
Efficient workflow scheduling
using an improved multi-objective
memetic algorithm in cloud-edge-
end collaborative framework
Guangzhang Cui1,2, Wei Zhang2,3, Weiwei Xu1 & Hujun Bao1

With the rapid advancement of large-scale model technologies, AI agent frameworks built on
foundation models have become a central focus of artificial-intelligence research. In cloud-edge-end
collaborative computing frameworks, efficient workflow scheduling is essential to reducing both
server energy consumption and overall makespan. This paper addresses this challenge by proposing
an Improved Multi-Objective Memetic Algorithm (IMOMA) that simultaneously optimizes energy
consumption and makespan. First, a multi-objective optimization model incorporating task execution
constraints and priority constraints is developed, and complexity analysis confirms its NP-hard nature.
Second, the IMOMA algorithm enhances population diversity through dynamic opposition-based
learning, introduces local search operators tailored for bi-objective optimization, and maintains Pareto
optimal solutions via an elite archive. A dynamic selection mechanism based on operator historical
performance and an adaptive local search triggering strategy effectively balance global exploration
and local exploitation capabilities. Experimental results on 10 standard datasets demonstrate that
IMOMA achieves improvements of 93%, 7%, and 19% in hypervolume and 58%, 1%, and 23% in
inverted generational distance compared to MOPSO, NSGA-II, and SPEA-II algorithms. Additionally,
ablation experiments reveal the influence mechanisms of scheduling strategies, server configurations,
and other constraints on optimization objectives, providing an engineering-oriented solution for real-
world cloud-edge-end collaborative scenarios.

Keywords  Cloud-edge-end collaborative framework, Workflow scheduling, Multi-objective memetic
algorithm, Dynamic opposition-based learning, Energy optimization operator, Makespan optimization
operator

With the rapid advancement of large-scale model technologies, AI agents based on foundational models are
profoundly transforming the production activities and lifestyles of human society. From consumer-grade
scenarios such as intelligent customer service and personalized education to professional fields like industrial
decision-making and medical diagnosis, AI agent applications exhibit significant characteristics of computational
intensity, diverse scenarios, and real-time responsiveness. For example, e-commerce customer-service systems
must achieve user-intent understanding and multi-turn dialogue generation within millisecond-level latency,
whereas autonomous driving systems require dynamic path planning with centimeter-level positioning accuracy.
These applications impose stringent requirements on the spatio-temporal distribution of computing resources1,2.

While cloud computing provides abundant resources, its high latency renders it unsuitable for latency-
sensitive applications3. To address this limitation, edge computing has emerged as a decentralized computational
model4. By leveraging geographically distributed edge servers, tasks can be processed closer to end users,
reducing latency and enhancing response times5. However, edge servers have limited computational capabilities.
When many tasks are scheduled simultaneously or require significant resources, edge servers may struggle to
meet application demands.

Since single computational frameworks (e.g., cloud-edge or edge-end) fail under complex scenarios, the
cloud-edge-end collaborative framework offers an effective solution. In smart manufacturing scenarios, this
framework can offload high-complexity production scheduling tasks to the cloud while deploying real-time

1State Key Laboratory of Computer Aided Design and Computer Graphics, Zhejiang University, Hangzhou 310012,
China. 2Image Derivative Inc, Hangzhou 311100, China. 3Department of automation, Qingdao University, Qingdao
266071, China. email: 12021174@zju.edu.cn

OPEN

Scientific Reports | (2025) 15:29754 1| https://doi.org/10.1038/s41598-025-08691-y

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-08691-y&domain=pdf&date_stamp=2025-8-13

device control tasks at edge nodes. Nevertheless, existing scheduling mechanisms still face the following key
challenges:

	1.	 Complex task dependencies6–9: Real-world workflows often exhibit intricate dependency relationships. Im-
proper task decomposition can lead to cross-node data transmission delays. For instance, in an AR naviga-
tion system, environmental modeling tasks depend on the output results of visual SLAM.

	2.	 Execution constraints10,11: Edge servers in practical scenarios are restricted by geographical distribution, pri-
vacy protection, and hardware heterogeneity, making them unable to execute all tasks. When edge resources
are insufficient to meet task demands while minimizing latency, tasks must be allocated to specific servers.
For example, face recognition from home cameras requires feature extraction at regional edge servers to en-
sure security and low latency, while medical image analysis tasks must be performed at edge nodes compliant
with HIPAA standards.

Furthermore, traditional task scheduling algorithms typically focus on optimizing a single objective, like
minimizing latency or energy consumption. In practical scenarios, these goals often conflict, requiring trade-offs
among multiple objectives. To solve this issue, multi-objective optimization algorithms have gained significant
attention in research. Multi-objective optimization algorithms identify optimal trade-offs among multiple
goals, satisfying the diverse demands of real-world applications. The Memetic Algorithm (MA)12, combining
evolutionary algorithms with local search strategies, is widely applied in combinatorial optimization, scheduling,
and NP-hard problems, greatly enhancing genetic algorithm search efficiency. By incorporating local search
mechanisms, MA enhances global exploration and solution quality, enabling generation of high-quality Pareto
fronts for complex problems.

