time to reach the point. For mixed and composite functions, CAO 
not only converges quickly in the early stages, but also becomes proficient in re exploring in the later stages.

Non-parametric statistical analysis
To determine if there was a statistically significant difference in accuracy between the optimization techniques 
used in the experiment, multiple statistical analyses were performed in this section, including the Wilcoxon 
Signed-Rank (WSR) test and Friedman’s test.

To obtain an accurate evaluation of CAO, we ran the WSR on this experiment. The WSR assesses whether 
there is a significant statistical difference between the results of the proposed approach and other methods67,68. 
The WSR was conducted with a 95% level of confidence. The test results of the WSR with 29 functions and 
20 runs are presented in Table 7. In these tables, a (-) denotes that CAO exhibits a 95% significance level in 
comparison to the other optimizers, whereas a ( +) indicates the opposite. An ( =) signifies that there is no 

Fun Indice CAO MA LSO GWO HHO WOA EO MPA

Fun30

Mean 4.128E + 05 8.158E + 05 9.715E + 05 4.932E + 04 8.282E + 08 8.090E + 05 5.892E + 06 6.353E + 05

Std 5.887E + 05 5.610E + 05 4.488E + 05 3.632E + 03 4.281E + 07 8.409E + 05 2.267E + 06 7.545E + 04

Table 3.  The Statistical results of the different algorithms on the CEC-2017 test suite in dimensions of 10. The 
bold refers to the best results.
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Fun Indice CAO MA LSO GWO HHO WOA EO MPA

Fun1

Mean 5.669E + 03 1.845E + 09 1.467E + 10 3.736E + 09 7.686E + 10 2.154E + 09 5.223E + 10 8.624E + 09

Std 5.731E + 03 4.048E + 09 2.648E + 09 2.363E + 09 3.471E + 09 9.008E + 08 5.333E + 09 4.913E + 09

Fun3

Mean 6.810E + 04 1.768E + 05 7.092E + 04 5.971E + 04 9.401E + 04 2.546E + 05 1.322E + 04 7.108E + 03

Std 3.771E + 04 2.830E + 04 8.427E + 03 1.130E + 04 1.248E + 02 8.335E + 04 8.667E + 04 3.294E + 03

Fun4

Mean 4.647E + 02 4.113E + 02 1.713E + 03 6.752E + 02 2.327E + 03 4.517E + 02 1.305E + 04 9.537E + 02

Std 7.612E + 01 1.404E + 01 3.946E + 02 1.728E + 02 2.194E + 04 9.992E + 02 9.629E + 02 3.715E + 02

Fun5

Mean 5.682E + 02 7.260E + 02 8.006E + 02 6.132E + 02 9.994E + 02 8.002E + 02 9.385E + 02 7.793E + 02

Std 2.329E + 01 1.334E + 01 2.274E + 01 2.934E + 01 9.996E + 00 4.021E + 01 1.438E + 01 4.668E + 01

Fun6

Mean 6.008E + 02 6.176E + 02 6.640E + 02 6.133E + 02 7.079E + 02 6.771E + 02 6.993E + 02 6.553E + 02

Std 1.103E + 00 2.538E + 00 6.474E + 00 5.301E + 00 2.166E + 00 1.010E + 01 3.083E + 00 8.793E + 00

Fun7

Mean 7.954E + 02 1.052E + 03 1.194E + 03 8.841E + 02 1.556E + 03 1.264E + 03 1.456E + 03 1.582E + 03

Std 1.359E + 01 2.539E + 01 5.308E + 01 5.377E + 01 2.091E + 01 1.036E + 02 2.698E + 01 1.533E + 02

Fun8

Mean 8.604E + 02 1.037E + 03 1.060E + 03 9.059E + 02 1.222E + 03 1.049E + 03 1.151E + 03 1.060E + 03

Std 2.010E + 01 1.821E + 01 2.613E + 01 3.321E + 01 1.207E + 01 5.232E + 01 1.332E + 01 4.182E + 01

Fun9

Mean 1.089E + 03 2.282E + 03 7.258E + 03 2.536E + 03 1.555E + 04 9.873E + 03 1.169E + 04 8.263E + 03

Std 1.571E + 02 4.571E + 02 1.166E + 03 1.184E + 03 1.147E + 03 3.224E + 03 7.991E + 02 1.212E + 03

Fun10

Mean 4.303E + 03 8.690E + 03 8.884E + 03 5.551E + 03 1.306E + 04 7.028E + 03 9.080E + 03 5.591E + 03

Std 4.865E + 02 3.112E + 02 4.138E + 02 1.377E + 03 3.279E + 02 8.414E + 02 2.959E + 02 7.012E + 02

Fun11

Mean 2.781E + 03 9.752E + 05 9.006E + 03 6.053E + 05 1.601E + 04 2.396E + 05 7.722E + 03 4.398E + 05

Std 1.409E + 03 2.793E + 05 3.303E + 03 4.490E + 05 2.822E + 02 2.299E + 05 1.128E + 03 1.821E + 05

Fun12

Mean 4.127E + 05 9.833E + 07 1.587E + 09 1.016E + 08 2.201E + 10 3.268E + 08 1.112E + 10 1.448E + 08

Std 4.983E + 05 4.473E + 07 5.178E + 08 1.035E + 08 4.043E + 09 2.639E + 08 2.323E + 09 1.267E + 08

Fun13

Mean 1.609E + 04 1.660E + 07 2.789E + 08 1.473E + 06 2.021E + 10 4.456E + 06 5.843E + 09 1.561E + 07

Std 1.286E + 04 9.887E + 06 1.317E + 08 2.123E + 06 6.423E + 09 5.379E + 06 1.404E + 09 3.491E + 07

Fun14

Mean 8.953E + 03 4.661E + 05 9.754E + 05 4.538E + 05 4.118E + 08 1.753E + 06 3.947E + 06 6.032E + 05

Std 9.106E + 03 5.337E + 05 4.942E + 05 6.372E + 05 2.884E + 07 2.482E + 06 1.845E + 06 6.241E + 05

Fun15

Mean 7.911E + 03 3.662E + 06 1.123E + 07 8.260E + 05 3.370E + 09 1.389E + 06 6.241E + 08 8.134E + 04

Std 6.828E + 03 3.790E + 06 1.189E + 07 1.657E + 06 9.830E + 08 1.639E + 06 2.304E + 08 2.974E + 04

Fun16

Mean 2.515E + 03 3.290E + 03 3.698E + 03 2.802E + 03 8.174E + 03 4.118E + 03 5.982E + 03 3.124E + 03

Std 6.617E + 02 3.140E + 02 3.053E + 02 4.655E + 02 1.611E + 03 4.898E + 02 4.680E + 02 3.677E + 02

Fun17

Mean 2.061E + 03 2.494E + 03 2.570E + 03 2.094E + 03 2.164E + 04 2.683E + 03 4.270E + 03 2.616E + 03

Std 2.260E + 02 1.718E + 02 2.223E + 02 1.502E + 02 2.667E + 03 3.725E + 02 4.878E + 02 2.932E + 02

Fun18

Mean 5.195E + 05 7.604E + 06 4.721E + 06 2.944E + 06 4.799E + 08 1.012E + 07 4.242E + 07 3.212E + 06

Std 3.181E + 05 4.671E + 06 4.425E + 06 6.571E + 04 4.436E + 08 1.098E + 07 2.421E + 07 4.004E + 06

Fun19

Mean 8.143E + 03 9.386E + 06 1.392E + 07 7.310E + 05 3.105E + 09 1.688E + 07 4.140E + 08 9.339E + 05

Std 5.391E + 03 8.308E + 06 1.623E + 07 8.109E + 05 3.961E + 08 1.220E + 07 1.246E + 08 7.916E + 04

Fun20

Mean 2.453E + 03 2.768E + 03 2.596E + 03 2.449E + 03 3.584E + 03 2.876E + 03 3.067E + 03 2.826E + 03

Std 3.061E + 02 1.588E + 02 1.048E + 02 1.362E + 02 1.164E + 03 2.239E + 02 1.113E + 02 1.858E + 02

Fun21

Mean 2.357E + 03 2.528E + 03 2.557E + 03 2.420E + 03 2.891E + 03 2.616E + 03 2.745E + 03 2.552E + 03

Std 1.356E + 01 1.207E + 01 2.524E + 01 3.911E + 01 5.835E + 01 5.551E + 01 3.314E + 01 3.122E + 01

Fun22

Mean 4.937E + 03 2.754E + 03 7.531E + 03 6.951E + 03 1.141E + 04 7.402E + 03 9.453E + 03 6.439E + 03

Std 1.709E + 03 1.281E + 01 1.223E + 03 2.445E + 03 3.932E + 02 2.324E + 03 4.088E + 02 1.087E + 03

Fun23

Mean 2.716E + 03 2.873E + 03 3.001E + 03 2.793E + 03 3.819E + 03 3.124E + 03 3.603E + 03 2.933E + 03

Std 2.240E + 01 1.427E + 01 3.385E + 01 4.730E + 01 1.701E + 02 1.168E + 02 1.062E + 02 5.534E + 01

Fun24

Mean 2.897E + 03 3.038E + 03 3.184E + 03 3.004E + 03 4.218E + 03 3.244E + 03 3.753E + 03 3.069E + 03

Std 3.669E + 01 1.942E + 01 5.177E + 01 7.437E + 01 2.160E + 02 6.537E + 01 1.292E + 02 4.071E + 02

Fun25

Mean 2.888E + 03 3.028E + 03 3.381E + 03 3.008E + 03 6.663E + 03 3.137E + 03 4.666E + 03 3.603E + 03

Std 1.739E + 00 5.055E + 01 7.598E + 01 5.719E + 01 3.465E + 02 6.207E + 01 1.455E + 02 3.294E + 02

Fun26

Mean 4.480E + 03 5.987E + 03 7.413E + 03 4.744E + 03 1.439E + 04 8.461E + 03 1.132E + 04 6.984E + 03

Std 3.303E + 02 1.217E + 02 3.952E + 02 3.776E + 02 7.070E + 01 7.483E + 02 3.564E + 02 7.408E + 02

Fun27

Mean 3.236E + 03 3.247E + 03 3.521E + 03 3.200E + 03 5.450E + 03 3.472E + 03 4.343E + 03 3.323E + 03

Std 1.820E + 01 1.061E + 01 6.532E + 01 2.420E−04 4.218E + 02 1.937E + 02 2.267E + 02 5.550E + 01

Fun28

Mean 3.223E + 03 3.526E + 03 4.709E + 03 3.315E + 03 9.271E + 03 3.604E + 03 7.280E + 03 5.827E + 03

Std 1.638E + 01 8.359E + 01 2.838E + 02 4.762E + 01 1.723E + 02 1.052E + 02 4.422E + 02 1.292E + 01

Fun29

Mean 3.838E + 03 4.457E + 03 5.496E + 03 3.707E + 03 3.615E + 04 5.392E + 03 7.121E + 03 4.576E + 03

Std 1.773E + 02 2.080E + 02 3.835E + 02 2.333E + 02 4.233E + 04 5.192E + 02 5.351E + 02 4.142E + 02
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notable difference between CAO and the other optimizers. Table 7 provides the statistical results of the WSR 
in comparison to other algorithms when CAO is employed. Based on the data in Table 7, for the majority of 
functions, CAO demonstrates a clear superiority over all other methods.

