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Colorectal cancer (CRC) treatment remains challenging due to genetic heterogeneity and resistance 
mechanisms. To address this, we developed a drug discovery pipeline using patient-derived primary 
CRC cultures with diverse genomic profiles. These cultures closely resemble certain molecular 
characteristics of primary and metastatic CRC, highlighting their promise as a translational platform 
for therapeutic evaluation. Importantly, our engineered model and patient-derived cells reflect the 
complexity and heterogeneity of primary tumors, not observed with standard immortalized cell lines, 
offering a more clinically relevant system, although further validation is needed. High-throughput 
screening (HTS) of 4255 compounds identified 33 with selective efficacy against CRC cells, sparing 
normal, healthy epithelial cells. Among the tested combinations, everolimus (mTOR inhibitor) and 
uprosertib (AKT inhibitor) demonstrated promising synergy at clinically relevant concentrations, 
with favorable therapeutic windows confirmed across tested patient-derived cultures. Notably, this 
synergy, revealed through advanced models, might have been overlooked in traditional immortalized 
cell lines, highlighting the translational advantage of patient-derived systems. Furthermore, the 
integration of machine learning into the HTS pipeline significantly improved scalability, cost-efficiency, 
and predictive accuracy. Our findings underscore the potential of patient-derived materials combined 
with machine learning-enhanced drug discovery to advance personalized therapies. Specifically, 
mTOR-AKT inhibition emerges as a promising strategy for CRC treatment, paving the way for more 
effective and targeted therapeutic approaches.

Colorectal cancer (CRC) is a major public health concern, ranking as the third most prevalent cancer worldwide. 
In 2020, CRC was responsible for 10% of all cancer diagnoses, amounting to approximately 1,931,590 new cases 
1. Interestingly, the incidence of CRC shows a demographic split: it has been decreasing among older adults but 
is on the rise among younger individuals1,2. This shift emphasizes the importance of understanding CRC across 
different age groups, especially since early-stage detection can dramatically improve patient outcomes. In the 
United States, the five-year survival rate for CRC patients stands at about 63% and drops to 13% when diagnosed 
at an advanced stage3. This statistic highlights the critical role of timely diagnosis, as early detection significantly 
improves patient outcomes. At the core of CRC’s development is a series of genetic mutations affecting the 
epithelial tissues of the colon and rectum. These mutations involve key genes such as APC, KRAS, TP53, and 
SMAD4 and propel the disease along one of three molecular pathways: chromosomal instability, microsatellite 
instability, or the CpG island methylator phenotype4,5. Each pathway affects crucial cellular processes like DNA 
mismatch repair, cell cycle regulation, and apoptosis, underlining the complexity of CRC’s molecular basis6,7.
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Understanding the mutation burden in CRC has significant implications for treatment. Studies have shown 
that CRCs with a high mutation load respond better to treatment, particularly due to the increased genetic 
instability that makes cancer cells more susceptible to chemotherapy and immunotherapy8. This suggests 
that patients with certain genetic profiles, such as intact APC or mutations in KRAS, BRAF, and TP53, may 
benefit more from specific therapeutic approaches9. However, despite advancements in targeted therapies, 
the effectiveness of CRC treatment is heavily dependent on the cancer’s genetic characteristics, necessitating 
personalized treatment plans.

The management of CRC remains challenging due to the potential for disease recurrence, often with 
additional oncogenic drivers compared to the primary cancer10. This recurrence can complicate treatment 
strategies and underscores the need for ongoing research into effective therapies.

Generating primary models representing the early onset of diseases can be highly beneficial for identifying 
therapeutic targets effective in late-stage cancer. Early-stage models often share common genetic drivers with 
advanced cancers, as they originate from a common ancestral cell. Studying early models potentially leads 
to uncovering key pathways and vulnerabilities that persist as the disease progresses11. Consequently, targets 
identified in early models may provide broader therapeutic value, addressing early and late cancer stages.

This study outlines our approach to high-throughput compound screening, which holds significant potential 
for identifying novel treatment options for CRC patients. For this purpose, we have developed an intestinal model 
that employs epithelial stem cells to trace the biological progression of CRC from normal stem cells through 
sequential genetic alterations, following Vogelstein’s paradigm4. These stem cells are cultured on a monolayer of 
3T3 J2 mouse fibroblasts, which effectively emulate the role of stromal cells from the tumor microenvironment—
an aspect frequently absent in other research models. This model captures the complex physiology of CRC 
development while preserving the practicality of immortalized cell lines within the research pipeline, making 
it an ideal tool for large-scale, high-throughput studies. To address potential discrepancies between genetically 
engineered models and patient-derived samples, we have extended our research to include cultures derived from 
CRC patients with diverse genomic profiles. We hypothesize that vulnerabilities common to both the model and 
patient-derived cultures will reveal the most promising therapeutic targets, with a particular emphasis on those 
that spare normal cells, thereby advocating their potential as the safest therapeutic options.

Results
Stepwise resistance to niche signaling stimuli drives colorectal cancer progression
By analyzing the frequency and co-occurrence of mutations in colorectal cancer, we identified key genetic 
alterations in APC, KRAS, TP53, and SMAD4, which collectively define a large proportion of the CRC 
mutational landscape. Based on this analysis and data from The Cancer Genome Atlas (TCGA), we engineered 
a comprehensive in vitro model combining these frequently co-occurring mutations. Remarkably, this 
model represents over 40% of all CRC tumors (Supplementary Fig. S1a, S1b), demonstrating its relevance in 
understanding the genetic basis of CRC. To recapitulate a common tumor evolutionary pathway in colorectal 
cancer, we introduced a truncating mutation in the APC gene (APCtrunc) in normal human intestinal stem 
cells. This was achieved by delivering Cas9 ribonucleoprotein complex and homology directed repair knock-in 
template carrying stop codon in exon 15 through the nucleofection process. Damaging the APC gene disrupts 
the Beta-catenin degradation complex, leading to independence from WNT pathway stimulation. Consequently, 
we functionally validated mutation-containing clones by withdrawing R-Spondin-1, a WNT pathway agonist 
essential for wild-type cells, from the culture media (Fig. 1a). As expected, healthy, control cells died after one 
passage, while cells carrying APC-truncating mutations or APC knockouts grew normally. To mimic the natural 
progression of tumor evolution, confirmed APC-truncated clones were then selected for further engineering 
(Supplementary Fig. S2).

In a subsequent step, we introduced the KRAS G12D mutation, the most common variant in CRC, rendering 
the cells resistant to the withdrawal of EGF from the culture media and to treatment with the EGFR inhibitor 
gefitinib. Next, we knocked out the TP53 gene. The modified cells acquired resistance to the nutlin-3 treatment, 
an MDM2 inhibitor that leads to TP53 upregulation and cell senescence which was used as a selection criterion. 
Finally, we disrupted the TGF-beta signaling pathway by knocking out the SMAD4 gene and selecting modified 
cells through TGF-beta treatment, causing differentiation of SMAD4 WT cells. This allowed us to develop the 
following stages of colorectal cancer evolution: APC-truncated (A), APC-truncated with TP53 knockout (AT), 
APC-truncated with KRAS G12D substitution (AK), AK with TP53 knockout (AKT), and AKT with SMAD4 
knockout (AKTS). Apart from functional validation, all stages were confirmed using Sanger sequencing and 
Western blotting (Supplementary Fig. S2a and S2b). We also tested the tumorigenicity of the AKT and AKTS 
models by demonstrating their ability to form tumors in immunocompromised mice (Fig. 1b).