To address these challenges, this study proposes an Improved Multi-Objective Memetic Algorithm
(IMOMA) to solve the dependency-aware workflow scheduling problem in cloud-edge-end collaborative
frameworks. The algorithm enhances population diversity through a dynamic opposition-based learning
strategy, designs dual-objective local search operators to optimize energy consumption and makespan, and
establishes an operator selection mechanism based on historical performance. Experimental results demonstrate
that compared to classical algorithms, IMOMA achieves a 93% improvement in the hypervolume indicator and a
58% optimization in the inverted generational distance, providing an efficient scheduling solution for real-time
intelligent applications. The main contributions of this paper are as follows:

	1.	 Model: Proposes a workflow scheduling model for cloud-edge-end collaborative frameworks considering
execution location constraints and priority constraints. Through mathematical proof, the NP-hardness of
this problem is revealed, and a mixed-integer programming model with 0–1 decision variables is established,
laying a theoretical foundation for subsequent algorithm design.

	2.	 Algorithm: Develops an Improved Multi-Objective Memetic Algorithm (IMOMA). Introduces a Dynamic
Opposition-based Learning (DOL) strategy that automatically adjusts the search direction according to the
evolutionary state of the population, significantly improving global convergence efficiency while maintain-
ing population diversity. Designs two specialized local search operators to deeply optimize the objectives of
energy consumption and makespan. Integrates a dynamic operator selection mechanism based on historical
performance to effectively balance the algorithm’s capabilities in global exploration and local exploitation.
Adopts a density estimation-based external archive mechanism to maintain the Pareto solution set and fur-
ther enhances solution quality and distribution uniformity through an adaptive local search triggering strat-
egy.

	3.	 Experiment: Conducts comprehensive experiments on 10 datasets of varying scales to evaluate the impact of
scheduling strategies, server configurations, and replica constraints on optimization objectives. Compared to
three classical algorithms (MOPSO13, NSGA-II14, SPEA-II15), IMOMA demonstrates superior performance
in solution quality and efficiency. Additionally, component ablation analysis validates the contributions of
each algorithm module to optimizing energy consumption and makespan.

The paper is structured as follows: Sect. 2 reviews related work, Sects. 3–4 define the problem and propose
the scheduling model, Sect. 5 describes the algorithm, Sect. 6 presents experimental verification, and Sect. 7
concludes the paper.

Related work
In recent years, cloud-edge-end collaboration has become a prominent research area, gaining widespread
attention. Task scheduling, as a major challenge in cloud-edge-end collaboration, has garnered considerable
attention and led to promising research outcomes1–5.

Task scheduling
The goal of task scheduling is to effectively allocate and optimize resources while meeting various constraints,
such as energy consumption, task dependencies, and deadline requirements. In recent years, researchers
have proposed various methods to address task scheduling in different scenarios. Dai et al.16 investigated the
collaborative task offloading problem in mobile edge computing and end-to-end systems, aiming to reduce
latency and avoid network congestion. They proposed a collaborative task offloading framework and a learning-
based algorithm to minimize system costs, including task delay and offloading costs. Zhu et al.17 applied an
improved guided population profile whale optimization algorithm (IGOWOA) to address the task offloading
problem in mobile edge computing, with the goal of minimizing user energy consumption, task response delay,
and the number of deployed cloudlets. You and Tang18 explored multi-objective task offloading by combining

Scientific Reports | (2025) 15:29754 2| https://doi.org/10.1038/s41598-025-08691-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

delay, energy consumption, and task execution cost into a particle swarm optimization framework. In vehicular
task offloading, Zhou et al.19 addressed the unique challenges of task offloading in satellite edge computing
networks, considering Low Earth Orbit (LEO) satellite mobility and heterogeneous resource constraints. Their
Mobility-aware Cooperative Offloading Algorithm (MCO-A) effectively reduced network latency and energy
consumption but was computationally expensive when applied to large-scale task sets. In the context of the deep
integration of the Internet of Things, fog computing and cloud computing, Panda20 proposed an EDP-TO task
offloading algorithm. The algorithm selects fog nodes with multi-objective functions, takes into account load
balance, and performs well in terms of energy consumption, delay and fairness after three steps. The research
shows that compared with the FTO algorithm, the EDP-TO algorithm has significantly improved energy
consumption, delay and fairness.

As applications become increasingly complex, they are usually composed of multiple interdependent
subtasks to form a workflow. The dependencies among tasks imply that the output of some subtasks will serve as
the input for other subtasks, which determines the execution order and processing time. Effectively managing
these dependencies is a crucial challenge in task scheduling and has a significant impact on system performance.