To evaluate the effectiveness of our proposed method in comparison to its competitor algorithms, we employed 
the Friedman test in our study. This non-parametric test can detect significant differences in the performance of 
multiple optimizers, and we computed the ranks for a total of 29 functions across all techniques69,70. The radar 
chart in Fig. 11 presents the ranks of all the compared methods for each function, while Table 6 displays the 
average ranks. According to Table 8 and Fig. 13, CAO has the lowest average rank, indicating that it ranks first 
among all the algorithms, thus proving the efficacy of our method in quickly finding the global optimum for 
numerous problems.

Scalability analysis
Multiple choice variables are present in many real-world optimization issues, which can make them 
computationally difficult to solve. Scalability analysis can be used to determine the algorithm’s constraints for 
large-scale problems and to comprehend how the number of variables (dimension) affects an optimization 
algorithm’s performance69,70. The performance of the CAO algorithm is assessed in this section by means of a 
scalability test on a number of functions with varying dimensions, including the composition functions (Fun21, 
Fun23, Fun24,Fun27), the unimodal function (Fun1), the multimodal functions (Fun5, Fun6, Fun8, Fun9), and 
the hybrid functions (Fun16, Fun17, Fun20). The test uses the CEC-2017 test suite, which has dimensions of 
10, 30, 50, and 100. Each algorithm can have up to 50,000 function evaluations, and 30 independent runs are 
carried out. The average fitness values of the various algorithms for dimensions 10, 30, 50, and 100 are displayed 
in Fig. 12.

With the exception of the Fun1 function, the CAO algorithm produced the best search results for the most of 
the functions that were studied. This experiment shows how the CAO algorithm can obtain higher convergence 
precision while managing the complexity of optimization brought on by an increase in the function’s dimension.

Computational time analysis
The computational time of the CAO algorithm is examined in this subsection in relation to other optimizers on 
the CEC-2017 benchmark functions. Table 9 presents the results of 20 executions of each optimization strategy 
for each assigned function.

From the table, it can be seen that the computation time of CAO is slightly longer than some other algorithms 
because it requires more computing power to execute its operators. Nevertheless, CAO still outperforms MA, 
EO, MPA, and HHO in a relatively short period of time. Although it may take more time to complete, CAO has 
many advantages over other optimizers.

Sensitivity analysis
In optimization, the values given to an algorithm’s parameters can have a significant impact on how effective 
the method is. It can be difficult to determine the ideal parameter settings, and it takes a lot of trial and error. 
Because parameter tuning entails running the algorithm several times with various parameter choices, it can be 
a time-consuming and computationally costly procedure. Additionally, various situations may require separate 
tuning runs because the ideal parameter settings can change based on the particular problem being solved. 
Sensitivity analysis is used to determine which parameters have the most effects on the algorithm’s performance 
and to assess how changes to the algorithm’s parameters affect the caliber of the solutions produced. In this 
study, we conducted a parameter sensitivity analysis to evaluate the effects of the original position inertia(OPI) 
on the performance of the algorithm. For four functions from the CEC-2017 benchmark test in 10 dim, we 
examined the effects of different control parameters and the values that are associated to them. We conducted 
20 separate runs of the processes, each including up to 500 function evaluations. By changing each parameter’s 
value separately while leaving the others constant, we were able to evaluate its impact. We display the sensitivity 
analysis’s findings in terms of standard deviation (STD) and mean fitness (Mean). We ran the CAO algorithm for 
different values of OPI {0.1, 0.15, 0.2, 0.25, 0.3}. Table 10 show the results of the overall fitness values obtained by 
the algorithm for different OPI values. We observed that the performance of the algorithm is superior when OPI 
is set to 0.2. However, depending on the specific problem, experts may choose to adopt a different value for OPI.

Assessment of CAO on CEC-2020 benchmark test functions
To evaluate the performance of the CAO optimizer more precisely, we employed the CEC-2020 benchmark 
problems, which are widely used and complex. These test functions consist of composite, hybrid, multimodal, 
and rotated and shifted unimodal functions. The specific information of the CEC-2020 test suite is presented in 
Table 11, and Fig. 13 illustrates a two-dimensional format of some test functions. We analyzed the proposed CAO 
algorithm by comparing it with other well-known optimizers on benchmark functions. All tests were conducted 

Fun Indice CAO MA LSO GWO HHO WOA EO MPA

Fun30

Mean 1.086E + 05 3.960E + 06 1.311E + 08 3.199E + 06 3.354E + 09 5.758E + 07 1.533E + 09 6.303E + 06

Std 3.693E + 03 5.610E + 05 7.696E + 07 9.050E + 06 1.403E + 09 4.650E + 07 4.834E + 08 8.074E + 06

Table 4.  The Statistical results of the different algorithms on the CEC-2017 test suite in dimensions of 30. The 
bold refers to the best results.
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Fun Indice CAO MA LSO GWO HHO WOA EO MPA

Fun1

Mean 1.275E + 04 1.831E + 10 5.186E + 10 1.303E + 10 1.314E + 11 1.134E + 10 1.067E + 11 5.967E + 10

Std 1.845E + 04 3.118E + 09 7.098E + 09 4.751E + 09 1.967E + 09 2.461E + 09 3.780E + 09 1.740E + 10

Fun3

Mean 2.432E + 05 3.665E + 05 1.676E + 05 2.014E + 05 2.821E + 05 3.110E + 05 2.023E + 05 3.532E + 05

Std 6.225E + 04 3.895E + 04 2.110E + 04 5.403E + 04 9.628E + 02 1.127E + 05 1.389E + 04 5.737E + 04

Fun4

Mean 5.572E + 02 2.025E + 03 8.711E + 03 1.929E + 03 5.404E + 04 3.071E + 03 3.606E + 04 7.046E + 03

Std 4.204E + 01 4.212E + 02 2.318E + 02 8.062E + 02 1.859E + 03 8.824E + 02 2.216E + 03 5.993E + 03

Fun5

Mean 6.294E + 02 1.001E + 03 1.007E + 03 7.779E + 02 1.296E + 03 1.071E + 03 1.199E + 03 1.056E + 03

Std 3.241E + 01 2.819E + 01 3.814E + 01 5.213E + 01 1.098E + 01 8.043E + 01 2.115E + 01 7.009E + 01

Fun6

Mean 6.034E + 02 6.361E + 02 6.849E + 02 6.293E + 02 7.060E + 02 6.917E + 02 7.003E + 02 6.682E + 02

Std 1.633E + 00 3.702E + 00 6.340E + 00 7.250E + 00 1.090E + 00 8.738E + 00 3.560E + 00 8.387E + 00

Fun7

Mean 9.223E + 02 1.716E + 03 1.727E + 03 1.120E + 03 2.159E + 03 1.787E + 03 2.084E + 03 2.744E + 03

Std 5.787E + 01 1.032E + 02 5.675E + 01 8.066E + 01 1.519E + 01 9.421E + 01 1.466E + 01 2.493E + 02

Fun8

Mean 9.545E + 02 1.300E + 03 1.392E + 03 1.077E + 03 1.581E + 03 1.360E + 03 1.501E + 03 1.362E + 03

Std 4.116E + 01 3.026E + 01 3.015E + 01 7.546E + 01 1.572E + 01 5.738E + 01 1.368E + 01 7.731E + 01

Fun9

Mean 1.733E + 03 1.011E + 04 2.865E + 04 1.073E + 04 5.093E + 04 3.618E + 04 3.932E + 04 2.154E + 04

Std 6.843E + 02 2.524E + 03 2.844E + 03 4.688E + 03 1.828E + 03 1.025E + 04 1.690E + 03 4.410E + 03

Fun10

Mean 6.995E + 03 1.531E + 04 1.526E + 04 9.883E + 03 1.694E + 04 1.265E + 04 1.546E + 04 9.573E + 03

Std 1.054E + 03 5.285E + 02 6.067E + 02 3.098E + 03 4.244E + 02 1.212E + 03 3.625E + 02 8.860E + 02

Fun11

Mean 7.214E + 04 3.953E + 06 2.290E + 04 8.173E + 06 3.666E + 04 8.486E + 03 2.329E + 05 1.421E + 06

Std 6.734E + 04 1.169E + 06 3.543E + 03 7.857E + 05 5.844E + 03 3.530E + 03 2.100E + 03 6.177E + 05

Fun12

Mean 3.577E + 06 1.612E + 09 1.001E + 10 3.337E + 09 1.210E + 11 2.096E + 09 8.243E + 10 1.878E + 09

Std 2.618E + 06 4.872E + 08 2.754E + 09 2.453E + 09 1.659E + 10 7.891E + 08 6.186E + 09 9.872E + 08

Fun13

Mean 5.502E + 03 1.664E + 08 2.067E + 09 1.716E + 08 6.858E + 10 2.263E + 08 4.675E + 10 1.739E + 08

Std 4.829E + 03 6.310E + 06 9.234 + 08 1.235E + 08 1.835E + 10 1.666E + 08 8.361E + 09 2.177E + 08

Fun14

Mean 2.288E + 05 3.217E + 06 7.797E + 06 2.269E + 06 3.002E + 08 4.560E + 06 6.985E + 07 4.389E + 06

Std 1.708E + 05 2.102E + 06 4.576E + 06 4.572E + 06 1.543E + 08 3.787E + 06 2.728E + 07 4.238E + 06

Fun15

Mean 9.740E + 03 3.062E + 07 4.277E + 08 9.543E + 06 1.903E + 10 1.664E + 07 7.133E + 09 2.197E + 06

Std 6.648E + 03 1.989E + 07 2.015E + 08 1.233E + 07 4.431E + 09 1.709E + 07 1.298E + 09 2.681E + 06

Fun16

Mean 3.194E + 03 5.353E + 03 5.474E + 03 3.427E + 03 1.389E + 04 6.176E + 03 9.359E + 03 4.507E + 03

Std 3.097E + 02 3.342E + 02 4.562E + 02 3.754E + 02 2.755E + 03 7.690E + 02 7.462E + 02 5.984E + 02

Fun17

Mean 2.952E + 03 4.220E + 03 4.489E + 03 2.913E + 03 1.021E + 05 4.507E + 03 9.655E + 03 4.479E + 03

Std 3.172E + 02 2.743E + 02 4.079E + 02 2.712E + 02 2.926E + 04 4.197E + 02 2.149E + 02 4.490E + 02

Fun18

Mean 2.083E + 06 2.713E + 07 3.631E + 07 1.577E + 07 7.967E + 08 4.106E + 07 1.652E + 08 1.273E + 07

Std 1.321E + 06 1.129E + 07 1.284E + 07 1.682E + 07 2.463E + 08 3.126E + 07 3.469E + 07 7.304E + 06

Fun19

Mean 1.871E + 04 1.905E + 07 1.678E + 08 1.002E + 07 8.853E + 09 6.310E + 07 3.311E + 09 3.428E + 06

Std 1.077E + 04 1.085E + 07 9.345E + 07 2.045E + 07 1.489E + 09 6.642E + 07 8.494E + 08 4.666E + 06

Fun20

Mean 3.104E + 03 4.166E + 03 3.773E + 03 3.255E + 03 4.729E + 03 3.998E + 03 4.299E + 03 3.504E + 03