We then performed a series of assays on the developed models to assess the functional consequences of 
the engineered genotypes. Using immunofluorescence, we characterized intestinal adult stem cells by staining 
cultured colonies for epithelial markers, including general epithelial cadherin (ECAD) and the intestinal 
cadherin marker (CDH17). We also confirmed that the stem cells express self-renewal and proliferation markers 
such as SOX9 and Ki67 but are negative for differentiation markers, including Mucin 2 (MUC2) and Villin 
1 (VIL1) (Fig. 1c and Supplementary Table S1). Building on these findings, we next investigated how genetic 
modifications influence stem cell differentiation into mature intestinal tissue in the Air Liquid Interface (ALI) 
system. Truncation of APC (A cells) caused minor changes in cell morphology (Fig.  1d) and led to a slight 
loss of cell polarity. In contrast, constitutive activation of the KRAS protein (AK cells) resulted in significant 
changes to the spatial organization of the differentiated culture, an increase in Ki67-positive cells, and a loss of 
MUC2-positive goblet cells (Fig. 1e). The most dramatic changes were observed in AKT and AKTS cells, which 
exhibited the greatest loss of polarity and the highest number of Ki67-positive cells. Interestingly, the Villin 
expression was retained in all model variants, even in cells that lost polarity in HE staining.
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Fig. 1.  Stepwise Resistance to Niche Signaling Stimuli Drives Colorectal Cancer Progression. a Schematic 
representation of colorectal cancer (CRC) progression from normal intestinal epithelium, following the 
classic Vogelstein paradigm, which involves the stepwise accumulation of mutations in APC, KRAS, TP53 and 
SMAD4. Created with BioRender.com. b Growth curves of engineered CRC models (AKT and AKTS) after 
xenografting into immunocompromised mice, AKT n = 8; AKTS n = 11. c Representative immunostaining 
of normal intestinal stem cell (WT)-derived colonies used in model development. Intestinal lineage markers 
(green or red), and nuclei are counterstained with DAPI (blue). Scale bar, 50 μm. d Hematoxylin and eosin 
staining of sectioned air–liquid interface (ALI)-grown structures derived from successive stages of the 
engineered CRC model. Scale bar, 100 μm. e Immunofluorescence labeling of intestinal and proliferation 
markers (green or red) in ALI-derived structures at various stages of CRC progression. Scale bar, 100 μm.
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Engineered model closely resembles early onset of CRC
To gain further insights into the engineered CRC models, we performed RNA sequencing (RNA-seq) analysis 
and compared their transcriptomes with those of normal wild-type (WT) intestinal stem cells. Our results 
(Fig. 2a) showed that A and AT cells clustered together with the WT epithelium (Cluster A), while AK, AKT, 
and AKTS cells formed a separate cluster (Cluster B).

Upon examining differentially expressed genes (DEGs), we found that Cluster A, which includes WT cells, 
exhibited upregulated genes associated with digestive system processes, lipid and carotenoid metabolism, and 
various gastrointestinal tract differentiation markers. Conversely, these genes were downregulated in Cluster B, 
which contains the more advanced stages of the model (Fig. 2a). Interestingly, Cluster B showed upregulated 
gene sets related to WNT and TGF-beta signaling, extracellular matrix expression, cell migration, and cancer 
metastasis, while these gene sets were downregulated in Cluster A. This suggests that AK, AKT and AKTS cells 
may exhibit preliminary signs of a malignant phenotype.

To contextualize our models within the landscape of patient-derived tissues and transcriptomes published 
from various other CRC-related studies, we developed a transcriptomic library of approximately 1,500 
samples curated from publicly available databases (Supplementary Table S2). A deep learning model – Multi-
Origin Batch Effect Remover (MOBER)12, was trained to normalize and cluster these samples, facilitating the 
identification of differences and similarities between our models and those studied in other projects. The analysis 
divided all the samples into two distinct clusters (Fig. 2b). Cluster 1 predominantly comprised metastatic CRC 
samples, primary tumor site samples, and nearly all CRC cell lines. In contrast, Cluster 2 encompassed our 
engineered CRC models, primarily grouped with CRC tissue samples from primary sites and a smaller subset 
from metastatic sites, aligning with the stepwise genetic evolution of CRC as it acquires tumor driver mutations. 
Further analysis revealed that healthy stem cells, used as the origin for CRC model development, clustered with 
healthy tissue samples from public datasets (Cluster 2A). Notably, patient-derived cells utilized in these studies 
were identified in both Cluster 1 and Cluster 2, suggesting that our culture system and machine learning-guided 
analysis lack systemic bias.

To investigate the mechanisms underlying the formation of the two clusters, potentially reflecting the 
progression from early-stage cancer (Cluster 2) to more advanced, often metastatic tumors (Cluster  1), we 
employed several analytical approaches. Initially, we applied a consensus molecular subtyping tool, specifically 
designed for colorectal cancer preclinical models, which leverages gene expression signals13. However, this 
method failed to assign molecular subtypes to approximately 10% of the samples (Supplementary Fig. S3, 
Supplementary Fig. S6). To overcome this limitation, we reimplemented and retrained a deep learning-based 
framework (DeepCC) for cancer molecular subtype classification14. Unlike the CMS caller, which relies solely 
on gene expression signals, DeepCC utilizes functional spectra to quantify the activities of biological pathways, 
providing a pathway-centric approach. This shift enabled us to successfully assign consensus molecular subtypes 
to the vast majority of samples. Additionally, we implemented a pathway-based molecular classification system 
through the pathway-based molecular classification system (PDS) classifier41. These pathway-focused methods 
provide deeper insights into the transcriptomic landscape and enhance our understanding of molecular subtypes. 
When we compared our clusters in the scope of Pathway level subtyping we observe prevalence of PDS2 samples 
(46% for Cluster 2 and 25% for Cluster 1) enriched for inflammatory and immune signaling pathways, such as 
interferon-α and interferon-γ response as well as stromal-related epithelial-to-mesenchymal and transforming 
growth factor β (TGF-β) activation. The trend is opposite for samples classified as PDS1 subtype (8% for Cluster 
2, 32% for Cluster 1). Interestingly, we observed that Cluster 2 is enriched with Mixed PDS subtype (32% for 
Cluster 2 in comparison to 19% for Cluster 1), potentially due to the presence of normal samples. However, 
none of these colorectal cancer subtyping approaches provided significant insights into the differences between 
Cluster 1 and 2.

Recognizing the benefits of examining biological pathways rather than focusing solely on individual gene 
signals, we employed the Explainable Programmable Mapper (Expimap), a machine learning algorithm, to 
further characterize the transcriptomes. It not only effectively separated all samples in the analysis but also 
identified statistically significant gene programs distinguishing the clusters (Fig.  2c). While some findings 
aligned with expectations, such as the involvement of KRAS, EGFR, and TP53 signaling pathways, others were 
unexpected, including mTORC1 signaling, EZH2 targets, and responses to retinoic acid. These results highlight 
novel pathways potentially contributing to CRC progression or response to targeted therapies.