Al-HabobA et al.21 decomposed applications into a series of sequential tasks, offloading them to multiple
mobile edge computing servers. A Genetic Algorithm(GA) was employed to optimize the offloading process,
aiming to minimize task delay and reduce the likelihood of offloading failures. However, their approach primarily
focused on sequential tasks and exhibited limited capability in handling complex dependency structures. Liu et
al.22 investigated dependency-based task scheduling in vehicular edge computing. They proposed a multiple
applications multiple tasks scheduling (MAMTS) algorithm that prioritizes tasks within multiple Directed
Acyclic Graphs (DAGs) to achieve an optimized scheduling strategy. Although effective, the method struggles
to address real-time dynamic dependencies in practical scenarios. Maray et al.23 modeled task dependencies
using DAGs and focused on optimizing task scheduling under strict deadline constraints for delay-sensitive
tasks. They employed a Markov Decision Process (MDP) to minimize the total completion time. While their
approach demonstrated effectiveness in balancing dependencies and deadlines, it faced challenges in scalability
and computational cost when applied to large-scale task sets with complex dependency structures.

Solution method
With the rapid increase in the number of tasks on terminal devices, task scheduling has become a crucial
challenge in cloud-edge collaborative computing. To address this issue, various heuristic and metaheuristic
approaches have been proposed. Rao24,25 proposed TLBO algorithm with simple and no adjustment parameters
and Jaya algorithm without parameters. Tak et al.26. solved the task scheduling problem on VM by applying
TLBO and Jaya algorithm to cloud computing, and simulated and verified it in five datasets.

Topcuoglu et al.27 proposed HEFT and CPOP two task scheduling algorithms for heterogeneous processors.
By designing a parameterized graph generator, the experimental comparison results show that these two
algorithms are better than previous methods in terms of scheduling quality and cost. Kumar et al.28 proposed
a workflow scheduling algorithm based on task granularity, GSS, which optimizes task prioritization by
combining B-level path length and task local interaction (the execution-to-communication ratio of precursor/
successor tasks). Experiments show that GSS significantly reduces completion time in scientific workflows (e.g.
CyberShake, Montage), and improves virtual machine utilization, providing a more efficient solution for task
scheduling in cloud computing environments.

Sun et al.29 employed Ant Colony Optimization (ACO) to optimize delay, energy consumption, and load
balancing, and further extended their work to joint optimization in cloud-edge architectures. While effective for
vehicular networks, these methods relied on static optimization models, limiting their applicability to dynamic
and heterogeneous environments.

Jiang et al.30 proposed a greedy multi-objective optimization algorithm for the energy-efficient task scheduling
problem of edge heterogeneous multiprocessor systems, redesigned the insertion repair and local search
operators, and developed a probabilistic mutation to avoid local optima. Zhang et al.31 proposed an offloading
decision method based on evolutionary algorithms, which enhances convergence and population diversity
by employing cascading clustering and incremental learning selection mechanisms. Nandi et al.32 developed
a metaheuristic task offloading strategy using Social Cognitive Optimization (SCO) to balance service delay
and energy consumption. While effective, their approach simplifies the multi-objective problem into a single
weighted treatment, potentially overlooking conflicts between objectives. Salehan et al.33 proposed an online
offloading algorithm to minimize energy consumption and request execution time, but it focused exclusively
on edge or cloud offloading, failing to exploit device-edge-cloud collaboration for enhanced resource efficiency.
Addressing this limitation, You and Tang18 applied Particle Swarm Optimization (PSO) in collaborative
computing environments, achieving improvements in energy efficiency and latency reduction. Similarly, Guo
and Liu34 formulated a Cloud-MEC collaborative problem and proposed a cooperative computing offloading
scheme to minimize mobile device energy consumption. Chakraborty and Mazumdar35 utilized GA to optimize
energy consumption with delay constraints, while Shukla P36 employed a hybrid Meta-heuristic based Optimized
Resource Scheduling Algorithm(HORSA) to reduce manufacturing time and cost while maximizing resource
utilization. Yao37 constructed a cloud workflow scheduling model that minimizes both execution time and cost,
and proposed the MOEA/D algorithm based on weight vector adjustment and local search. By introducing an
external elite population to guide the variation of subproblems, utilizing an adaptive weight vector adjustment
strategy, and employing a three-point quadratic interpolation approximation for local search, the distribution of
solutions and convergence speed were optimized. Similarly, Song et al.38 applied MOEA/D to balance conflicting
objectives such as energy and time consumption.

Scientific Reports | (2025) 15:29754 3| https://doi.org/10.1038/s41598-025-08691-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Summary
Task scheduling in cloud-edge-end collaborative computing primarily revolves around task offloading strategies,
task dependency management, and multi-objective optimization. This includes collaborative offloading in
mobile edge scenarios and modeling dependencies via directed acyclic graphs (DAGs). Existing solutions
such as HEFT, CPOP, and GSS algorithms enhance performance through task prioritization and granularity
optimization but lack multi-objective coordination capabilities. While methods like PSO and MOEA/D balance
energy consumption and latency, they fail to deeply exploit problem characteristics.