Std 3.527E + 02 1.986E + 02 2.164E + 02 5.199E + 02 4.950E + 01 3.944E + 02 1.672E + 02 3.468E + 02

Fun21

Mean 2.425E + 03 2.790E + 03 2.867E + 03 2.568E + 03 3.530E + 03 2.991E + 03 3.231E + 03 2.856E + 03

Std 2.371E + 01 2.465E + 01 4.740E + 01 5.696E + 01 1.043E + 02 9.804E + 01 3.610E + 01 9.304E + 01

Fun22

Mean 8.204E + 03 1.670E + 04 1.690E + 04 1.211E + 04 1.875E + 04 1.452E + 04 1.683E + 04 1.157E + 04

Std 1.031E + 03 3.385E + 02 4.674E + 02 3.114E + 03 4.156E + 02 9.224E + 02 3.854E + 02 8.801E + 02

Fun23

Mean 2.894E + 03 3.230E + 03 3.512E + 03 3.047E + 03 4.934E + 03 3.853E + 03 4.422E + 03 3.397E + 03

Std 5.296E + 01 1.956E + 01 5.994E + 01 5.711E + 01 1.986E + 02 2.119E + 02 1.081E + 02 9.741E + 01

Fun24

Mean 3.071E + 03 3.370E + 03 3.725E + 03 3.354E + 03 5.588E + 03 3.801E + 03 4.920E + 03 3.579E + 03

Std 4.846E + 01 4.105E + 01 7.928E + 01 1.095E + 02 4.534E + 02 1.538E + 02 3.067E + 02 1.181E + 02

Fun25

Mean 3.073E + 03 4.425E + 03 7.745E + 03 3.980E + 03 1.887E + 04 4.440E + 03 1.473E + 04 9.876E + 03

Std 2.376E + 01 3.629E + 02 6.800E + 02 4.462E + 02 4.535E + 02 3.830E + 02 7.931E + 02 2.584E + 02

Fun26

Mean 5.381E + 03 8.877E + 03 1.296E + 04 7.143E + 03 1.924E + 04 1.472E + 04 1.672E + 04 1.050E + 04

Std 5.278E + 02 2.846E + 02 9.586E + 02 6.886E + 02 1.032E + 02 1.599E + 03 4.428E + 02 8.735E + 02

Fun27

Mean 3.426E + 03 3.596E + 03 4.960E + 03 3.200E + 03 8.694E + 03 4.421E + 03 7.016E + 03 3.931E + 03

Std 9.603E + 01 6.505E + 01 4.028E + 02 2.730E−04 1.028E + 03 4.375E + 02 4.337E + 02 2.384E + 02

Fun28

Mean 3.319E + 03 6.553E + 03 8.247E + 03 3.618E + 03 1.904E + 04 5.529E + 03 1.301E + 04 9.335E + 03

Std 3.026E + 01 1.181E + 03 6.629E + 02 7.853E + 02 7.351E + 02 4.314E + 02 4.476E + 02 1.353E + 03

Fun29

Mean 4.103E + 03 5.974E + 03 9.849E + 03 4.396E + 03 1.061E + 06 8.874E + 03 4.870E + 04 6.853E + 03

Std 3.362E + 02 4.350E + 02 1.311E + 03 4.613E + 02 9.642E + 05 1.856E + 03 2.104E + 04 1.008E + 03

Continued
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using 10 and 20 dimensions, and each optimizer was given 500 iterations over 20 runs. The parameters for each 
algorithm remained consistent and are detailed in Table 2.

Tables 12 and 13 summarizes the results of each algorithm, including the average and standard deviation of 
the 20 runs.

From the table, we can observe that CAO ranks first among 6 functions in the 10 dimensional and 9 functions 
in the 20 dimensional problems. In addition, CAO achieved the second best result among other functions that 
were not ranked first. Figures 14, 15, 16, and 17 depict the convergence curve and boxplot of the eight algorithms 
for different CEC-2020 test suits. The figures show that the CAO algorithm converges rapidly to the optimal 
solution and achieves lower fitness values, as indicated by the small boxplot height. This demonstrates the 
robustness and steadiness of the CAO algorithm.

The Friedman test results for eight distinct algorithms are shown in Tables 14 and 15. According to the table, 
CAO outperformed the other eight algorithms used for comparison in terms of efficiency and received the top 
score. Therefore, the Friedman rank tests prove that the proposed CAO is effective and reliable. In addition, 
Tables 16 and 17 provide a comparison of the optimizers using the Wilcoxon rank test for 10 and 20 dimensions. 
A (-)sign indicates that the CAO algorithm is more efficient than its eight competitors, a ( +)sign implies that 
the eight competitors are more efficient than CAO, and a ( =) sign denotes equal performance between CAO and 
the competitor algorithm. Tables 16 and 17 presents the statistical results of all 20 runs and reveals that the CAO 
algorithm performed remarkably better than its competitors.

Engineering optimization test problems
In this section we assess the CAO algorithm’s performance on five real-world engineering optimization 
problems, encompassing both constrained and unconstrained issues. Multiple inequality constraints in the 
constrained issues call for a constraint-handling strategy, like the death penalty approach71–73. We used eight 
more algorithms to evaluate the CAO algorithm’s performance against that of other optimization techniques, 
MA, LSO, GWO, WOA, HHO, EO, and MPA. For every engineering challenge, we ran the CAO and the other 
optimization algorithms 20 times independently to guarantee unbiased assessments. There are several inequality 
constraints in these constrained issues. A penalty function technique is used to deal with constraint breaches; if 
any constraints are broken, the algorithm is penalized heavily. The parameter configurations are still the same 
as those from earlier studies. The specifics of the confined and unconstrained engineering benchmark tasks are 
as follows.

Pressure vessel design problem
As shown in Fig. 18, the main goal of this study is to reduce the overall cost of the raw materials needed for 
pressure vessel design. Finding the ideal values for the four decision variables—the thickness of the head (Th), 
the thickness of the shell (Ts), the radius of entrance (R), and the length of the cylindrical section (L), excluding 
the head—is our goal in order to do this. The following is the mathematical formulation for this optimization 
problem:

Consider variable x = [x1, x2, x3, x4] = [Ts, Th, R, L].
Minimize f(x) = 0.6224x1x3x4 + 1.7781x2x2

3 + 3.1661x2
1x4 + 19.84x2

1x3.
Subject to g1(x) = −x1 + 0.0193x3.

	 g2(x) = −x2 + 0.00954x3 ≤ 0.

	 g3(x) = −πx2
3x4 − 4/3πx3

3 + 1296,000 ≤ 0.

	 g4(x) = x4 − 240 ≤ 0.

Variable range 0 ≤ x1, x2 ≤ 99.

	 10 ≤ x3, x4 ≤ 200.

We used the suggested CAO algorithm in conjunction with other competing methods to ascertain the ideal 
values for the pressure vessel design factors. Table 18, which displays the simulation results, demonstrates that 
the CAO method performs better than the other competing algorithms by offering a more optimal computation 
of the objective function. Furthermore, statistical data for each algorithm are shown in Table 19, emphasizing the 
CAO algorithm’s superiority in terms of the mean, worst, and standard deviation of the best solutions. We have 
incorporated a convergence curve, constraint. The CAO algorithm’s gradual convergence to the ideal solution is 
shown in this figure.

Fun Indice CAO MA LSO GWO HHO WOA EO MPA

Fun30

Mean 1.331E + 06 1.192E + 08 5.009E + 08 1.493E + 07 1.450E + 10 3.210E + 08 6.982E + 09 5.710E + 07

Std 3.926E + 05 4.297E + 07 1.606E + 08 1.457E + 07 4.505E + 09 1.333E + 08 1.260E + 09 3.764E + 07

Table 5.  The Statistical results of the different algorithms on the CEC-2017 test suite in dimensions of 50. The 
bold refers to the best results.
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Fun Indice CAO MA LSO GWO HHO WOA EO MPA

Fun1

Mean 3.730E + 08 1.238E + 11 1.761E + 11 6.733E + 10 2.898E + 11 7.833E + 10 2.671E + 11 2.375E + 11

Std 4.041E + 08 1.131E + 10 9.255E + 09 1.054E + 10 3.836E + 09 8.924E + 09 4.185E + 09 2.228E + 10

Fun3

Mean 7.415E + 05 8.489E + 05 3.616E + 05 1.016E + 06 3.664E + 05 9.828E + 05 3.544E + 05 9.166E + 05

Std 1.469E + 05 6.084E + 04 3.038E + 04 3.094E + 05 1.574E + 02 1.213E + 05 5.767E + 03 2.113E + 05

Fun4

Mean 9.145E + 02 1.704E + 04 3.076E + 04 8.636E + 03 1.515E + 05 1.341E + 04 1.036E + 05 4.915E + 04

Std 9.898E + 01 3.486E + 03 3.871E + 03 2.397E + 03 5.539E + 03 2.842E + 03 7.146E + 03 1.536E + 04

Fun5

Mean 9.133E + 02 1.819E + 03 1.951E + 03 1.295E + 03 2.275E + 03 1.828E + 03 2.118E + 03 1.992E + 03

Std 7.567E + 01 5.281E + 01 6.391E + 01 5.684E + 01 2.555E + 01 9.701E + 01 1.637E + 01 1.474E + 02

Fun6

Mean 6.142E + 02 6.722E + 02 7.031E + 02 6.463E + 02 7.186E + 02 7.064E + 02 7.146E + 02 6.781E + 02

Std 4.936E + 00 4.011E + 00 4.115E + 00 3.885E + 00 6.927E−01 1.100E + 01 2.107E + 00 4.848E + 00

Fun7

Mean 1.466E + 03 5.501E + 03 3.619E + 03 2.119E + 03 4.193E + 03 3.759E + 03 4.044E + 03 5.726E + 03

Std 1.052E + 02 3.306E + 02 1.279E + 02 1.420E + 02 2.522E + 01 1.340E + 02 5.387E + 02 5.387E + 02

Fun8

Mean 1.190E + 03 2.097E + 03 2.332E + 03 1.618E + 03 2.712E + 03 2.303E + 03 2.614E + 03 2.367E + 03

Std 7.758E + 01 6.629E + 01 5.029E + 01 1.178E + 02 1.494E + 01 1.042E + 02 2.142E + 01 1.346E + 02

Fun9

Mean 9.000E + 03 5.140E + 04 7.820E + 04 4.543E + 04 9.522E + 04 7.081E + 04 8.021E + 04 4.881E + 04

Std 3.389E + 03 6.784E + 03 5.129E + 03 1.372E + 04 3.706E + 03 1.656E + 04 3.128E + 03 7.552E + 03

Fun10

Mean 1.425E + 04 3.280E + 04 3.260E + 04 2.629E + 04 3.476E + 04 2.873E + 04 3.278E + 04 2.027E + 04

Std 1.030E + 03 7.422E + 02 6.130E + 02 6.886E + 03 2.756E + 02 1.415E + 03 8.217E + 02 1.596E + 03

Fun11

Mean 4.692E + 06 8.290E + 07 5.272E + 05 1.363E + 06 5.721E + 05 3.687E + 07 2.823E + 05 1.156E + 07

Std 2.349E + 06 1.352E + 07 3.989E + 05 2.165E + 06 2.253E + 03 3.552E + 07 3.221E + 04 3.692E + 06

Fun12

Mean 4.433E + 07 1.989E + 10 7.077E + 10 1.877E + 10 2.472E + 11 1.578E + 10 2.005E + 11 4.414E + 10