Application of CRC model cells in drug discovery research and introduction of machine 
learning methods for analysis
Following molecular characterization, which confirmed that the transcriptomic profile of our model was 
consistent with clinical CRC samples, we validated its suitability for high-throughput chemical screenings aimed 
at identifying novel therapeutic options for CRC patients.

In a pilot study, we evaluated the cytotoxic effects of standard-of-care drugs for CRC including 5-fluorouracil, 
oxaliplatin, and SN38 (an active metabolite of irinotecan), on healthy cells, engineered CRC models, and patient-
derived cells. The results revealed non-selective cytotoxicity of these drugs across all tested cell types. In contrast, 
a selective G12D inhibitor demonstrated efficacy, specifically targeting cells harboring this driver mutation while 
sparing healthy cells (Fig. 3a). These results provided initial evidence supporting the capability of the proposed 
discovery pipeline to potentially identify clinically relevant findings, though larger-scale validation is necessary.

Following a successful pilot study, we expanded the screening to a full-scale experiment using our CRC 
model. A total of 4255 chemical compounds were screened in triplicate using high-throughput screening (HTS; 
Fig. 3b and Supplementary Fig. S4a; S4b). The screening assay demonstrated strong technical robustness, with 
Z′ factor values consistently exceeding 0.5 across plates (Supplementary Fig. S4b), supporting the reproducibility 
of results. Compounds showing ≥ 70% inhibition in at least two of three replicates were classified as primary hits 

Scientific Reports |        (2025) 15:26643 4| https://doi.org/10.1038/s41598-025-08649-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 2.  Transcriptomic Characterization of the Engineered Model in the Context of Available CRC References. 
a Gene expression heatmap displaying the relative expression of 260 differentially expressed genes (DEGs) 
between normal intestinal epithelial stem cells (WT) and engineered CRC model cells (AKTS). b UMAP 
embedding of MOBER-derived transcriptomic data integrating engineered CRC models with publicly available 
CRC datasets. Two primary clusters were identified: Cluster 1, comprising metastatic CRC samples, primary 
tumors, and most CRC cell lines; and Cluster 2, which includes the engineered CRC models grouped with 
primary CRC tissues and a subset of metastatic samples. Insets (2A, 2B) highlight the clustering of healthy 
intestinal stem cells with public healthy tissue samples (2A) and the engineered CRC models with primary 
CRC tissues (2B). c Differential gene programs identified using ExpiMap overlaid on the clustered data from 
engineered CRC models and publicly available RNA-seq datasets. Gene programs were derived from GSEA 
collections, identifying pathways relevant to CRC progression and differentiation.
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and selected for further validation. From the primary screening, 304 active compounds were identified (Fig. 3c). 
To assess the specificity of these compounds for cancerous cells, we conducted dose–response validation assays, 
comparing their effects on both the CRC model and healthy human intestinal stem cells (Fig. 3d). This step 
was essential for identifying compounds that selectively target CRC cells while sparing healthy cells, a critical 
criterion for developing effective and safe therapeutic strategies. As anticipated, inhibitors targeting EGFR were 
validated as effective in wild-type (WT) cells but showed no efficacy in CRC model cells harboring the KRAS 
oncogenic mutations. These findings align with established resistance mechanisms in CRC and indicate the 
potential clinical relevance of our screening method for identifying compounds tailored to specific genetic 
profiles.

Ultimately, 33 compounds were chosen for further testing on patient-derived CRC samples based on their 
selective anticancer effects. These compounds were notably enriched in inhibitors representing six distinct 
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drug target families (Fig.  3e). Among these, inhibitors targeting mTOR, EZH2, and retinoic acid pathways 
aligned with the gene programs identified using the ExpiMap model. Validation in patient-derived samples 
demonstrated that 10 of the 33 compounds were consistently effective across four tested PDCs and at all stages 
of engineered models. The effective compounds included everolimus, GW843682X, ensartinib, GSK126, PF-
06726304, tazemetostat, uprosertib, miransertib, landiolol, and afuresertib, which target key signaling pathways 
such as mTOR, PLK, ALK, and EZH2. Specifically, tazemetostat, GSK126, and PF-06726304 target EZH2, while 
AKT is inhibited by uprosertib, miransertib, and afuresertib. The remaining compounds exhibited variable 
efficacy, with some being patient-specific or effective only within certain subgroups. These results underscore 
the promise of our screening approach in advancing personalized therapies for CRC patients, highlighting its 
strong translational potential.

To explore whether machine learning (ML) could support future high-throughput phenotypic screens, we 
developed a proof-of-concept pipeline based on a deep vision model. This approach was designed to evaluate 
whether parts of a labor-intensive and costly assay could be replaced by model predictions trained on a relatively 
small initial dataset. Specifically, we trained the model to predict the cell proliferation in co-cultures of human 
CRC and mouse 3T3 cells using only DAPI-stained images, bypassing the need for additional immunofluorescent 
staining.

To implement this concept, we developed ML-based pipeline that involved generating single-cell segmentation 
masks for DAPI and FITC images, training a U-Net-based neural network to predict FITC segmentation from 
DAPI images, and correlating the predicted FITC segmentation with actual cell counts from HTS (Fig. 3f, g). 
The model demonstrated strong performance achieving high accuracy, with Pearson correlation coefficients 
of 0.99 for training cell line (AKTS) and 0.97 for unseen WT cell lines (Supplementary Fig. S4c). These results 
demonstrate the reliability and scalability of our screening process and reinforce the ML model’s value in our 
drug discovery pipeline. Minimal training data requirements were determined through a learning curve analysis 
(Supplementary Fig. S4d), showing that control wells from a single plate were sufficient for accurate predictions, 
while adding additional control data ensured the model’s applicability to WT cells. Once optimal performance 
was reached, it remained consistent across all subsampled runs, as reflected by the low variance in the learning 
curve scores—indicating the model’s robustness and low susceptibility to batch effects.

While this ML method was not applied to scale the current primary screen, it serves as a generalizable and 
accessible framework for reducing assay costs in future screens. By significantly lowering the time, labor, and 
financial input required for coculture proliferation assays, it enables larger-scale compound screening efforts that 
may otherwise be constrained by resource limitations. We acknowledge current limitations, including validation 
restricted to in-distribution data and potential challenges in generalizing to new imaging setups or cell types. 
Nevertheless, our findings demonstrate the feasibility and broader potential of integrating ML into phenotypic 
screening workflows, offering a scalable and cost-effective approach for drug discovery.

Inhibition of mTORC1 and AKT shows synergistic effect in CRC cells with KRAS mutational 
background
Following dose–response validation assays on selected HTS hits, we identified five representatives of enriched 
drug families targeting specific pathways: uprosertib (AKT), everolimus (mTOR), PF-06726304 (EZH2), 
givinostat (HDAC), landiolol (adrenergic pathway), and MRTX1133, a specific KRAS G12D inhibitor with the 
potential to transform the treatment landscape for CRC patients by directly targeting a previously undruggable 
oncogenic driver mutation. To further evaluate their therapeutic potential, we investigated potential synergistic 
effects through combination assays using AKTS cells, selecting concentration ranges based on prior dose–
response curve (DRC) data.