Therefore, this paper addresses the dependency-aware task scheduling problem in the cloud-edge-end
collaborative framework and models it as a multi-objective optimization problem. Moreover, IMOMA is
proposed to efficiently solve this problem. Compared with existing methods, IMOMA incorporates a DOL
and local optimization operators based on objective, significantly enhancing the global search capability and
solution uniformity in task scheduling. This effectively resolves challenges related to task dependencies and
multi-objective conflict optimization. Table 1 summarizes the comparison of existing works in terms of task
dependency handling, scheduling constraints, solutions, and application scenarios.

Problem description
Scenario description
In this study, the cloud-edge-end collaborative computing framework consists of cloud servers, edge servers,
and terminal devices. As depicted in Fig. 1, the system includes l cloud servers, n edge servers, and m terminal
devices.

CS = {cs1, cs2, · · · , csl} denotes the set of cloud servers; ES = {es1, es2, · · · , esn}denotes the set of
edge servers; D = {dev1, dev2, · · · , devm}denotes the set of terminal devices. Each terminal device handles
several applications;App = {A1, A2, · · · , Ah}denotes the set of applications, with each Aj comprising multiple
interconnected tasks. And the tasks of each application have the same priority, represented by a number. Tasks can
run on edge servers, be scheduled to cloud servers, or be restricted to certain edge servers. When the resources
on a server can support multiple tasks running simultaneously, the task priority is not considered. However,
when resources are insufficient, tasks with higher priority (priority 1 being the highest) will be executed first.
Table 2 provides a summary of the symbols utilized in this problem.

Application description
Aj = {T 1

j , T 2
j , · · · , T

pj

j }, j ∈ {1, 2, · · · h} denotes the task set. When an application needs to be run, it
can be split into multiple tasks and assigned to different computing facilities. These tasks have dependencies,
represented by the adjacency matrix Ej , meaning the next task can only be executed once the previous task is
completed. Each task is confined to execution on one server. Furthermore, diverse resource requirements (such
as CPU, GPU, memory, GPU memory, network I/O, etc.) as well as qualified servers capable of performing these
tasks need to be considered.

In the adjacency matrix Ej ,defining ej(a, a) = 1, ej(a, b) = 1 signifies that predecessor task a has
transmitted data to the server hosting task b. ej(a, b) = 0 implies that predecessor task a has not sent data to the
server hosting task b. The adjacency matrix Ej is defined as:

	

Ej =




ej(1, 1) ej(1, 2) · · · ej(1, pj)
ej(2, 1) ej(2, 2) · · · ej(2, pj)

· · · · · · · · · · · ·
ej(pj , 1) ej(pj , 2) · · · ej(pj , pj)


 .� (1)

Work Scenario
Solution
method Task dependencies

Scheduling
constraints Objective

16 Edge-end LBCMAB ✗ ✗ minimize the latency and offloading cost(S)

17 Edge-end IGOWOA ✗ ✗ minimize user energy consumption, task response delay, and the number
of deployed cloudlets(M)

18 Edge-end PSO ✗ ✓ minimize time delay, energy consumption and task execution cost(M)
19 Edge-end MCO-A ✗ ✗ minimize the network latency and energy consumption(S)
20 Cloud-edge-end EDP-TO ✗ ✓ minimize the latency
21 Edge-end GA ✓ ✗ minimize latency and offloading failure probability(S)
22 Edge-end MAMTS ✓ ✗ minimize the average completion time of multiple applications(S)
23 Edge-end MDP ✓ ✓ minimizes the total completion time(S)
29 Cloud-edge-end ACO ✗ ✗ minimize system latency, energy consumption and load balancing rate(M)
33 Edge-end SCO ✓ ✗ minimize energy consumption and time consumption(S)
36 Edge-end GA ✓ ✗ minimize energy consumption(S)
37 Cloud-edge-end HORSA ✓ ✗ minimize makespan, cost and maximize resource utilization (M)
39 Edge-end MOEA/D ✗ ✓ minimize energy consumption and makespan (M)

Ours Cloud-edge-end IMOMA ✓ ✓ minimize energy consumption and makespan(M)

Table 1.  Comparison of related work. LBCMAB (Learning-Based Co-Offloading Approach Based on MAB);
S: Single-objective optimization; M: Multi-objective optimization

Scientific Reports | (2025) 15:29754 4| https://doi.org/10.1038/s41598-025-08691-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Notation Definition

CS The set of cloud servers

ES The set of edge servers

D The set of terminal devices

App The set of applications

Aj The set of j-th applications

T i
j The i-th task of j-th applications

Ej The adjacent matrix of the dependencies of Aj

R1i
j ~R6i

j Resource requirements during task execution

R1
x~R6

x The resource of server x

ε The proportion of additional server resources occupied by task replicas

{prei
j , subi

j} The predecessor and successor task sets of T i
j

Ki
j The scheduling strategy of the i-th task of j-th applications

T Di
j The amount of data transmitted to successor tasks

W i
j The execution time required for i-th task in j-th application

u1
x ∼ u6

x Represent the utilization of resources of the server x

αc
i Task i is assigned to the n-th cloud server

βe
i Task i is allocated to the m-th edge server

T T i,j
x,y Represent the time required to transfer data for task T i

j in application Aj from server x to server y

T Ry
x Denote the data transfer rate between servers x and y

disy
x Represent the transmission distance between x and y

T Sy
x Indicate the transmission speed

ST i,j Start time of the T i
j

F T i,j Finish time of the T i
j

Table 2.  Notation.