Std 1.804E + 07 4.167E + 09 1.164E + 10 5.875E + 09 1.439E + 10 2.864E + 09 2.545E + 09 1.187E + 10

Fun13

Mean 8.000E + 03 1.395E + 09 1.023E + 10 2.090E + 09 6.114E + 10 9.438E + 08 4.536E + 10 2.343E + 09

Std 5.293E + 03 3.793E + 08 3.096E + 09 1.782E + 09 3.993E + 09 3.180E + 08 2.839E + 09 1.449E + 09

Fun14

Mean 1.792E + 06 5.101E + 07 2.009E + 07 9.564E + 06 2.378E + 08 1.672E + 07 5.177E + 07 3.051E + 07

Std 1.354E + 06 1.621E + 07 7.624E + 06 5.052E + 06 5.087E + 07 6.783E + 06 1.139E + 07 1.167E + 07

Fun15

Mean 5.472E + 03 2.090E + 08 2.841E + 09 3.459E + 08 3.733E + 10 1.951E + 08 2.482E + 10 4.200E + 08

Std 5.153E + 03 8.165E + 07 2.015E + 08 3.862E + 08 2.465E + 09 1.479E + 08 2.607E + 09 3.907E + 08

Fun16

Mean 5.495E + 03 1.155E + 04 1.289E + 04 8.141E + 03 3.300E + 04 1.619E + 04 2.435E + 04 9.287E + 03

Std 7.516E + 02 4.404E + 02 7.359E + 02 2.019E + 03 3.831E + 03 2.819E + 03 9.906E + 02 1.303E + 03

Fun17

Mean 4.632E + 03 8.737E + 03 1.853E + 04 6.592E + 03 3.854E + 07 1.444E + 04 7.667E + 06 1.070E + 04

Std 4.440E + 02 2.218E + 02 1.650E + 04 1.418E + 03 2.747E + 07 1.172E + 04 4.458E + 06 1.007E + 04

Fun18

Mean 4.642E + 06 7.375E + 07 2.965E + 07 1.186E + 07 9.637E + 08 1.384E + 07 1.996E + 08 5.380E + 07

Std 2.354E + 06 2.583E + 07 1.196E + 07 9.704E + 06 2.954E + 08 7.244E + 06 6.070E + 07 1.831E + 07

Fun19

Mean 4.517E + 03 2.792E + 08 2.272E + 09 3.117E + 08 3.686E + 10 1.926E + 08 2.397E + 10 4.818E + 08

Std 2.245E + 03 1.631E + 08 1.020E + 09 2.268E + 08 2.986E + 09 1.172E + 08 1.958E + 09 4.215E + 08

Fun20

Mean 4.693E + 03 7.979E + 03 7.141E + 03 6.214E + 03 9.115E + 03 6.904E + 03 7.929E + 03 6.563E + 03

Std 5.540E + 02 2.580E + 02 4.440E + 02 1.332E + 03 3.510E + 02 7.520E + 02 2.214E + 02 3.481E + 02

Fun21

Mean 2.696E + 03 3.672E + 03 3.870E + 03 3.222E + 03 5.362E + 03 4.360E + 03 4.857E + 03 3.944E + 03

Std 5.028E + 01 5.574E + 01 9.542E + 01 7.814E + 01 2.349E + 02 2.235E + 02 1.187E + 02 1.821E + 02

Fun22

Mean 1.683E + 04 3.497E + 04 3.498E + 04 2.539E + 04 3.761E + 04 3.132E + 04 3.498E + 04 2.258E + 04

Std 1.163E + 03 8.374E + 02 8.064E + 02 5.242E + 03 1.763E + 02 1.241E + 03 4.275E + 02 1.269E + 03

Fun23

Mean 3.308E + 03 4.075E + 03 4.958E + 03 3.847E + 03 8.052E + 03 5.245E + 03 6.960E + 03 4.151E + 03

Std 7.214E + 01 5.627E + 01 1.909E + 02 1.249E + 02 5.240E + 02 2.378E + 02 4.994E + 02 1.320E + 02

Fun24

Mean 3.809E + 03 4.197E + 03 6.919E + 03 4.676E + 03 1.325E + 04 6.575E + 03 1.081E + 04 5.370E + 03

Std 1.134E + 02 7.010E + 02 2.881E + 02 1.304E + 02 1.091E + 03 4.196E + 02 6.395E + 02 3.536E + 02

Fun25

Mean 3.557E + 03 2.133E + 04 1.684E + 04 7.651E + 03 3.369E + 04 8.616E + 03 2.769E + 04 2.943E + 04

Std 8.210E + 01 3.070E + 03 1.599E + 03 9.899E + 02 1.238E + 03 8.406E + 02 8.952E + 02 4.754E + 03

Fun26

Mean 1.065E + 04 2.067E + 04 3.462E + 04 1.982E + 04 5.803E + 04 3.633E + 04 5.147E + 04 2.650E + 04

Std 8.390E + 02 9.260E + 02 1.406E + 03 1.568E + 03 6.288E + 02 3.011E + 03 1.230E + 03 2.114E + 03

Fun27

Mean 3.536E + 03 4.396E + 03 8.086E + 03 3.200E + 03 1.627E + 04 6.116E + 03 1.373E + 04 4.394E + 03

Std 6.445E + 01 2.512E + 02 7.738E + 02 3.190E−04 1.637E + 03 1.081E + 03 1.050E + 03 2.890E + 02

Fun28

Mean 3.752E + 03 2.026E + 04 2.206E + 04 4.409E + 03 3.305E + 04 1.223E + 04 2.847E + 04 2.526E + 04

Std 1.154E + 02 1.542E + 03 1.432E + 03 2.778E + 03 4.501E + 02 1.106E + 03 6.801E + 02 2.407E + 03

Fun29

Mean 6.122E + 03 1.208E + 04 2.549E + 04 7.640E + 03 5.051E + 06 1.894E + 04 4.085E + 05 1.508E + 04

Std 3.083E + 02 7.557E + 02 6.277E + 03 8.900E + 02 1.967E + 06 2.959E + 03 1.734E + 05 4.504E + 03
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Fig. 9.  Boxplot of CAO and competitor algorithms for different CEC-2017 test functions (Dim = 10).

 

Fun Indice CAO MA LSO GWO HHO WOA EO MPA

Fun30

Mean 4.432E + 04 6.004E + 08 9.732E + 09 1.170E + 09 5.624E + 10 1.515E + 09 4.032E + 10 6.337E + 08

Std 1.979E + 04 1.555E + 08 2.222E + 09 1.517E + 09 4.107E + 09 6.181E + 08 1.886E + 09 3.915E + 08

Table 6.  The Statistical results of the different algorithms on the CEC-2017 test suite in dimensions of 100. The 
bold refers to the best results.
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Welded beam design
The welded beam design problem, a form of composite beam, is one of the most well-known engineering 
problems used to assess the algorithm’s performance. A weld is produced by welding multiple components 
together with molten metal in the way depicted in Fig. 19.

The best goal is to lower the total cost of the beam by selecting the optimal four design parameters: bar 
thickness (b), bar length (l), weld thickness (t), and bar height (h). One way to express the optimization model 
is as.

Already know: x = [x1, x2, x3, x4] = [h, m, t, b],
Minimize: f (x) = 1.10471x2

1x2 + 0.04811x3x4 (14.0 + x2),
Variables range: 0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.1 ≤ x4 ≤ 2,

Restriction condition: 




h1 (x) = τ (x) − τmax ≤ 0, h2 (x) = σ (x) − σmax ≤ 0,
h3 (x) = δ (x) − δmax ≤ 0, h4 (x) = x1 − x4 ≤ 0,
h5 (x) = P − PC (x) ≤ 0, h6 (x) = 0.125 − x1 ≤ 0,
h7 (x) = 1.1047x2

1x2 + 0.04811x3x4 (14.0 + x2) − 5.0 ≤ 0,
where

	
τ (x) =

√
(τ ′)2 + 2τ ′τ ′′ x2

R
+ (τ ′′)2, τ ′ = P√

2x1x2
, τ ′′ = MR

J
,

	
M = P

(
L + x2

2

)
, R =

√
x2

2
4 +

(
x1 + x3

2

)2
,

Fig. 10.  Convergence curves of CAO and competitor algorithms for different CEC-2017 test functions 
(Dim = 10).
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Fig. 11.  Radar maps of the eight algorithms on 29 benchmark functions.

 

Fun MA LSO GWO HHO WOA EO MPA

Fun1 8.858E−05/- 8.858E−05/- 1.034E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 1.700E−04/-

Fun3 8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/-

Fun4 8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/-

Fun5 1.204E−04/- 1.034E−04/- 3.330E−02/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/-

Fun6 8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/-

Fun7 8.858E−05/- 8.858E−05/- 4.500E−03/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 1.204E−04/-

Fun8 8.858E−05/- 8.858E−05/- 8.519E−01/ =  8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/-

Fun9 1.700E−03/- 8.858E−05/- 5.934E−04/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/-

Fun10 8.858E−05/- 8.858E−05/- 4.115E−01/ =  8.858E−05/- 5.167E−04/- 8.858E−05/- 1.454E−01/ = 

Fun11 8.858E−05/- 1.890E−04/- 8.858E−05/- 8.858E−05/- 8.918E−04/- 8.858E−05/- 8.858E−05/-

Fun12 8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 1.204E−04/- 8.858E−05/- 8.858E−05/-

Fun13 3.703E−01/ =  9.702E−01/ =  2.043E−01/ =  8.858E−05/- 2.043E−01/ =  8.858E−05/- 5.755E−01/ = 

Fun14 8.948E−04/ +  1.690E−02/ +  4.000E−02/ +  1.200E−03/ +  6.400E−03/ +  2.191E−04/ +  1.520E−02/ + 

Fun15 1.084E−01/ =  9.108E−01/ =  1.672E−01/ =  9.300E−02/ =  3.135E−01/ =  5.503E−01/ =  3.317E−01/ = 

Fun16 3.660E−02/ +  3.330E−02/- 2.322E−01/ +  8.858E−05/- 1.034E−04/- 8.858E−05/- 3.703E−01/ = 

Fun17 8.813E−01/ =  5.016E−01/ =  5.755E−01/ =  8.858E−05/- 6.704E−02/ =  3.385E−04/- 1.005E−01/ = 

Fun18 1.900E−03/ +  2.500E−03/- 2.280E−02/ +  8.858E−05/- 7.652E−01/ =  8.858E−05/- 3.902E−04/ = 

Fun19 3.660E−02/ +  1.084E−01/ =  3.317E−01/ =  1.034E−04/- 2.760E−02/- 1.204E−04/- 3.507E−01/ = 

Fun20 8.858E−05/- 6.806E−04/ =  2.790E−01/ =  8.858E−05/- 4.000E−03/- 1.034E−04/- 2.060E−02/-

Fun21 1.370E−02/- 2.627E−01/ =  4.500E−03/ +  8.858E−05/- 1.000E−03/- 8.519E−01/ =  3.902E−04/ + 

Fun22 1.370E−02/- 8.858E−05/- 2.760E−02/- 8.858E−05/- 1.300E−03/- 8.858E−05/- 2.500E−03/-

Fun23 4.500E−03/- 8.858E−05/- 4.000E−02/- 8.858E−05/- 1.401E−04/- 8.858E−05/- 2.932E−04/-