A strong synergy was observed between everolimus and uprosertib (Fig.  4a, b), which was consistently 
confirmed by multiple reference models, including Loewe (mean score: 11.87, p = 3.75 × 10⁻4), Bliss (15.73, 
p = 3.76 × 10⁻5), HSA (13.20, p = 1.93 × 10⁻⁶), and ZIP (18.63, p = 8.56 × 10⁻⁷). This combination was validated 
across a panel of evolutionary models, CRC patient-derived cultures, and healthy cells. Differential responses 
were quantified by analyzing the median distributions between normal epithelial stem cells (WTs) and each 
tested culture (Fig. 4c).

To contextualize these phenotypic differences, we further stratified patient-derived cultures (PDCs) based 
on their synergy response to the everolimus–uprosertib combination, defining strong responders as those with 

Fig. 3.  Application of CRC Model Cells in Drug Discovery Research and Machine Learning Methods for 
Analysis. a Dose–response curves showing the cytotoxic effects of standard-of-care drugs on healthy cells 
(WT), engineered CRC models (A, AK, AKT, AKTS), and patient-derived cultures (P1–P5). Error bars 
represent standard deviation, n = 3. b High-throughput screening (HTS) workflow of 4,255 compounds on 
AKTS cells, n = 3. Screening was performed at a fixed concentration of 1 μM. c Scatter plot showing hits 
from the primary screening on AKTS cells, with compounds achieving ≥ 70% inhibition selected for further 
validation. d Scatter plot comparing IC50 values of compound families between WT and AKTS cells. Selective 
responses in engineered CRC models highlight key drug target families, including mTOR, AKT and EZH2, 
n = 3. e Heatmap of differential compound responses (Δ AUC) across CRC models and healthy cells, revealing 
enrichment of inhibitors targeting key pathways, including mTOR, AKT, EZH2, and ALK. f Machine learning 
pipeline enhancing HTS capabilities: a U-Net-based neural network generates FITC segmentation masks 
from DAPI-stained images, replacing EdU assays for cell proliferation analysis. g Representative images 
demonstrating the machine learning model’s input (DAPI), predicted segmentation (FITC), and actual FITC 
results.
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a Loewe synergy index (LSI) > 20 and weak or non-responders as those with LSI < 20 (Supplementary Fig. 1b). 
PDC#2 (P2) was excluded from this classification due to its pronounced monotherapy sensitivity to uprosertib, 
likely reflecting its unique molecular profile (Supplementary Fig. 1b). To investigate mechanisms underlying 
response heterogeneity, we applied GSCORE, a topology-based pathway enrichment framework that integrates 
gene expression magnitude with pathway structure, to compare transcriptional programs between responders 
and non-responders (Fig.  4e). The two groups exhibited distinct pathway-level profiles, with differences 
observed in KRAS-associated gene signatures, TGF-β signaling, and regulatory activities within the EGFR, 
mTOR, WNT, AKT, and EZH2 pathways. Notably, non-responders also showed consistent deviation in the 
"Colorectal Adenoma Downregulated" gene set15, which includes multiple WNT-related transcripts, indicating 
altered WNT pathway regulation. These preliminary findings, when integrated with mutational profiles, suggest 
that both genetic and transcriptional features contribute to differential drug sensitivity, supporting a stratified 
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approach to predicting therapeutic response in CRC. However, further investigation—using expanded PDC 
coverage and complementary analytical approaches—is needed to confirm these trends and elucidate more 
granular regulatory relationships.

The combination of everolimus and uprosertib demonstrated strong synergy at clinically relevant exposure, 
showing high efficacy in KRAS-mutant CRC models and patient-derived cultures, with a satisfactory therapeutic 
window in most cases. The tested concentrations (5–100 nM for everolimus and 0.2–2 µM for uprosertib) were 
selected based on pharmacokinetic data from clinical trials and fall within the range of plasma exposures 
achieved in patients (Supplementary Table S7). Notable exceptions included: PDC#2 (P2), which exhibited 
hypersensitivity to uprosertib alone, with a potent response even at the lowest tested concentrations. As a result, 
the addition of everolimus provided no further benefit in this model, suggesting a unique dependency on AKT 
signaling consistent with its PTEN mutation16. In contrast, the APCtrunc model and PDC#5 (P5) showed 
limited responsiveness to the combination therapy (Fig. 4d and Supplementary Figure S2b;).

Together, these findings highlight the therapeutic potential of dual AKT and mTOR inhibition in KRAS-
mutant CRC and underscore the importance of integrating transcriptional and mutational profiling to identify 
biomarkers of resistance and guide patient stratification for combination therapies.

Interruption of feedback loop between Akt-mTORC1 is detrimental for colorectal cancer
Our investigation into dual inhibition of AKT and mTORC1 elucidates the mechanistic basis underlying their 
synergistic anti-tumor activity in colorectal cancer (CRC). By examining the interactions within the AKT–
mTORC1 signaling, we uncovered pathways that mediate the observed anti-proliferative and pro-apoptotic 
effects. These insights inform promising strategies for more effective CRC treatment.

Treatment with uprosertib alone led to hyperphosphorylation of AKT at Ser473 and Thr308 (Fig. 5a, b). 
Paradoxically, this enhanced AKT phosphorylation occurred alongside reduced phosphorylation of downstream 
AKT targets, including GSK3α/β and the S6 ribosomal protein. This indicates that while uprosertib triggers 
a feedback-driven increase in AKT activation, it concurrently diminishes AKT-mediated signaling. Notably, 
uprosertib decreased the phosphorylation of GSK3α at Ser21 and GSK3β at Ser9, effectively restoring GSK3 
activity. The reactivation of GSK3 may, in turn, suppress pro-survival pathways and inhibit CRC cell proliferation.

Everolimus alone, as expected, inhibited mTORC1 activity, shown by reduced phosphorylation of the S6 
ribosomal protein at Ser235/236. However, this suppression triggered a compensatory response, increasing 
phosphorylation of GSK3α (Ser21) and GSK3β (Ser9) at 48 h post-treatment. Such feedback responses highlight 
a central challenge: while selective mTORC1 inhibition impedes growth signals, it can also activate alternative 
survival pathways, ultimately limiting therapeutic efficacy.

The combination of uprosertib and everolimus capitalized on their complementary mechanisms to 
achieve superior growth inhibition over either agent alone. Although the dual treatment increased AKT 
phosphorylation at Ser473 and Thr308 relative to everolimus monotherapy, it counteracted the everolimus-
induced phosphorylation of GSK3α/β. Restoring GSK3 activity under combination treatment underscores 
its importance in suppressing proliferative signaling. Additionally, while the combination partially reversed 
everolimus-induced decreases in S6 Ser235/236 phosphorylation, it also uniquely reduced a mitotic marker—
histone H3 Ser10 phosphorylation. This broader impact on chromatin remodeling and transcriptional control 
further distinguishes the dual therapy’s mechanism of action.