Camera

Camera AR

Robot

Robot

AR

Automatic

Vehicle

VR

VR

VR

VR
Robot

Automatic

Vehicle

Automatic

Vehicle

Edge servers A

Cloud server

Edge servers B

Edge servers C

Edge servers D

AR

Camera

Robot

Automatic

Vehicle

VR

Camera

Fig. 1.  Cloud-edge-end collaborative computing framework.

Scientific Reports | (2025) 15:29754 5| https://doi.org/10.1038/s41598-025-08691-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Servers utilize corresponding resources while executing a task T i
j . The six-dimensional

array(R1i
j , R2i

j , R3i
j , R4i

j , R5i
j , R6i

j)denotes the CPU, GPU, memory, video memory, bandwidth, and
storage resource requirements during task execution. The resource of server x attributes are defined as
(R1

x, R2
x, R3

x, R4
x, R5

x, R6
x), x ∈ {1, 2, · · · , l + n}.

To ensure the high availability of the application, some tasks may have multiple replicas. These task replicas
are deployed on the corresponding cloud servers or edge servers and can quickly start up when a task fails to
execute or when a server experiences a fault. Each replica will occupy an additional ε of task resources on the
server.

Task description
{prei

j , subi
j} denotes the predecessor and successor task sets of the j-th task in application Aj .prei

j refers to the
collection of all predecessors for the i-th task T i

j in application Aj . subi
j defines the set of all successors for the

j-th task in application Aj .If task Aj is an independent task, then both sets prei
jand subi

jare empty sets. Figure 2
shows the dependencies among 8 tasks in an application, with v_start, v_end representing virtual nodes for
task initiation and completion.

Scheduling strategy
In various applications, some tasks require specific server scheduling due to factors such as geographical location,
privacy, security, and performance demands(e.g., GPU-dependent tasks). To address this, a binary variable Ki

j
is defined to represent the scheduling requirements of the i-th task T i

j in application Aj : when Ki
j = 1, the task

must be scheduled for execution on the cloud server; when Ki
j = 1, the task can be executed on any server; and

when Ki
j = −1, this task can only be executed on specific edge servers.

	

Ki
j =




1 , T i
j must be executed on the cloud

0 , T i
j can be executed on any server

− 1 , T i
j must be executed on specific edge server

Each task includes the following information: T i
j = {prei

j , subj
j , R1i

j ∼ R6i
j , Ki

j , T Di
j , W i

j }
When task T i

j is completed, data needs to be transmitted to the location of its successor tasks. The amount of
data transmitted to successor tasks is denoted as T Di

j . W i
j represents the execution time required for i-th task

in j-th application.

Mathematical model
In this section, we analyze and formulate the research problem, taking into account task dependencies, resource
requirements, and geographical limitations in cloud-edge-end task scheduling. We further verify that the
problem is NP-hard.

Decision variables
Scheduling decisions for tasks are expressed using binary variables αc

i and βe
i .αc

i = 1 denotes that task i is
assigned to the c-th cloud server; otherwise, αc

i = 0.βe
i = 1 represents that task i is allocated to the e-th edge

server; otherwise, βe
i = 0.

Application completion time
T T i,j

x,yrepresents the time required to transfer data for task T i
j in application Aj from server x to server y. T Ry

x

denotes the data transfer rate between servers x and y, disy
xrepresents the transmission distance between these

Fig. 2.  Dependency-aware task.

Scientific Reports | (2025) 15:29754 6| https://doi.org/10.1038/s41598-025-08691-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

servers, and T Sx
y indicates the transmission speed. These parameters apply where x, y ∈ {1, 2, · · · , l + n, x ̸= y}.

The equation for data transmission time is as follows:

	
T T i,j

x,y =
T Di

j

T Ry
x

+ disy
x

T Sy
x

� (2)

Task T i
j starts execution when its immediate predecessor tasks are completed, and their results are transmitted

to the server hosting T i
j . ST i,j represents the start time of task T i

j in application Aj .F T i,j
x represents to the

finish time of task T i
j in application Aj on server x. For any task, T i′

j belongs to the predecessor task set prei
j ,

wherex, y ∈ {1, 2, · · · , l + n, x ̸= y}. The start time and finish time equation are as follows:

	 ST i,j = max(F T i′,j + T T i′,j
x,y), ∀i′ ∈ prei

j � (3)

	 F T i,j = ST i,j + W i
j � (4)

The makespan of an application CTj is defined as the maximum end time among all its tasks.