Fun24 8.858E−05/- 3.902E−04/- 3.905E−01/ =  8.858E−05/- 1.300E−03/- 1.034E−04/- 6.200E−02/ = 

Fun25 1.169E−01/ =  4.493E−04/- 8.228E−01/ =  8.858E−05/- 6.200E−02/ =  8.858E−05/- 5.167E−04/-

Fun26 3.905E−01/ =  1.520E−02/- 9.108E−01/ =  8.858E−05/- 2.060E−02/- 1.401E−04/- 5.257E−01/ = 

Fun27 9.702E−01/ =  1.520E−02/ +  1.200E−03/ +  8.858E−05/- 4.000E−03/- 1.034E−04/- 9.702E−01/ = 

Fun28 4.553E−01/ =  3.703E−02/- 1.370E−02/ +  8.858E−05/- 2.043E−01/- 8.858E−05/- 1.169E−01/ = 

Fun29 9.405E−01/ =  1.240E−02/- 6.740E−02/ =  8.858E−05/- 1.034E−04/- 8.858E−05/- 1.354E−01/ = 

Fun30 6.200E−05/ =  1.200E−03/- 1.200E−03/ +  8.858E−05/- 7.930E−02/ =  8.858E−05/- 1.913E−01/ = 

 + / = / −  4/9/16 2/6/21 6/10/13 1/1/27 1/6/22 1/2/26 2/12/15

Table 7.  Significance comparisons of WSR test.
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P = 6000 lb, L = 14 in, δmax = 0.25 in, E = 3 × 106 psi,
G = 12 × 106 psi, τmax = 13600 psi, σmax = 30000 psi.
After 20 runs, all results are gathered in Table 20. The results for CAO are the best across all four indicators. 

CAO is more stable, as seen by its superior average value and STD. The variable values for each algorithm’s 
optimal result are displayed in Table 21.

Three bar truss design
The three-bar truss design seeks to achieve the lowest weight feasible while building a truss with multiple 
limitations, including deflection, buckling, and stress. As shown in Fig. 20, this optimization problem has two 
design parameters, and. It is displayed mathematically as.

Consider: x = [x1, x2] = [A1, A2] ,
Minimize: f (x) =

(
2
√

2x1 + x2
)

∗ l,

Restriction condition: 




h1 (x) =
√

2x1+x2√
2x2

1+2x1x2
P − σ ≤ 0,

h2 (x) = x2√
2x2

1+2x1x2
P − σ ≤ 0,

h3 (x) = 1√
2x2

1+x1
P − σ ≤ 0,

Variables range: 0 ≤ x1, x2 ≤ 1,

Fun CAO MA LSO GWO HHO WOA EO MPA

Fun1 1 4 6 5 8 3 7 2

Fun3 1 7 4 2 8 3 6 5

Fun4 1 2 4 3 8 6 7 5

Fun5 1 3 4 2 8 6 7 5

Fun6 1 3 5 2 8 6 7 4

Fun7 1 3 5 2 8 6 7 4

Fun8 1 3 4 2 8 5 7 6

Fun9 1 2 4 3 8 6 7 5

Fun10 2 5 6 1 8 4 7 3

Fun11 1 6 3 8 7 2 4 5

Fun12 1 4 6 2 8 3 7 5

Fun13 3 2 5 6 8 4 7 1

Fun14 8 3 4 7 2 5 1 6

Fun15 6 1 4 2 8 7 5 3

Fun16 3 1 5 2 8 6 7 4

Fun17 3 2 4 1 8 6 7 5

Fun18 1 3 6 4 8 2 7 5

Fun19 3 1 5 2 8 6 7 4

Fun20 2 7 4 1 8 5 6 3

Fun21 3 6 2 5 8 7 4 1

Fun22 2 4 5 1 8 6 7 3

Fun23 1 2 5 4 8 6 7 3

Fun24 2 4 5 3 8 6 7 1

Fun25 1 3 5 2 8 4 7 6

Fun26 4 1 5 2 8 6 7 3

Fun27 4 2 5 1 8 6 7 3

Fun28 4 3 6 1 8 7 5 2

Fun29 2 6 4 1 8 5 7 3

Fun30 2 6 7 1 8 5 3 4

Mean rank 2.276 3.414 4.724 2.690 7.759 5.138 6.241 3.759

Result 1 3 5 2 8 6 7 4

Table 8.  Friedman ranks for 29 functions for CAO and seven other optimizers.
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where l = 100 cm, P = 2 kN/cm2, σ = 2 kN/cm2.
The CAO algorithm was employed to solve the three-bar truss design problem, and its effectiveness was 

compared with that of other optimization techniques. A comprehensive comparison of the capabilities of the 
CAO algorithm versus other methods is provided in Table 22, and the statistical results are shown in Table 23. 
The CAO algorithm outperforms other approaches, particularly in terms of the ’Std’, ’Worst’, ’Mean’, and ’Best’ 
metrics.

Fig. 12.  Scalability analysis of different methods.
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Spring design
The construction of a tension/compression spring with the design depicted in Fig.  21 is used as another 
acknowledged standard engineering design problem to assess the viability of the suggested CAO method in 
conventional engineering applications. Reducing the strain on a tension/compression spring design is the aim of 
this optimization work. Shear stress, minimum deflection, and minimum surge frequency are the only limitations 
on this engineering design problem. The diameter of the wire (d), the diameter of the mean coil (D), and the 
total number of active coils (N) are the optimization choice criteria for the design case. A vector representing 
the optimization parameters for this design scenario looks like this: x = [× 1, × 2, × 3], where the variables × 1, × 2, 

OPI Index

Functions

Fun3 Fun6 Fun12 Fun21

0.1
Mean 3.124E + 02 6.243E + 02 1.957E + 04 3.019E + 03

SD 1.126E + 01 2.491E + 01 1.682E + 04 1.380E + 02

0.15
Mean 3.087E + 02 6.186E + 02 1.703E + 04 2.703E + 03

SD 4.523E + 00 1.953E + 01 1.401E + 04 8.198E + 01

0.2
Mean 3.000E + 02 6.000E + 02 1.335E + 04 2.292E + 03

SD 0 3.641E−03 1.006E + 04 4.728E + 01

0.25
Mean 3.095E + 02 6.072E + 02 1.594E + 04 2.816E + 03

SD 8.177E + 00 1.845E + 01 1.382E + 04 6.480E + 01

0.3
Mean 3.169E + 02 6.183E + 02 1.706E + 04 2.984E + 03

SD 1.640E + 01 2.049E + 01 1.403E + 04 1.156E + 01

Table 10.  The results obtained for diverse test functions at varying numbers of the original position 
inertia(OPI) parameter.

 

Fun CAO MA LSO GWO HHO WOA EO MPA

Fun1 0.0374 0.0801 0.0315 0.0298 0.0648 0.0286 0.0396 0.0725

Fun3 0.0378 0.0845 0.0324 0.0296 0.0662 0.0280 0.0395 0.0710

Fun4 0.0373 0.0806 0.0305 0.0288 0.0631 0.0276 0.0383 0.0705

Fun5 0.0431 0.0789 0.0303 0.0340 0.0624 0.0326 0.0443 0.0761

Fun6 0.0686 0.0928 0.0354 0.0498 0.0724 0.0484 0.0610 0.0920

Fun7 0.0454 0.1308 0.0513 0.0356 0.1008 0.0337 0.0458 0.0768

Fun8 0.0439 0.0957 0.0367 0.0344 0.0748 0.0330 0.0454 0.0766

Fun9 0.0467 0.0943 0.0359 0.0363 0.0735 0.0350 0.0470 0.0782

Fun10 0.0495 0.0977 0.0375 0.0388 0.0762 0.0366 0.0492 0.0813

Fun11 0.0427 0.1055 0.0408 0.0324 0.0799 0.0312 0.0432 0.0747

Fun12 0.0443 0.0886 0.0341 0.0334 0.0690 0.0318 0.0445 0.0755

Fun13 0.0437 0.0914 0.0345 0.0334 0.0703 0.0322 0.0445 0.0755

Fun14 0.0495 0.0920 0.0348 0.0374 0.0775 0.0354 0.0479 0.0789

Fun15 0.0414 0.0997 0.0382 0.0318 0.0678 0.0305 0.0424 0.0739

Fun16 0.0460 0.0881 0.0330 0.0353 0.0737 0.0332 0.0455 0.0777

Fun17 0.0614 0.0955 0.0363 0.0474 0.0945 0.0444 0.0573 0.0879

Fun18 0.0455 0.0921 0.0466 0.0347 0.0721 0.0323 0.0446 0.0758

Fun19 0.1668 0.2881 0.0348 0.1165 0.2234 0.1142 0.1336 0.1587

Fun20 0.0621 0.1213 0.1176 0.0480 0.0960 0.0448 0.0591 0.0888

Fun21 0.0593 0.1241 0.0483 0.0479 0.0922 0.0430 0.0564 0.0913

Fun22 0.0714 0.1193 0.0458 0.0544 0.1079 0.0518 0.0656 0.1002

Fun23 0.0745 0.1410 0.0562 0.0572 0.1104 0.0539 0.0683 0.1044

Fun24 0.0779 0.1438 0.0581 0.0579 0.1147 0.0557 0.0711 0.1056

Fun25 0.0644 0.1476 0.0501 0.0495 0.0989 0.0469 0.0602 0.0982

Fun26 0.0848 0.1277 0.0635 0.0633 0.1240 0.0600 0.0742 0.1118

Fun27 0.0870 0.1611 0.0650 0.0645 0.1277 0.0620 0.0766 0.1161

Fun28 0.0783 0.1640 0.0579 0.0569 0.1124 0.0545 0.0675 0.1079

Fun29 0.0774 0.1447 0.0594 0.0594 0.1168 0.0552 0.0691 0.1049

Fun30 0.1845 0.3143 0.1268 0.1277 0.2424 0.1247 0.1476 0.1745

Table 9.  Computational time of CAO compared to other algorithms.
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and × 3 stand in for the constants d, D, and N. The following is a description of the mathematical formula for this 
optimization design problem:

Minimize: f (x) = (x3 + 2) x2x2
1,

Restriction condition: 





h1 (x) = 1 − x3
2x3

71785x4
1

≤ 0,

h2 (x) = 4x2
2−x1x2

12566(x2x3
1−x4

1) + 1
5108x2

1
≤ 0,

h3 (x) = 1 − 104.45x1
x2

2x3
≤ 0,

h4 (x) = x1+x2
1.5 − 1 ≤ 0,

Variables range: 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.30, 2.00 ≤ x3 ≤ 15.
Regarding the values of design variables and objective cost values, the suggested CAO algorithm is contrasted 

with other prospective competing algorithms for the tension/compression spring design problem in Table 24. 
The results presented in Table 24 show that the suggested CAO algorithm can be used to optimally design the 
tension spring problem with an optimum cost of 0.0127. In many instances, this cost is marginally lower than 
that of competing optimization techniques.

An overview of the statistical results of this design challenge as decided by the CAO algorithm and various 
competing meta-heuristics is shown in Table 25. Once again, when considering the best, average, worst, and 
standard deviation statistical results, the CAO algorithm fared better than other optimization methods, as shown 
in Table 25. According to this, CAO is more reliable and effective than many of its competitors at solving this 
design problem for the same number of iterations and search agents.