Beyond inhibiting proliferation, the combination therapy markedly enhanced pro-apoptotic effects. Cleavage 
of PARP and caspase-3—early markers of apoptosis—was significantly increased compared to single-agent 
treatments. Although uprosertib restored GSK3 activity, we did not observe consistent changes in β-catenin 
protein levels, suggesting that Wnt/β-catenin signaling is not the primary mediator of apoptosis in this context. 
While we did not assess differentiation markers directly, our results suggest that the apoptotic response is 
primarily driven by the disruption of AKT–mTORC1 signaling and not through GSK3-mediated modulation of 
Wnt pathway output. This enhanced apoptotic response reflects the combination’s ability to disrupt compensatory 
survival mechanisms within the AKT–mTORC1 axis, ultimately driving CRC cells toward programmed cell 
death.

In summary, the combined use of uprosertib and everolimus represents a rational therapeutic strategy for 
CRC, overcoming limitations associated with single-agent interventions by dismantling critical feedback loops 

Fig. 4.  Synergistic Effects of mTORC1 and AKT Inhibition in CRC Models with KRAS Mutational 
Background. a Loewe synergy analysis of selected drug combinations in AKTS cells, ranked by mean Loewe 
synergy index, n = 3. Statistical significance is indicated by asterisks: *p < 0.05, **p < 0.01, ***p < 0.001. b Loewe 
synergy surface plot for the everolimus and uprosertib combination in AKTS cells, highlighting a strong 
synergistic interaction at clinically relevant concentrations (n = 3). The Loewe model yielded a mean synergy 
score of 10.5 (p = 1.32 × 10⁻3), indicating a statistically significant effect (**). c Median difference distribution of 
the everolimus and uprosertib combination across effective concentration ranges in engineered CRC models. 
The asterisk indicates the selected concentration point used for further visualizations. Generated using Python 
3.10 script utilizing the Matplotlib 3.82 library. d Validation of the everolimus and uprosertib combination 
across evolutionary CRC models (A, AK, AKT, AKTS), patient-derived cultures (P1–5), and healthy control 
cells (WT). Synergistic responses were quantified using the Loewe Synergy Index (LSI), showing enhanced 
synergy in KRAS-mutant CRC models. Error bars represent standard deviation, n = 3. e Transcriptomic 
differences between responders (LSI > 20) and non-responders (LSI < 20) assessed using GSCORE-based 
pathway enrichment analysis. Dot size and y-axis position reflect pathway-level confidence (–ln[FDR]), while 
the x-axis (m/n ratio) indicates the proportion of differentially expressed genes within each enriched pathway.

◂
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Fig. 5.  Interruption of Feedback Loop Between AKT–mTORC1 Signaling is Detrimental for Colorectal 
Cancer. a Immunoblot analysis showing the effects of uprosertib (AKT inhibitor), everolimus (mTORC1 
inhibitor), and their combination on AKT–mTORC1 signaling in CRC cells over various time points (0.5, 
3, and 48 h). b Densitometric analysis of immunoblots. c Schematic representation of the AKT–mTORC1 
signaling pathway and feedback regulation.
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and promoting apoptosis. These findings deepen our understanding of AKT–mTORC1 crosstalk and support 
clinical exploration of this promising dual-targeted approach for improved CRC management.

Discussion
For decades, therapies such as irinotecan, oxaliplatin, and 5-fluorouracil (5-FU) have been the cornerstone 
of CRC treatment17. While the advent of targeted therapies like EGFR and KRAS inhibitors has introduced 
more personalized approaches, their efficacy remains limited18, often providing only moderate responses and 
encountering resistance. These challenges underscore the urgent need to explore novel therapeutic strategies to 
improve outcomes for CRC patients.

In this study, we developed a drug discovery pipeline that integrates engineered CRC models, patient-derived 
cultures, HTS, and machine learning to identify and validate novel treatment options (Fig. 6). Using stepwise 
genetic engineering, we introduced APCtrunc, KRASG12D, TP53KO, and SMAD4KO mutations into normal 
intestinal stem cells to generate models that closely mimic CRC progression. These models exhibited hallmark 
CRC features, including altered differentiation, loss of polarity, and increased proliferation19. Transcriptomic 
analyses further validated these models, revealing that advanced stages (AK, AKT, and AKTS) clustered distinctly 
from early-stage models (A) and wild-type (WT) cells. These advanced models shared significant transcriptomic 
similarities with patient-derived CRC samples, particularly those from primary tumor sites, aligning with 
gene expression profiles associated with malignant phenotypes. This strong concordance underscores their 
translational relevance for studying CRC progression and therapeutic responses.

The application of an ML-based algorithm, ExpiMap, facilitated the identification of key gene programs and 
pathways differentiating early and advanced stages of CRC in our models and patient samples. Specifically, the 
upregulation of pathways related to mTORC1 signaling, EZH2 targets, and retinoic acid responses in advanced 
models highlighted potential therapeutic targets that are not only critical in CRC progression but also amenable 
to pharmacological intervention20–22. Our high-throughput approach enabled the screening of 4255 compounds, 
identifying 33 with selective efficacy against CRC cells while sparing normal epithelial cells. These compounds 
were enriched in drug families targeting mTOR, EZH2, and AKT pathways, aligning with the gene programs 
identified by ExpiMap. To further dissect response heterogeneity, we stratified PDCs based on their synergy 
score for everolimus and uprosertib combination into responders (LSI > 20) and non-responders (LSI < 20). 
GSCORE-based pathway analysis revealed distinct transcriptional landscapes between these groups, including 
differences in KRAS-associated gene signatures, TGF-β signaling, and regulatory activity across EGFR, mTOR, 
WNT, AKT, and EZH2 networks. Further studies on a larger cohort of heterogeneous samples are needed to 
validate the identified mechanisms and assess their utility for patient stratification.

Treatment with mTOR or AKT inhibitors as monotherapies confers only modest anti-tumor effects in KRAS-
mutant CRC cells. mTORC1 inhibition reduces S6 phosphorylation but triggers compensatory upregulation 
of AKT activity, maintaining pro-survival signaling23,24. Conversely, isolated AKT inhibition relieves feedback 
suppression on mTORC1, preserving growth-promoting pathways25. These adaptive mechanisms highlight the 
inherent plasticity of the PI3K/AKT/mTOR axis, which undermines the efficacy of single-agent therapies.

Our findings demonstrate that dual inhibition of AKT and mTORC1 effectively circumvents these 
compensatory feedback loops, resulting in more pronounced anti-tumor response (Fig.  5c). Within 24  h of 
combined treatment, CRC cells exhibit significant apoptosis, as evident by increased cleavage of caspases and 
PARP, along with reduced histone H3 and S6 phosphorylation. Notably, these effects were not accompanied 
by changes in GSK3α/β phosphorylation or β-catenin levels, suggesting that Wnt/β-catenin signaling is not a 
primary driver of cell death in this context. This dual inhibition approach provides a more sustained suppression 
of growth and survival pathways, dismantling key feedback loops that otherwise enable resistance. This synergy 
underscores the critical role of the PI3K/AKT/mTOR axis in CRC progression, as this pathway is frequently 
dysregulated and drives tumor growth and survival26,27.

The reactivation of GSK3 following AKT inhibition raised the possibility of modulation of β-catenin signaling, 
given GSK3’s established role in Wnt pathway regulation28. However, our analyses showed no significant changes 
in β-catenin levels, indicating that canonical Wnt signaling is unlikely to mediate the apoptotic response observed. 
Although we did not evaluate differentiation markers in this study, the data suggest that GSK3 contributes to the 
pro-apoptotic effect independently of its classical role in cell fate decisions. This supports the interpretation that 
the observed synergy arises primarily from feedback disruption within the AKT–mTORC1 axis.