	 CTj = max{F T i,j}, ∀j ∈ {1, 2, · · · h} , i ∈ {1, 2, · · · , pj}.� (5)

Energy consumption model
The power of the server x can be divided into idle power P 0

x and operating power, where x ∈ {1, 2, · · · , l + n}.
Operating power mainly depends on CPU and GPU utilization, assuming that it follows a linear relationship.
T﻿he power consumption Px of server x is defined in Eq. (6):

	 Px = P 0
x + ucpu

x kcpu + ugpu
x kgpu� (6)

where u1
x, u2

x represent the CPU and GPU utilization, and kcpu, kgpuare unit power coefficients.
The energy consumption ECt

xof server x during time interval ti is expressed in Eq. (7), where
Ix = {t1, t2, · · · , tq}defines the intervals with constant load for server x:

	 ECti
x = P xti� (7)

Here, ti denotes the duration where CPU and GPU load on the server remain constant. The total energy
consumption across all servers and time intervals during scheduling is computed as follows:

	
ECtotal =

l+n∑
j=1

|Ij |∑
i=1

ECti
j .� (8)

Constraint analysis
A valid application scheduling solution must meet the following conditions:

	1.	 Scheduling constraint.

	Each task must be executed on a single server, and task i must adhere to the scheduling strategy during execu-
tion.

	




l∑
c=1

αc
i = 1,

n∑
e=1

βe
i = 0, Ki

j = 1

l∑
c=1

αc
i +

n∑
e=1

βe
i = 1, Ki

j = 0

l∑
c=1

αc
i = 0,

n∑
e=1

βe
i = 1, Ki

j = −1

∀i ∈ {1, 2, · · · , p1, · · · ,

h∑
j=1

pj}, j ∈ {1, 2, · · · , h}.� (9)

	2.	 Dependency constraint.

	The goal of task dependency scheduling is to ensure that the start time ST i,j of each taskT i
j is no earlier than the

completion timeF T i,j
x of all its predecessor tasks T i

j plus the transmission time T T i′,j
x,y :

Scientific Reports | (2025) 15:29754 7| https://doi.org/10.1038/s41598-025-08691-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	
ST i,j ⩾ max(F T i′,j +

∏
ej(i′, i) ·

l+n∑
x,y

(φx
i′ · φy

i · T T i′,j
x,y)), ∀j ∈ {1, 2, · · · h} , i ∈ {1, 2, · · · , pj}, i′ ∈ prei

j .� (10)

	3.	 Processing resource constraints.

	When tasks are executed on the cloud or edge, each task must satisfy the processing resource constraints of its
server. The server resource usage limit is defined as:

	
max(u1

x, u2
x, u3

x, u4
x, u5

x, u6
x) ⩽ 1, ∀x ∈ {1, 2, · · · , l + n}.� (11)

	When tasks of application i are assigned to server ccc, and if the start time of task T i
j is ST i

j , the server’s resourc-
es at that moment should not be less than the requirements of T i

j .

	




l+n∑
x

φx
i R1i

j ⩽
(
1 − u1

x

)
R1

x

l+n∑
x

φx
i R2i

j ⩽
(
1 − u2

x

)
R2

x

l+n∑
x

φx
i R3i

j ⩽
(
1 − u3

x

)
R3

x

l+n∑
x

φx
i R4i

j ⩽
(
1 − u4

x

)
R4

x

l+n∑
x

φx
i R5i

j ⩽
(
1 − u5

x

)
R5

x

l+n∑
x

φx
i R6i

j ⩽
(
1 − u6

x

)
R6

x

, ∀x ∈ {1, 2, · · · , l + n} , j ∈ {1, 2, · · · h} , i ∈ {1, 2, · · · , pj}.� (12)

	Our objective is to identify a feasible scheduling scheme that minimizes server energy consumption and the
makespan of all applications. Therefore, the problem addressed in this paper can be formulated as follows:

	 min ECtotal� (13)

	 min max{CTj}.� (14)

	s.t. (9), (10), (11), (12)

	
φx

i =
{

αx
i , x ⩽ l

βx−l
i , x > l

� (15)

	 αc
i , βe

i , φx
i ∈ {0, 1}.� (16)

	Among them, constraint (15) is an auxiliary variable that indicates whether task i is scheduled on server x, and
(16) defines the domain of the decision variable.

Complexity analysis
In this section, we prove that the problem discussed in this paper is NP-hard.

Lemma 1  Workflow scheduling in cloud-edge-end collaborative framework is NP-hard.