Speed reducer design problem
The design of a speed reducer, whose structural schematic is shown in Fig. 22, is another real-world example that 
is frequently used as a reference benchmark for evaluating optimization techniques. There are seven decision 
parameters in this design challenge, which makes it difficult. The following four limitations have an impact on 
the weight that needs to be decreased in this design problem: bending stress of the gear teeth, surface stress, 

Fig. 13.  Three-dimensional representation of some CEC-2020 test functions.

 

No Function Range FunBest

Unimodal functions C20201 Shifted & Rotated Bent Cigar Function [-100 100] 100

Basic functions

C20202 Shifted & Rotated Schwefel’s Function [-100 100] 1100

C20203 Shifted & Rotated Lunacek Bi_Rastrigin Function [-100 100] 700

C20204 Expand Rosenbrock’s plus Griewangk’s Function [-100 100] 1900

Hybrid functions

C20205 Hybrid-Function-1(N = 3) [-100 100] 1700

C20206 Hybrid-Function-2(N = 4) [-100 100] 1600

C20207 Hybrid-Function-3(N = 5) [-100 100] 2100

Composition functions

C20208 Composition-Function-1(N = 3) [-100 100] 2200

C20209 Composition-Function-2(N = 4) [-100 100] 2400

C202010 Composition-Function-3(N = 5) [-100 100] 2500

Table 11.  Summary of the CEC2020 benchmark functions.
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Fun Indice CAO MA LSO GWO HHO WOA EO MPA

Fun1

Mean 2.254E + 03 2.582E + 08 4.264E + 09 1.005E + 09 4.407E + 10 3.901E + 08 2.938E + 10 8.575E + 08

Std 3.105E + 03 6.905E + 07 1.415E + 09 1.316E + 09 3.153E + 09 3.515E + 08 2.448E + 09 8.035E + 08

Fun2

Mean 2.415E + 03 4.760E + 03 5.379E + 03 2.411E + 03 6.326E + 03 4.137E + 03 5.323E + 03 3.246E + 03

Std 4.056E + 02 3.230E + 02 3.219E + 02 7.336E + 02 2.705E + 02 6.210E + 02 1.809E + 02 5.796E + 02

Fun3

Mean 7.507E + 02 8.617E + 02 9.269E + 02 7.794E + 02 1.122E + 03 9.703E + 02 1.042E + 03 9.693E + 02

Std 1.099E + 01 9.569E + 00 2.395E + 01 3.150E + 01 8.134E + 00 4.411E + 01 2.016E + 01 9.298E + 01

Fun4

Mean 1.903E + 03 1.915E + 03 2.745E + 03 2.604E + 03 3.082E + 06 2.058E + 03 2.779E + 05 2.234E + 03

Std 1.141E + 00 2.234E + 00 7.402E + 02 4.841E + 02 1.828E + 06 1.656E + 02 1.432E + 05 1.134E + 03

Fun5

Mean 3.210E + 05 1.819E + 06 1.042E + 06 6.825E + 05 2.644E + 07 1.767E + 06 4.680E + 06 1.780E + 06

Std 2.445E + 05 9.060E + 05 6.802E + 05 8.420E + 05 1.113E + 07 1.110E + 06 1.543E + 06 1.300E + 06

Fun6

Mean 1.813E + 03 1.974E + 03 2.651E + 03 1.949E + 03 4.078E + 03 2.493E + 03 3.340E + 03 2.222E + 03

Std 1.762E + 02 1.023E + 02 1.973E + 02 2.377E + 02 3.824E + 02 3.045E + 02 1.448E + 02 1.953E + 02

Fun7

Mean 1.474E + 05 6.588E + 05 1.173E + 05 1.638E + 05 3.665E + 07 1.209E + 06 9.255E + 05 5.617E + 05

Std 2.141E + 05 4.405E + 05 1.184E + 05 8.627E + 04 2.730E + 07 1.126E + 06 4.050E + 05 4.181E + 05

Fun8

Mean 3.379E + 03 3.044E + 03 4.167E + 03 3.784E + 03 7.412E + 03 4.211E + 03 5.634E + 03 3.884E + 03

Std 1.251E + 03 1.616E + 03 1.016E + 03 2.057E + 03 5.074E + 02 1.933E + 03 4.330E + 02 1.560E + 03

Fun9

Mean 2.842E + 03 2.913E + 03 2.983E + 03 2.894E + 03 3.344E + 03 2.999E + 03 3.316E + 03 2.926E + 03

Std 1.412E + 01 1.274E + 01 2.499E + 01 3.798E + 01 1.253E + 02 5.347E + 01 7.614E + 01 4.080E + 01

Fun10

Mean 2.949E + 03 2.944E + 03 3.918E + 03 2.991E + 03 8.688E + 03 3.056E + 03 5.471E + 03 3.063E + 03

Std 2.927E + 01 2.615E + 01 8.494E + 01 3.839E + 01 1.563E + 03 3.156E + 01 3.714E + 02 1.120E + 02

Table 13.  The results of the different methods for CEC-2020 test functions (Dim = 20). The bold refers to the 
best results.

 

Fun Indice CAO MA LSO GWO HHO WOA EO MPA

Fun1

Mean 2.050E + 03 1.653E + 07 3.258E + 08 2.478E + 07 1.730E + 10 1.766E + 07 9.048E + 09 5.181E + 05

Std 3.389E + 03 1.111E + 07 1.744E + 08 7.551E + 07 5.031E + 09 2.301E + 07 1.771E + 09 2.025E + 06

Fun2

Mean 1.702E + 03 2.329E + 03 2.445E + 03 1.626E + 03 2.757E + 03 2.146E + 03 2.693E + 03 1.906E + 03

Std 3.018E + 02 2.024E + 02 2.110E + 02 3.112E + 02 4.718E + 02 4.134E + 02 1.529E + 02 2.122E + 02

Fun3

Mean 7.201E + 02 7.464E + 03 7.691E + 02 7.290E + 02 8.713E + 02 7.846E + 02 8.217E + 02 7.640E + 02

Std 3.565E + 00 5.920E + 00 9.527E + 00 1.075E + 01 9.421E + 00 3.019E + 01 1.049E + 01 3.057E + 03

Fun4

Mean 1.901E + 03 1.903E + 03 1.917E + 03 1.902E + 03 3.089E + 05 1.907E + 03 1.147E + 04 1.903E + 03

Std 2.750E−01 5.539E−01 1.254E + 01 1.082E + 00 1.764E + 05 5.006E + 00 8.399E + 03 1.006E + 00

Fun5

Mean 6.860E + 03 5.101E + 04 1.108E + 05 5.239E + 04 7.134E + 05 3.615E + 05 4.198E + 05 1.842E + 04

Std 4.845E + 03 3.648E + 04 9.591E + 04 1.049E + 04 2.570E + 03 6.944E + 05 1.221E + 05 8.108E + 03

Fun6

Mean 1.731E + 03 1.682E + 03 1.382E + 03 1.742E + 03 2.597E + 03 1.807E + 03 2.220E + 03 1.835E + 03

Std 8.655E−03 6.038E + 01 4.907E + 01 9.682E + 01 2.296E + 02 8.377E + 01 8.042E + 01 1.060E + 01

Fun7

Mean 1.042E + 04 9.179E + 03 8.964E + 03 1.208E + 04 2.353E + 06 2.651E + 05 1.426E + 05 1.440E + 04

Std 6.698E + 03 5.485E + 03 7.475E + 03 4.973E + 03 1.571E + 06 6.252E + 05 1.205E + 05 1.262E + 04

Fun8

Mean 2.301E + 03 2.312E + 03 2.346E + 03 2.310E + 03 3.717E + 03 2.380E + 03 2.918E + 03 2.344E + 03

Std 5.358E−01 1.463E + 00 2.375E + 01 8.094E + 00 4.034E + 02 2.620E + 02 2.064E + 02 1.723E + 02

Fun9

Mean 2.746E + 03 2.759E + 03 2.346E + 03 2.751E + 03 2.957E + 03 2.777E + 03 2.914E + 03 2.730E + 03

Std 7.024E + 00 1.267E + 01 2.375E + 01 1.333E + 01 4.723E + 01 2.247E + 01 7.617E + 01 8.836E + 01

Fun10

Mean 2.933E + 03 2.947E + 03 2.969E + 03 2.933E + 03 4.402E + 03 2.951E + 03 3.367E + 03 2.972E + 03

Std 2.290E + 01 1.036E + 01 1.078E + 01 1.857E + 01 3.981E + 02 3.184E + 01 9.727E + 01 3.639E + 01

Table 12.  The results of the different methods for CEC-2020 test functions (Dim = 10). The bold refers to the 
best results.
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Fig. 14.  Convergence curves of algorithms for different CEC-2020 functions (Dim = 10).
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Fig. 15.  Convergence curves of algorithms for different CEC-2020 functions (Dim = 20).
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Fig. 16.  Boxplot of algorithms for different CEC-2020 functions (Dim = 10).
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Fig. 17.  Boxplot of algorithms for different CEC-2020 functions (Dim = 20).
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transverse shaft deflections, and shaft stresses. To address this optimization problem, seven decision design 
parameters were used, which are as follows: b, m, z, l1, l2, d1, and d2. These characteristics are as follows: the 
diameter of the first and second shafts, the distance between the bearings between the first and second shafts, the 
tooth module, the number of teeth in the pinion, and the face width. In order to solve this optimization problem, 
these parameters were represented by a vector, which is provided as follows: x = [× 1 × 2 × 3 × 4 × 5 × 6 × 7] = [b m z 
l1 l2 d1 d2]. The following is a description of the mathematical formula for this problem:

The cost function that needs to be optimized can be described as follows:

	f (−→x ) = 0.7854x1x2
2

(
3.3333x2

3 + 14.9334x3 − 43.0934
)

− 1.508x1
(
x2

6 + x2
7
)

+ 7.4777(x3
6 + x3

7) + 0.7854(x4x2
6 + x5x2

7)

Fun MA LSO GWO HHO WOA EO MPA

Fun1 8.858E−05/- 8.858E−05/- 1.034E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 1.401E−04/-

Fun2 1.034E−04/- 8.858E−05/- 7.089E−01/ =  8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/-

Fun3 8.858E−05/- 8.858E−05/- 4.000E−03/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 1.034E−04/-

Fun4 8.858E−05/- 8.858E−05/- 1.890E−04/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 1.034E−04/-

Fun5 1.036E−04/- 8.858E−05/- 4.553E−01/ =  8.858E−05/- 1.401E−04/- 8.858E−05/- 4.493E−04/-

Fun6 8.590E−02/ =  1.900E−03/- 6.813E−01/ =  8.858E−05/- 5.700E−03/- 8.858E−05/- 7.200E−03/-

Fun7 4.553E−01/ =  3.905E−01/ =  3.905E−01/ =  8.858E−05/- 8.858E−05/- 1.034E−04/- 3.135E−01/ = 

Fun8 8.858E−05/- 8.858E−05/- 1.401E−04/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 1.900E−03/-

Fun9 2.500E7−03/- 8.858E−05/- 1.560E−01/ =  8.858E−05/- 2.536E−04/- 5.700E−03/- 2.627E−05/ = 

Fun10 6.400E−03/- 1.034E−04/- 9.405E−01/ =  8.858E−05/- 3.040E−02/- 8.858E−05/- 1.629E−04/-

 + / = / −  0/2/8 0/1/9 0/6/4 0/0/10 0/0/10 0/0/10 0/2/10

Table 16.  Statistical results of WSR test obtained by CAO on CEC-2020 benchmark (Dim = 10).