Fig. 6.  Schematic representation of the discovery platform designed to identify novel treatment strategies 
using patient-derived cells.
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Interestingly, parallels can be drawn to non-small cell lung cancer (NSCLC), where KRAS mutations 
frequently shift signaling towards the PI3K-AKT-mTOR axis. Recent studies have shown that specific KRAS 
isoforms, such as KRASG12D, exhibit greater oncogenic potency than the more common KRASG12C isoform, 
likely due to hyperactive PI3K-AKT-mTOR signaling29. While signaling differences between KRASG12D and 
KRASG12C diminish during tumor progression, isoform-specific vulnerabilities persist, offering actionable 
therapeutic targets. For example, KRASG12D-driven tumors rely more heavily on PI3K-AKT-mTOR signaling, 
while KRASG12C tumors depend on MAPK signaling29. This highlights the importance of tailoring therapeutic 
strategies to KRAS isoforms and their associated pathway dependencies. Similarly, in CRC, the observed 
synergy between mTORC1 and AKT inhibitors reflects the translational potential of targeting pathway-specific 
vulnerabilities in KRAS-mutant cancers.

These findings underscore the functional interdependence of AKT and mTORC1 and highlight the therapeutic 
advantage of simultaneously disabling both signaling nodes. By dismantling key feedback loops, dual inhibition 
produces a more sustained suppression of growth and survival pathways than either approach alone. This 
strategy aligns with emerging evidence supporting multi-node targeting within the PI3K/AKT/mTOR network 
to enhance therapeutic efficacy, particularly in KRAS-mutant CRC subtypes that display intrinsic resistance to 
conventional agents30–32. Consequently, co-inhibition of AKT and mTORC1 represents a promising framework 
for a more effective combination therapies development in CRC.

While dual PI3K/AKT pathway inhibition poses potential safety concerns due to the pathway’s role in normal 
tissues, our platform partially addresses this by including normal intestinal epithelial stem cells as a healthy 
reference in all assays, allowing direct comparison of drug effects on tumor versus normal cells. Furthermore, 
our co-culture system incorporates stromal fibroblasts, enabling preliminary assessment of combined treatment 
impact on the tumor microenvironment components. We acknowledge that comprehensive toxicity evaluation 
requires more complex models beyond the current scope. However, the integration of AI-driven transcriptomics 
and CRISPR-based disease modeling within our platform holds promise for future precise patient stratification. 
With further development and validation, this approach could guide selection of patients most likely to benefit 
from combination therapies while minimizing adverse effects.

The ML methods integration into our drug discovery pipeline significantly enhanced the efficiency and 
scalability of HTS. By developing a vision-based ML model to analyze DAPI-stained images, we reduced reagent 
costs and labor while maintaining high accuracy in predicting cell proliferation. This advancement enables 
large-scale screenings and accelerates the identification of promising therapeutic candidates.

Despite the strengths of our study, several limitations should be acknowledged. First, while our engineered 
models capture key genetic alterations in CRC, they may not fully represent the complexity of tumor 
microenvironments and interactions with immune cells, which play crucial roles in cancer progression and 
response to therapy. However, unlike many available systems, our approach includes co-culturing cancer cells 
with supportive stromal cells, thereby creating a more physiologically relevant microenvironment that better 
recapitulates the complex interplay between tumor and stroma. Second, the patient-derived cultures used in our 
validation studies, although diverse, represent a limited sample size (n = 5). Larger cohorts would strengthen the 
generalizability of our findings. Moreover, although the selective KRASG12D inhibitor, MRTX1133, demonstrated 
potent activity in our engineered model, its effectiveness was diminished in PDCs harboring the G12D mutation. 
This reduced sensitivity likely stems from drug resistance mechanisms acquired during treatment, which are 
absent in the background-clean model. In conjunction with combination studies, these findings highlight that 
our model is particularly effective in identifying universal genetic dependencies, which can be evaluated in 
patient-specific contexts.

In conclusion, our study demonstrates the power of integrating engineered CRC models, patient-derived 
cultures, HTS, and ML to identify and validate novel therapeutic strategies. The synergy observed between mTOR 
and AKT inhibitors offers a promising avenue for treating CRC patients with specific genetic backgrounds. Our 
findings contribute to the growing body of potential therapies in the CRC.

Materials and methods
Cell culture
This study was conducted in accordance with the Declaration of Helsinki. All analyses involving patient and 
human samples adhered to the guidelines and procedures of National Institute of Oncology in Warsaw and 
Gdansk Medical University. The Bioethics Committee of Maria Sklodowska-Curie National Research Institute 
of Oncology in Warsaw and Bioethics Committee for Scientific Research of Medical University of Gdansk 
(approval no: 55/2017 and NKBBN/766/2021 respectively), approved protocols in compliance with applicable 
regulations, requirements, and guidelines, and informed consent was obtained from all participating patients. 
Stable cultures were established as previously described with slight modifications33. Briefly, tumor tissues were 
mechanically dissociated into small pieces and incubated with 1 mg/ml collagenase type IV (Gibco) at 37 °C for 
45–60 min. The suspension was filtered through 70 µm strainer and washed several times with wash buffer (F12 
(Gibco), 5% FBS (Gibco), 1% Penicillin–Streptomycin (Gibco), 1% Gentamicin (Gibco), 0.1% Amphotericin B 
(Gibco)). Single cell suspension was seeded in culture medium (Supplementary Table S3) onto irradiated 3T3-J2 
feeder cells monolayer prepared 24h earlier and cultured at 37 °C in 6% CO2.

Animal studies
All animals were handled in strict accordance with good animal practice as defined by the relevant national and/
or local animal welfare bodies. The experiment was approved by the 2nd Local Institutional Animal Care and 
Use Committee Institute of Pharmacology Polish Academy of Sciences in Cracow (permission no. 342/2022) 
and performed following ARRIVE guidelines (https://arriveguidelines.org). NSG female mice (Charles River 
Labs, Animalab), 7–9 weeks old, used for the experiment were housed in SPF conditions. Cells (c.a. 105 per 
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mouse) were suspended in 100 µL of culture medium and Cultrex (R&D Systems, cat. No 3632–005-02) mixture 
(1:1, v:v) and were injected subcutaneously on the right hind limb. As the tumor growth was progressing, the 
tumor size was measured twice weekly, and the tumor volume was computed from the formula: TV = (a*a*b)/2 
in mm3, where a is the short axis in mm, and b is the long axis in mm. Body weight was measured twice weekly 
throughout the study. Since day 45 after cells inoculation, selected mice were anaesthetized with isoflurane and 
euthanized by cervical dislocation to collect tumors for downstream analysis.