We reduce the simplified version of problem A to a Job Shop Scheduling Problem (JSP)38with known NP
difficulty. The formal definition of problem A and its reduction process to JSP are as follows:

Formal definition of problem A
Parameter:

Task set T = {t1, t2, tn}
Server set S = C ∪ E = {s1, s2,, sm}, where C and E denote cloud and edge servers, respectively.
Task dependency matrix D ⊆ T × T where(tj , ti) ∈ Dindicates tj must complete before ti

Scientific Reports | (2025) 15:29754 8| https://doi.org/10.1038/s41598-025-08691-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Execution time matrixE = [ei,s]n×|S|, where ei,s is the execution time of tasktion server s.
Data transmission delay matrix ∆ = [ds1,s2]|S|×|S|
Objective: minimize the maximum completion timeCmax = maxti∈T {completion time of ti}
Dependency constraint: If (tj , ti) ∈ D, then start(ti) ⩾ finish(tj) + dsj ,si , where sj andsiare the

servers assigned to tj and ti, respectively.

 Reduction to JSP
JSP instance construction.

Job set: J = {J1, J2, ..., Jn}, where each task ticorresponds to a job Ji.
Operations: Each job Ji has an operation sequenceOi,1 → Oi,2 → · · · → Oi,k , where k is the length of the

dependency chain for ti.
Machine assignment: OperationOi,mis assigned to machine m, with processing time pi,m = ei,m.
Setup time: τm1,m2 = dm1,m2
Precedence constraints: If (tj , ti) ∈ D, the last operation of Jimust precede the first operation of Ji.

Solution equivalence
Proposition  Problem A has a feasible solution if and only if the corresponding JSP instance has a feasible solu-
tion, and their makespans are identical.

Proof  Necessity: Given a schedule σ for Problem A, construct a JSP schedule σ′:

	1.	 Map ti assigned to server s in σ to Ji assigned to machine m = s in σ′.
	2.	 Enforce dependencies D via precedence constraints.
	3.	 Map transmission delays to machine setup times. The makespan of σ′equals that of σ

Sufficiency: Given a JSP schedule σ′, construct a schedule σfor Problem A

	1.	 Map Ji assigned to machine m inσ′to ti assigned to servers = min σ.
	2.	 Enforce precedence constraints via dependency constraints D. The makespan of σ equals that of σ′.

Thus, the two problems are equivalent in solution space and objective function.

NP-hard conclusion
Since JSP is NP-hard and Problem A is a special case of JSP, Problem A is also NP-hard. The original task
scheduling problem in cloud-edge frameworks, which includes additional constraints, inherits this NP-hardness.

This reduction formally establishes the complexity of task scheduling in cloud-edge frameworks, justifying
the necessity of metaheuristic algorithms like IMOMA.

Algorithm design
To effectively solve NP-hard problems and provide near-optimal solutions within a reasonable time, we propose
IMOMA. The algorithm integrates global search, local search, and an archive mechanism to balance exploration
and exploitation. Global search leverages DOL to expand the search space and avoid local optima; local search
uses energy and makespan optimization operators to refine solution quality; the archive stores non-dominated
solutions and maintains diversity through crowding distance, ensuring rapid convergence to the Pareto Front
(PF). IMOMA effectively addresses multi-objective conflicts and generates well-distributed, high-quality
solutions.

Encoding and decoding
The representation of solutions affects the search efficiency of metaheuristic algorithms. In this study, a two-
layer encoding scheme is designed for IMOMA, as shown in Fig. 3. Specifically, the encoding scheme consists of
the following layers: the first layer represents the task sequence; and the second layer indicates the server index
assigned to each task. Subsequent operations are applied exclusively to the second-layer encoding.

Figure 3 depicts a scenario where the encoding scheme is applied to a setup with nine tasks and four servers—
three edge servers (1–3) and one cloud server (4).

Archive
In multi-objective optimization, an archive stores non-dominated solutions during the optimization process,
ensuring comprehensive coverage of the PF. The archive also employs diversity maintenance strategies to
improve the uniformity of solution distribution. The method involves the following steps:

Initialization: The archive starts empty, with non-dominated solutions from the initial population being
stored.

Iteration process: In each iteration, new non-dominated solutions are added to the archive, which is then
updated to preserve diversity.

Capacity control: The archive employs a crowding distance-based pruning mechanism to maintain diversity.
Solutions with smaller crowding distances are removed first, as they contribute less to the exploration of the
solution space. This approach effectively balances convergence precision and diversity preservation, ensuring
a robust search process. Additionally, the archive size is set to a proportion arc of the population size pop,
providing a trade-off between computational efficiency and solution quality.

Scientific Reports | (2025) 15:29754 9| https://doi.org/10.1038/s41598-025-08691-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Global optimization strategies
In IMOMA, global search leverages DOL and crossover to enhance exploration capabilities, ensuring a broader
search space and greater solution diversity.