 

Fun CAO MA LSO GWO HHO WOA EO MPA

Fun1 1 2 6 5 8 3 7 4

Fun2 1 5 7 2 8 4 6 3

Fun3 1 3 4 2 8 6 7 5

Fun4 1 2 7 5 8 3 6 4

Fun5 1 6 3 2 8 4 7 5

Fun6 1 3 6 2 8 5 7 4

Fun7 1 5 4 2 8 7 6 3

Fun8 2 1 5 3 8 6 7 4

Fun9 1 3 5 2 8 6 7 4

Fun10 2 1 6 3 8 4 7 5

Mean rank 1.2 3.1 5.3 2.8 8.0 4.8 4.7 4.1

Result 1 3 7 2 8 6 5 4

Table 15.  Friedman ranks for CEC-2020 benchmark functions(Dim = 20).

 

Fun CAO MA LSO GWO HHO WOA EO MPA

Fun1 1 3 6 5 8 4 7 2

Fun2 2 5 6 1 8 4 7 3

Fun3 1 8 4 2 7 5 6 3

Fun4 1 3 6 2 8 5 7 4

Fun5 1 3 5 4 8 6 7 2

Fun6 3 2 1 4 8 5 7 6

Fun7 3 2 1 4 8 7 6 5

Fun8 1 3 5 2 8 6 7 4

Fun9 3 5 1 4 8 6 7 2

Fun10 2 3 5 1 8 4 7 6

Mean rank 1.8 3.7 4.0 2.9 7.9 5.2 6.8 3.7

Result 1 3 5 2 8 6 7 4

Table 14.  Friedman ranks for CEC-2020 benchmark functions(Dim = 10).
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Algorithms Min Max Mean Std

CAO 5885.332774 5885.405814 5885.343451 1.83E−01

MA 5885.335716 6195.382028 5932.787433 8.51E + 01

LSO 5885.335475 6069.067614 6032.000702 3.02E + 02

GWO 5890.070967 6822.450373 6255.804986 2.22E + 02

HHO 6014.425412 7527.978657 6718.945634 3.80E + 02

WOA 6213.457215 9563.098978 7510.098338 7.31E + 02

EO 11,546.52898 198,316.9584 106,631.9927 4.87E + 04

MPA 6132.188742 7321.126927 6785.659595 3.79E + 02

Table 19.  Statistical results from various meta-heuristic algorithms for the pressure vessel problem.

 

Optimzers Ts Th R L Best value

CAO 0.7781686398 0.3846491701 40.31961874 200 5885.332774

MA 0.7781687871 0.3846498138 40.31961875 200 5885.335716

LSO 12.51406454 6.18743224 40.51910215 197 5885.335475

GWO 0.7784057149 0.3854974361 40.32307458 200 5890.070967

HHO 0.8412681315 0.4185983078 43.56479801 159 6014.425412

WOA 0.8158984081 0.4491581143 41.3425583 186 6213.457215

EO 1.234901903 0.6104126501 63.98455452 96 11,546.52898

MPA 0.9006497489 0.4448263208 46.62749694 127 6132.188742

Table 18.  Optimum results of the different methods for the pressure vessel design problem.

 

Fig. 18.  Pressure vessel design problem.

 

Fun MA LSO GWO HHO WOA EO MPA

Fun1 8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/-

Fun2 8.858E−05/- 8.858E−05/- 1.240E−02/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 1.900E−03/-

Fun3 8.858E−05/- 8.858E−05/- 2.536E−04/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/-

Fun4 8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/-

Fun5 1.034E−04/- 8.918E−05/- 2.043E−01/ =  8.858E−05/- 2.932E−04/- 8.858E−05/- 1.036E−04/-

Fun6 2.500E−03/- 8.858E−05/- 4.790E−02/- 8.858E−05/- 1.034E−04/- 8.858E−05/- 1.401E−04/-

Fun7 1.401E−04/- 1.401E−04/- 1.672E−01/ =  8.858E−05/- 1.401E−04/- 1.034E−04/- 6.806E−04/-

Fun8 8.228E−01/ =  1.690E−02/- 4.330E−01/ =  8.858E−05/- 5.220E−02/ =  8.858E−05/- 2.180E−01/ = 

Fun9 8.858E−05/- 8.858E−05/- 4.493E−04/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 8.858E−05/-

Fun10 5.503E−01/ =  8.858E−05/- 5.100E−03/- 8.858E−05/- 8.858E−05/- 8.858E−05/- 3.385E−04/-

 + / = / −  0/2/8 0/0/10 0/3/7 0/0/10 0/1/9 0/0/10 0/1/9

Table 17.  Statistical results of WSR test obtained by CAO on CEC-2020 benchmark (Dim = 20).
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The following limitations apply to this engineering design:

	
g1(−→x ) = 27

x1x2
2x3

− 1 ≤ 0

	
g2(−→x ) = 397.5

x1x2
2x2

3
− 1 ≤ 0

	
g3(−→x ) = 1.9x3

4

x2x4
6x3

− 1 ≤ 0

	
g4(−→x ) = 1.93x3

5

x2x4
7x3

− 1 ≤ 0

	
g5(−→x ) = [(745(x4/x2x3))2 + 16.9 × 106]1/2

110x3
6

− 1 ≤ 0

Algorithms Optimal values for variables Optimum cost

h l t b

CAO 0.187156 3.470488 9.036623 0.205730 1.724527

MA 0.187156 3.744548 9.173438 0.205057 1.724536

LSO 0.203687 3.470489 9.036624 0.205729 1.724718

GWO 0.205701 3.479005 9.036874 0.205732 1.733462

HHO 0.203137 3.744548 9.173438 0.205057 1.726240

WOA 0.205700 3.657587 9.176331 0.205111 1.733487

EO 0.204368 3.856979 3.856979 0.212148 1.729843

MPA 0.205729 3.512662 8.997062 0.207548 1.724852

Table 21.  The best variables the welded beam design problem.

 

Algorithms Best Mean Worst Std Rank

CAO 1.724527 1.9142249 2.1056474 0.1175823 1

MA 1.724536 2.0246610 2.2271271 0.2375921 2

LSO 1.724718 1.9528762 2.1444756 0.1802129 4

GWO 1.733462 2.6589611 3.1274315 0.7812475 7

HHO 1.726240 1.9964298 2.8731091 0.5209634 5

WOA 1.733487 2.6589687 3.1495628 0.7801672 8

EO 1.729843 1.9275891 2.4980137 0.3089531 6

MPA 1.724852 2.2614932 2.8091743 0.4308599 3

Table 20.  Results of the welded beam design problem.

 

Fig. 19.  The welded beam design drawing map.
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g6(−→x ) = [(745(x5/x2x3))2 + 157.5 × 106]1/2

85x3
7

− 1 ≤ 0

	
g7(−→x ) = x2x3

40 − 1 ≤ 0

	
g8(−→x ) = 5x2

x1
− 1 ≤ 0

	
g9(−→x ) = x1

12x2
− 1 ≤ 0

	
g10(−→x ) = 1.5x6 + 1.9

x4
− 1 ≤ 0

Algorithms Optimal values for variables Optimum cost

Ta Tb Td Tf

CAO 42.5715 19.3577 15.9691 48.9495 2.7009E−12

MA 42.6953 15.5460 19.4798 49.2722 2.7009E−12

LSO 49.0442 16.2459 18.7594 42.7506 2.7009E−12

GWO 43.2800 18.6127 15.6179 48.5065 2.7009E−12

HHO 42.6953 15.5460 19.4798 49.2722 2.7009E−12

WOA 42.6477 18.8069 15.8717 49.3500 2.7009E−12

EO 43.2426 19.2179 16.0007 49.3223 2.7009E−12

MPA 43.4553 16.3714 18.5838 48.7162 2.7009E−12

Table 23.  The best variables of the three-bar truss design.

 

Algorithms Best Mean Worst Std Rank

CAO 291.7724 291.7877 291.7899 0.02849 1

MA 303.4433 303.5451 303.5905 0.02964 8

LSO 292.1323 292.1392 292.1399 0.03027 3

GWO 292.2584 292.2797 292.2842 0.03351 4

HHO 292.5509 292.5610 292.6141 0.12096 6

WOA 292.1138 292.9142 293.0172 0.54898 2

EO 292.4797 292.5026 292.8821 0.49729 5

MPA 292.8279 292.8301 292.8491 0.39421 7

Table 22.  Results of the three-bar truss design.

 

Fig. 20.  Schematic of the three-bar truss design.
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g11

−→x ) = 1.1x7 + 1.9
x5

− 1 ≤ 0

where, for the variables b, m, z, l1, l2, d1, and d2, the ranges of the design variables are 2.6 ≤  × 1 ≤ 3.6, 0.7 ≤  × 2 ≤ 0.8, 
17 ≤  × 3 ≤ 28, 7.3 ≤  × 4 ≤ 8.3, 7.3 ≤  × 5 ≤ 8.3, 2.9 ≤  × 6 ≤ 3.9, and 5.0 ≤  × 4 ≤ 5.5, respectively.

Table 26 shows a comparison between the designs and cost solutions for the speed reducer design challenge 
that CAO came up with and the other optimization methods mentioned above. Table 26 shows that the suggested 
CAO algorithm works better than other competing optimization methods because it has the best design cost for 
this problem, which is around 2994.471. This suggests that CAO can be used to determine the best design for 
this issue.

The statistical results of the CAO algorithm and other optimization strategies for the speed reducer design 
problem are tabulated in Table 27. The statistics shown in Table 27 show that the CAO algorithm is superior to 
other meta-heuristic techniques. This indicates that the CAO algorithm produced the best optimal solutions 
among all the competing algorithms. This demonstrates how, based on these statistical findings, the CAO 
algorithm performs better than rival algorithms.

Algorithms Best Mean Worst Std Rank

CAO 0.0127 0.0134 0.0142 0.0005 1

MA 0.0130 0.0194 0.0203 0.0098 4

LSO 0.0130 0.0140 0.0161 0.0072 3

GWO 0.0127 0.0142 0.0198 0.0024 2

HHO 0.0134 0.0153 0.0184 0.0016 5

WOA 0.6408 0.7241 0.7803 0.2459 8

EO 0.0598 0.0893 0.1035 0.0852 6

MPA 0.0610 0.0704 0.0830 0.0281 7

Table 25.  Results of the spring design problem.

 

Algorithms

Optimal values for 
variables

Optimum costd D N

CAO 0.0543 0.4316 7.9901 0.0127

MA 0.0740 0.8482 4.8851 0.0130

LSO 0.0533 0.3960 9.5781 0.0130

GWO 0.0525 0.3775 10.168 0.0128

HHO 0.0539 0.4025 9.4517 0.0134

WOA 0.0623 0.6408 0.6408 0.6408

EO 0.0598 0.0598 0.0598 0.0598

MPA 0.0610 0.0610 0.0610 0.0610

Table 24.  Results of the spring design problem.

 

Fig. 21.  A schematic structural diagram of a tension spring.