Stem cell differentiation methodology (ALI)
The air–liquid interface (ALI) culture of intestinal epithelial cells was conducted using Transwell inserts 
(Corning, USA) coated with 20% growth factor-reduced Matrigel (BD Biosciences, USA). The inserts were 
incubated at 37 °C for 30 min to allow the Matrigel to polymerize. Irradiated 3T3-J2 feeder cells were seeded at a 
density of 200,000 cells per Transwell insert. The seeded inserts were then incubated overnight at 37 °C in a 6% 
CO2 incubator to establish a feeder layer. Intestinal stem cells were purified by removing the feeder cells using 
the QuadroMACS Starting Kit (LS) (Miltenyi Biotec, Germany). Purified stem cells were seeded at a density of 
200,000–300,000 cells per Transwell insert and cultured in expansion media for approximately 7 days, allowing 
the formation of a confluent monolayer. At this stage, the medium from the apical compartment of the Transwell 
insert was carefully removed, and the medium was replaced with expansion media devoid of nicotinamide. The 
cells were maintained in this differentiation medium for an additional 7–14 days to enable proper differentiation 
of the stem cells prior to analysis.

Immunofluorescence staining
Normal intestinal epithelial stem cells colonies were fixed with 4% formaldehyde (Thermo Fisher Scientific, 
USA), permeabilized with 0.3% Triton X-100 for 15 min at room temperature, followed by blocking with 3% 
BSA + 0.3% Triton™ X-100 in PBS (blocking buffer) for 30 min at room temperature. Primary antibodies (listed 
in Supplementary Table S4) were diluted in blocking buffer and added for overnight incubation at 4 °C. The 
next day cells were washed 3 times with wash buffer (0.03% Triton X-100 in PBS). Then secondary antibodies 
diluted 1:1000 in blocking buffer — Anti-Rabbit IgG F(ab’)2 Fragment conjugated to Alexa Fluor 488 (Cell 
Signaling Technology Cat. No. 4412S) or Goat anti-Mouse IgG conjugated to Alexa Fluor 546 (Invitrogen Cat. 
No. A-11003)— were added and incubated for 2 h at room temperature in the darkness. Next, the cells were 
washed 3 times with PBS and the nuclei were stained with 0.2 µg/mL DAPI dye (Thermo Fisher Scientific, USA).

For immunofluorescence staining of tissues, paraffin-embedded tissues were dewaxed and hydrated, and 
then the antigen was unmasked with 0.01 mol/L citric acid antigen retrieval solution. These slides were blocked 
with 1% BSA at room temperature for 1 h, and the subsequent antibody incubation steps were carried out to 
complete the immunofluorescent experiment. The fluorescence microscope images were captured by Nikon 
Eclipse Ti2-E inverted fluorescence microscope.

Nucleofection
Normal intestinal epithelial stem cells were edited in a stepwise manner using a ribonucleoprotein (RNP) 
delivery approach with Lonza 4D-Nucleofector X system. For each nucleofection reaction, 2 × 10^5 primary 
epithelial stem cells were resuspended in P3 Primary Cell Solution (Lonza) supplemented with 140 pmol 
sgRNAs (Synthego), 115 pmol Alt-R Cas9 Nuclease V3 and 110 pmol Alt-R Cas9 Electroporation Enhancer 
(Integrated DNA Technologies Inc.). For homology-directed repair (APC and KRAS mutations), reaction was 
additionally supplemented with 110 pmol Alt-R HDR donor oligos. Cells were electroporated using the CM-
138 program. After nucleofection, cells were immediately transferred to pre-warmed complete culture medium 
and cultured on feeder cells monolayer in 37 °C, 6% CO2 incubator. Homology-directed repair was encouraged 
with 1 µM Alt-R HDR Enhancer V2 for 24h. After reaching 70–80% of confluency, cells were passaged into 
selective culture conditions. Single-cell cloning followed by targeted PCR amplification and Sanger sequencing 
and/or western blot for specific mutations was performed to identify cells with successful recombination. Details 
regarding sgRNAs, HDR donor oligos and PCR primer sequences along with selective culture conditions for 
each nucleofection reactions are available in Supplementary Table S5.

Sanger sequencing
Targeted exons of the selected genes, including APC (exon 15), KRAS (exon 2), TP53 and SMAD4, were first 
amplified by PCR. Sequencing was performed using BigDye Terminator v3.1 kit Applied Biosystems (Life 
Technologies). Purified reaction products were separated by electrophoresis on the 3730xl DNA Analyzer 
according to the manufacturer’s references.

Western blotting
From intestine-feeders cell co-culture, feeders were removed by differential trypsinization, and medium was 
replaced for fresh media with DMSO or drugs. After indicated time period cells were collected by scrubbing, 
washed with cold PBS, and total proteins were extracted using RIPA buffer containing protease inhibitors and 
phosphatase inhibitors. Protein concentration was measured with a DC protein assay (BioRad). For SDS-PAGE, 40 
ug of total protein in the Laemmli sample buffer was loaded onto Criterion TGX Stain-Free 4–15% gels (BioRad) 
and electrophoresed. Proteins were transferred onto polyvinylidene fluoride (PVDF) membranes (Trans-Blot 
Turbo Transfer System). After blocking with 5% non-fat dry milk/TBS-T or 5% BSA/TBS-T, membranes were 
incubated with specific primary antibodies at 4 °C overnight. After washing in TBS-T, membranes were incubated 
for 60 min with appropriate secondary peroxidase-conjugated IgG. The immunoreactive proteins were detected 
using a Clarity Western ECL substrate (BioRad) and visualized with ChemiDoc MP Imaging System. All images 
were processed with Image Lab version 6.0.0 (BioRad). Densitometry was performed using Image Lab software. 
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The results on the graphs show the ratio of the normalized adjusted volume of target sample to the normalized 
adjusted volume of Stain Free Gel. The antibodies used in this study were listed on Supplementary Table S6.

Whole exome sequencing data processing
Whole exome sequencing (WES) was performed using the Agilent SureSelect Human All Exon V6 kit for exon 
capture, and sequencing was conducted by Novogene. Data analysis was carried out with the RYVU in-house 
pipeline, which was built using Nextflow to ensure scalability, reproducibility, and ease of use. This pipeline 
integrated several computational tools and algorithms to ensure accurate and comprehensive results.

First, mouse reads were removed using Xengsort. Preprocessing of raw sequencing data was performed with 
FastP to trim adapters and filter low-quality reads34, and quality control was assessed using FastQC35. Reads 
were aligned to the human reference genome (hg19) using BWA-MEM. PCR duplicates were marked using 
the MarkDuplicates tool from the Genome Analysis Toolkit (GATK)36. Hybrid capture performance metrics 
were evaluated with GATK CollectHsMetrics37, while additional mapping-related metrics were generated using 
Samtools38. Somatic variant calling was performed by Strelka239 for small variants and short indels, whereas 
Manta was used to detect structural variants40. Sequencing data used in this study have been deposited in the 
European Nucleotide Archive with the primary accession code: PRJEB87257.

RNA sequencing and data processing
RNA was extracted using the RNeasy Mini Kit (Qiagen). Total RNA was subjected to library preparation and NGS 
sequencing at Novogene. To minimize batch effects and ensure homogeneous processing, raw sequencing data 
from our in-house models, along with external datasets (Supplementary Table S2), excluding TCGA and CCLE 
data, were processed using the RYVU in-house RNA-Seq pipeline. This pipeline, implemented in Nextflow41 
and executed via AWS Batch, enabled efficient cloud-based data processing. Briefly, Xengsort42 was employed 
to filter out mouse reads in xenograft samples, FASTP34 was used for preprocessing and quality control, STAR43 
was utilized for read alignment, and quantification was performed using Slamon44. All necessary references were 
constructed based on the GRCh38 assembly and gene annotations from GENCODE (v43). Sequencing data 
used in this study have been deposited in the European Nucleotide Archive with the primary accession code: 
PRJEB87257.

Transcriptomic-based molecular classification
To classify samples into molecular subtypes, we applied three distinct approaches. First, we utilized the CMS 
caller13. However, this method failed to assign molecular subtypes to approximately 10% of the samples. To 
address this limitation, we reimplemented and retrained DeepCC14, a deep learning-based framework for 
cancer molecular subtype classification. This shift enabled us to assign consensus molecular subtypes to the vast 
majority of samples. Additionally, we implemented a pathway-based molecular classification system through 
the PDS classifier45. These pathway-focused methods provide deeper insights into the transcriptomic landscape 
and enhance our understanding of molecular subtypes. Assigned classes for all 3 classifiers are shown on 
Supplementary Fig. 3.

MOBER downloading and preprocessing/data harmonization and normalization
The RNA sequencing data from different sources described in Supplementary Table S2 were downloaded and 
preprocessed in-house by the RNA-seq processing pipeline. To evaluate transcriptomic similarities between 
RYVU CRC models and the broader spectrum of CRC samples under various conditions, we employed the 
Multi-Origin Batch Effect Remover (MOBER) model12. MOBER is a deep learning model composed of two 
types of neural networks: a conditional variational autoencoder, which creates a joint embedding of expression 
data from different sources, and a source discriminator neural network trained in an adversarial fashion, which 
accounts for batch effect removal between samples.

The MOBER model was trained on n = 1657 samples using log-transformed Transcripts Per Million 
(TPM) values. The resulting MOBER-derived embeddings were leveraged for downstream analysis, including 
sample clustering. Using the Leiden clustering algorithm46 we identified 12 subclusters in the latent space of 
gene expression data, with RYVU CRC models predominantly grouped in two subclusters (clusters 0 and 12, 
see Supplementary Fig. S5a, Supplementary Fig. S5b). These subclusters were located close to each other in 
the UMAP embedding of the MOBER latent space and exhibited similar transcriptomic profiles. For further 
investigation of transcriptomic differences between RYVU and public CRC models, the two RYVU subclusters 
were merged into a single cluster. This cluster was contrasted against the remaining CRC models, effectively 
defining two primary clusters (Supplementary Fig. S5c). The results are visualized in Fig. 2b.

Identification of differential gene programs using ExpiMap model
To investigate transcriptomic differences at the gene set level between the two clusters, we employed the 
explainable programmable mapper (ExpiMap) model47. ExpiMap is an interpretable conditional variational 
autoencoder (CVAE) trained on predefined gene programs (GPs)—sets of genes associated with specific 
pathways, curated from literature, databases, or domain knowledge. The ExpiMap model generates interpretable 
embeddings while focusing on relevant GPs. It enables the identification of differential gene programs between 
groups through hypothesis testing in the integrated latent space. Using the hypothesis testing option, the most 
differential gene programs were selected based on the Bayes Factor, representing the ratio between the two 
hypothesis probabilities, and visualized on Fig. 2c.
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Gene set correlation enrichment analysis
Differential gene expression (DGE) analysis was conducted to identify genes differentially expressed between 
these two groups. Transcriptomic data preprocessing was performed using the nf-core RNA-seq pipeline48, 
followed by differential expression analysis with the nf-core differential abundance pipeline [59], both executed 
using the recommended default parameters. Gene set correlation enrichment analysis was then carried out using 
GscorePy49 (commit 913ee5e, retrieved from GitHub). The analysis primarily focused on gene sets previously 
defined by Expimap, which enabled assessment of coordinated expression changes at the pathway level between 
responder and non-responder groups. 

Edu assay/ cell proliferation assay
Proliferation of cells was assessed with Click-iT Plus EdU Cell Proliferation Kit for Imaging, Alexa Fluor 488 
dye (Invitrogen) according to manufacturer’s protocol. Briefly, the cells were cultured in 384-well plates in the 
presence of tested compound or proper control for 6 days. 24 h before the end of experiment, the modified 
thymidine analogue EdU (5-ethynyl-2′-deoxyuridine) was added to the medium. Then, the cells were fixed, 
permeabilized and incubated with Click-iT Plus reaction cocktail containing Alexa Fluor 488 picolyl azide 
for 30 min. Subsequently, the nuclei were stained with 0.2 µg/mL DAPI dye (Thermo Fisher Scientific). High-
throughput imaging was performed using a Nikon Eclipse Ti2-E inverted fluorescence microscope equipped 
with a motorized stage and NIS-Elements AR software (version 5.42.06). Screening plates were imaged using 
a 4 × air objective with automated perfect focus system. The NIS-Elements software enabled precise multi-well 
plate scanning with capturing bright-field and DAPI and FITC fluorescence images simultaneously. Bright spot 
detection on FITC channel was applied for Edu-stained cell count.

Cell proliferation assay data analysis
Dose–response curves were analyzed by importing viability data into GraphPad Prism and fitting it to the four-
parameter logistic equation.

High-throughput screening (HTS) data were analyzed using a proprietary, internally developed Python-
based tool. The software calculates percent inhibition for single-point assays and employs the four-parameter 
logistic (4PL) regression model for dose–response experiments. To integrate EC50 and efficacy data derived 
from the 4PL model, the area under the curve (AUC) was calculated. The AUC was determined using a Python 
script based on the smallest trapezoid method.

For combination studies, viability data were uploaded to the SynergyFinder Plus web application50, and the 
values for the Loewe synergy model were used. The best drug combination was selected based on the mean 
Loewe synergy score for the drug-response matrix (Loewe Synergy Index). Data visualization was conducted 
using GraphPad Prism, while the selected drug combination and heatmaps were visualized using a Python 3.10 
script utilizing the Matplotlib 3.82, Plotly 5.21.0 libraries51,52 and Morpheus application from Broad Institute53.

Machine learning segmentation model
DAPI and FITC images were acquired and segmented using Cellpose54 with pre-trained weights. To predict 
FITC segmentation from DAPI input alone, we trained a U-Net model55 following a standard architecture as 
in56. Training input consisted of random 256-pixel crops of DAPI images augmented with random rotations and 
flips. Pixel intensities were standardized to negative control wells. Predicted masks were binarized using Otsu 
thresholding (the minimum set to 10% of the intensity range) and top-hat filtered for noise reduction. The model 
was trained on data from 33 plates (3 replicates of 11 compound sets) of AKTS (KO) cells and evaluated on 
unseen KO and WT cells. FITC cell counts, obtained using NIS-Elements Nikon software (REF), were correlated 
with predicted FITC segmentation areas to assess accuracy. A learning curve analysis determined that training 
on positive and negative control wells from a single plate was sufficient for accurate KO predictions, and adding 
a small amount of control data preserved performance for WT cells.

Data availability
The datasets generated and/or analyzed during the current study are available in the European Nucleotide Ar-
chive(ENA) repository, https://www.ebi.ac.uk/ena/browser/view/PRJEB87257 and with the primary accession 
PRJEB87257.
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