 

Scientific Reports |        (2025) 15:21502 36| https://doi.org/10.1038/s41598-025-08517-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Cantilever beam design problem
Despite the similarities to the previous problem, the objective of this one is to lower the weight of a cantilever 
beam composed of five components, each of which has a hollow cross section that gradually thickens. As seen in 
Fig. 23, the beam is securely supported and the free end of the cantilever is subject to an external vertical force.

The goal of this design challenge is to reduce the weight of a cantilever beam while placing a maximum limit 
on the vertical displacement of the free end. The design variables are each part’s cross-sectional heights and 
widths. Because the upper and lower bounds are too large and little, respectively, these variables do not become 
operational in the issue. Finding workable combinations of the five structural design parameters is the first step 
in solving the cantilever beam design challenge. These design parameters could be represented by a vector like 
this: −→x = [x1, x2, x3, x4, x5] . The objective cost function for this design problem can be written as follows:

f(x) = 0.0624(× 1 +  × 2 +  × 3 +  × 4 +  × 5), where the optimization constraint that follows is applicable.

Algorithms Best Mean Worst Std

CAO 2994.471 2994.471 2994.471 2.12E−12

MA 3141.817 3564.938 4283.717 3.22E + 02

LSO 3040.644 3107.051 3176.963 3.08E + 01

GWO 2998.204 3005.095 3013.756 4.73E + 00

HHO 3007.477 3134.660 4047.006 2.28E + 02

WOA 3008.738 3117.951 3470.068 9.38E + 01

EO 2994.834 2994.903 3007.437 1.08E + 00

MPA 3040.749 3107.051 3176.963 3.24E + 02

Table 27.  The Statistical results obtained from various methods for the speed reducer design problem.

 

Algorithms

Optimal values for variables

Optimum costb m z l1 l2 d1 d2

CAO 3.5 0.7 17 7.3 7.715 3.350 5.287 2994.471

MA 3.599 0.7 17 7.923 8.099 3.379 5.340 3141.817

LSO 3.545 0.7 17 7.807 8.3 3.353 5.303 3040.644

GWO 3.5 0.7 17 7.403 7.753 3.358 5.287 2998.204

HHO 3.502 0.7 17 7.927 7.737 3.374 5.287 3007.477

WOA 3.5 0.7 17 7.950 7.963 3.351 5.291 3008.738

EO 3.5 0.7 17 7.312 7.715 3.350 5.287 2994.834

MPA 3.546 0.7 17 7.834 8.257 3.356 5.299 3040.749

Table 26.  Comparison of the optimization results from several meta-heuristic algorithms for the speed 
reducer problem.

 

Fig. 22.  A schematic structural diagram of a speed reducer design.
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g1(−→x ) = 61

x3
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+ 37
x3

2
+ 19

x3
3

+ 7
x3

4
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x3
5

The variables were assumed to be in the range 1 ≤ xi ≤ 10 for this design issue, where i ∈ 1, 2, 3, 4, 5.
The optimization results of the suggested CAO technique and other similar competing meta-heuristics used 

to address this issue are shown in Table 28. Based on the cost weight values given in Table 28, the suggested CAO 
algorithm yielded the optimum solution for the cantilever design problem, with an ideal cost of around 263.896. 
When compared to other competing algorithms, this result showed incredibly competitive results for CAO and 
outperformed the majority of them.

The statistical optimization results of the CAO method and the other optimization strategies covered above 
are compiled in Table 29 with regard to the mean, standard deviation, best, and worst scores for the cantilever 
design problem across 20 different runs.

As demonstrated by the solutions in Table 29, the suggested CAO approach fared better statistically than 
many other competing algorithms for this design problem. This implies that CAO is superior to other meta-
heuristics, exceeding most algorithms in producing results that are on par with them.

Algorithms Best Mean Worst Std

CAO 263.896 263.896 263.896 1.06E−14

MA 263.896 263.896 263.896 8.15E−10

LSO 263.896 263.896 263.900 7.89E−04

GWO 263.896 263.896 263.896 1.01E−07

HHO 263.896 263.896 263.896 1.46E−04

WOA 263.896 263.896 263.896 6.69E−12

EO 263.896 263.896 263.896 2.96E−09

MPA 263.896 263.900 263.919 1.12E−02

Table 29.  Statistical results from various meta-heuristic algorithms for the cantilever design problem.

 

Algorithms

Optimal values for variables

Optimum costX1 X2 X3 X4 X5

CAO 3.350 5.286 6.016 5.309 4.494 263.896

MA 3.485 5.328 5.999 5.329 4.499 263.896

LSO 3.352 5.301 6.015 5.309 4.494 263.896

GWO 3.350 5.287 6.016 5.309 4.494 263.896

HHO 3.350 5.287 6.016 5.309 4.495 263.896

WOA 3.351 5.287 6.015 5.310 4.494 263.896

EO 3.339 3.434 6.015 5.310 4.494 263.896

MPA 3.415 5.351 6.015 5.309 4.496 263.896

Table 28.  Comparison of the optimization results from several meta-heuristic algorithms for the cantilever 
design problem.

 

Fig. 23.  A schematic diagram of a cantilever beam design problem.
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Gear train design problem
As shown in Fig. 24, the primary goal of this challenge is to reduce the cost of the gear ratio in a gear train, which 
comprises four design variables, including the number of gear teeth. It is possible to formulate this unconstrained 
discrete design problem quantitatively.

Consider variable z = [z1, z2, z3, z4] = [Ta, Tb, Td, Tf ].

	
Minimizef(z) =

(
1

6.931 − Tb.Td

Ta.Tf

)2

.

Variable range: 0.01 ≤ zi ≤ 60i = 1, ..., 4.
Several techniques, including the proposed CAO algorithm, were used to determine the optimal parameter 

values for the gear train design problem. The results are shown in Table 30 and show that, with the exception of 
the MFO algorithm, the CAO algorithm yields the same minimum cost as the other approaches. The statistical 
results for each method are shown in Table 31, which shows that the CAO algorithm is the most effective in 
terms of both the “Mean” and “Std” metrics.

Algorithms Best Mean Worst Std

CAO 2.701E−12 8.750E−11 1.362E−09 2.45E−10

MA 2.308 E−11 3.995E−09 2.726E−08 8.15E−09

LSO 2.701E−12 7.370E−10 2.358E−09 8.08E−10

GWO 2.701E−12 6.131E−10 9.922E−10 4.53E−10

HHO 2.701E−12 1.734E−09 1.827E−08 3.48E−09

WOA 2.701E−12 1.669E−09 1.827E−08 3.44E−09

EO 2.702E−12 3.125E−10 2.358E−09 6.96E−10

MPA 2.701E−12 2.299E−09 1.827E−08 4.16E−09

Table 31.  The Statistical results obtained from various methods for the gear train design problem.

 

Algorithms

Optimal values for variables

Optimum costTa Tb Td Tf

CAO 42.571 19.358 19.357 48.949 2.701E−12

MA 33.619 13.008 20.181 52.847 2.308 E−11

LSO 49.044 16.246 18.759 42.751 2.701E−12

GWO 43.280 18.613 15.618 48.506 2.701E−12

HHO 42.695 15.546 19.480 49.272 2.701E−12

WOA 42.648 18.807 15.872 49.350 2.701E−12

EO 43.456 16.374 18.584 48.718 2.702E−12

MPA 43.243 19.218 16.001 49.322 2.701E−12

Table 30.  Optimum results of the different methods for the gear train design problem.

 

Fig. 24.  A schematic diagram of a gear train design problem.
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Discussion
This part summarizes and discusses the experimental results, which are categorized into four groups to fully 
demonstrate the competitiveness and efficacy of the CAO algorithm suggested in this work. First, qualitative 
study shows that CAO well balances exploration and exploitation, avoids local optima, shows good convergence, 
and demonstrates swarm intelligence traits. Second, the comparison results show that CAO exhibits better 
convergence accuracy across the majority of benchmark functions (CEC-2017 and CEC-2020) when compared 
to popular algorithms. Its growing benefit as the problem dimension grows is especially notable. Convergence 
curves further demonstrate CAO’s potential for optimization, indicating robustness against local optima 
problems for more promising solutions and demonstrating sustained convergence behavior in the late iteration. 
CAO’s result distribution is more centralized, as shown by box plots. Additionally, statistical research confirms 
CAO’s outstanding performance on benchmarks of many dimensions, demonstrating thorough and efficient 
issue optimization capabilities.

Third, CAO demonstrates its advantage in handling complicated issues by achieving expected numerical 
optimization outcomes even when compared to two benchmark-winning techniques and six sophisticated 
algorithms.

Lastly, compared to several state-of-the-art methods, CAO ranks among the top optimizers and obtains the 
best solutions for eight well-known industrially limited issues. These results highlight how the suggested CAO 
effectively handles issues related to local optima and immature convergence across many problem classes with its 
exploratory and exploitative methods, demonstrating a greater possibility for avoiding local optima stagnation.

The better performance of CAO over current optimization algorithms is firmly supported by our experimental 
data. This benefit is due to a number of important factors:

•	 CAO employs a hunting search strategy that allows it to solve optimization problems with different character-
istics, including single-peak landscapes, numerous variables, and constraints.

•	 The escape strategy in CAO is designed for exploration and helps the algorithm to carry out global search.
•	 By successfully avoiding local extremes and premature convergence, the commensalism phase adds to the 

algorithm’s resilience throughout exploration and exploitation.
•	 CAO is distinguished by its simplicity and ease of use.
•	 CAO offers benefits in terms of computational cost and complexity while guaranteeing the best outcomes.

The analysis presented above leads to the following conclusions: the suggested algorithm performs exceptionally 
well in terms of optimization, particularly when dealing with multimodal and composite functions. Three 
main qualities are responsible for this effectiveness: its extraordinary ability to avoid local optima, its excellent 
exploration capabilities, and its skillful balance between exploration and exploitation.

These search features are closely related to the algorithm’s multi-strategy search mechanism, which 
guarantees solution variety, promotes thorough exploration, and reduces the possibility of becoming trapped in 
local optima. It is ideal for resolving industrial optimization issues because of these qualities.

Conclusion and future work
This study introduces a new biologically inspired optimizer inspired by the hunting and escape behavior of 
Channa Argus in their natural environment. The CAO’s performance is evaluated using a broad range of 39 
benchmark functions, including unimodal, multimodal, hybrid, and composite functions. To underscore its 
optimization capabilities, CAO is compared against state-of-art meta-heuristics, results from actual engineering 
challenges show that CAO is particularly competitive when it comes to solving engineering jobs with uncertain 
and limited search spaces.

Even with its exceptional efficiency, CAO has limitations when it comes to solving some discrete optimization 
problems, especially in high-dimensional binary spaces where many optimization algorithms are challenged by 
the solution space’s exponential development. Furthermore, CAO may exhibit relative inefficiency on particular 
engineering challenges, just like any optimizer. These shortcomings offer insightful guidelines for further study, 
creating chances for notable breakthroughs in optimization algorithms for challenging, real-world issues. 
Combining CAO with other algorithms for synergistic enhancement to overcome its shortcomings is also a 
future development direction. Meanwhile, CAO also has a wide range of application Spaces, such as bearing 
fault diagnosis74, defect identification75, complex machinery applications76, waste management techniques77, 
forecasting production78, predictive analysis79.

Data availability
The code used to evaluate the algorithm CAO is available with the paper. The datasets used and analysed during 
the current study available from the corresponding author on reasonable request.
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