Dynamic opposition-based learning strategy
Traditional Opposition-Based Learning generates opposite solutions at fixed distances, which lacks randomness,
leading to insufficient population diversity and an increased risk of being trapped in local optima. In contrast,
DOL introduces a dynamic adjustment mechanism during algorithm iterations, adaptively modifying opposite
solutions based on the current search phase. This approach not only expands search space but also enhances
adaptability, reducing the risk of local optima and increasing the probability of convergence to the global
optimum. The dynamic adjustment steps of the DOL search process are as follows:

Generating opposite solutions: For the current population P, generate opposite solutions for each individual
based on Eq. 17, forming a new population P̃ . P̄ represents the opposite population of P.

	 P̃ = P + ω · P̄ � (17)

	
ω(g) = α · sin(π · g

G
) + β · sin(2π · g

G
) + λ.� (18)

Combining populations: Merge P and P̃ to form a combined population P ′.
Non-dominated sorting: Perform fast non-dominated sorting on P ′.
Elite retention: Use an elitist strategy to retain top-ranked individuals from P ′, maintaining a fixed

population size for the next generation.
In Eq. 18, α and β are oscillation factors controlling the amplitude of ω during different search stages (early,

middle, and late), while λ ensures ω remains non-negative. Here, g denotes the current iteration number, and G
is the total number of iterations.

Crossover
The crossover operation aims to enhance solution diversity and to avoid premature convergence by combining
genetic information from selected parents. In this study, a biased uniform crossover strategy is employed to
maintain diversity while improving solution quality. The process involves the following steps.

First, a parent individual xA = (xA1 , xA2,, · · · xAj · · · , xAn) is randomly selected from the archive.
Meanwhile, another parent individual xB = (xB1 , xB2,, · · · xBj · · · , xBn) is randomly selected from the non-
pareto front solutions in the current population. Then, a random encoding string s = (s1, s2,, · · · sj · · · , sn)
of the same length is generated, with each element ranging from 0 to 1. For the corresponding positions in the
encoding of xA and xB , the following operation is performed: if sj > 0.4, the gene xAj from xAis retained in
the offspring xA′ ; otherwise, the gene xBj from xB in the offspring xB′ is retained. Repeat this process pop/2
times. pop offspring individuals are generated to form the current population. Figure 4 is a schematic diagram
of the offspring generated after the crossover of the given parent individuals [2, 1, 3, 3, 1, 4] and [4, 2, 4, 3, 1, 2].

Local optimization strategy
The core of the memetic algorithm lies in the design of local search strategies, which aim to refine high-quality
individuals in the population and enhance solution quality in multi-objective optimization. The key challenges
in this process involve addressing three critical questions: which individuals to select for local search, how to
exploit the selected individuals, and when to trigger the local search.

Individual selection
High-quality individuals are selected for local optimization using a rank-based probability distribution. This
method prioritizes potential solutions while maintaining population diversity. The selection probability pi for
the i-th individual is defined as Eq. 19.

	
pi = 1/ri∑pop

j=1 (1/rj)
.� (19)

Fig. 3.  Example of encoding and decoding.

Scientific Reports | (2025) 15:29754 10| https://doi.org/10.1038/s41598-025-08691-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

pop represents the total number of individuals in the archive; ri denotes the rank of the i-th individual, ensuring
that higher-ranked solutions are selected more frequently.

 Local search
Mutation: The mutation operator aims to improve local search efficiency, break through local optima, and
enhance population diversity. To this end, a partial segment redistribution method is employed, following these
steps.

Step 1: Randomly choose a segment xL of length L.
Step 2: Create a random integer sequence xSto represent the position of the replacement server in the set of

available servers.
Step 3: Utilize the elements xS as an index to replace the corresponding genes in the selected segment xL,

resulting in the adjusted segment xL′ .
Step 4: Finally return x′

L, yielding a mutated new solution xD .
For instance, an individual [3,1,4,2,2,4] is mutated into the individual illustrated in Fig. 5.
Energy consumption optimization operator (EO): To reduce server energy consumption, tasks can be

consolidated onto a subset of servers, thereby minimizing the total number of active servers and reducing overall
energy consumption. The specific approach is as follows: first, randomly select a subset of servers from the active
server pool to serve as target servers for task consolidation; second, identify all non-target servers and remove
their tasks for rescheduling; third, redistribute the tasks from the non-target servers to the selected target servers,
ensuring that all resource constraints are met. As illustrated in Fig. 6, the system initially operates four servers
running different tasks. Servers 1, 3, and 4 are designated as target servers. Consequently, all three tasks on
Server 2 are removed and rescheduled to Servers 1, 3, and 4, respectively. This process effectively reduces the
number of active servers from 4 to 3, thereby minimizing energy consumption.

Makespan optimization operator (MTO): To optimize system performance, particularly by reducing the
transmission time between dependent tasks, this paper proposes MTO. The operator aims to schedule dependent
tasks on the same server whenever possible, minimizing communication overhead and improving scheduling
efficiency. The specific implementation steps are as follows: first, randomly select a subset of applications with
dependent tasks as the scheduling targets, and reschedule their tasks; second, assign dependent tasks to the
same server whenever feasible, and adjust their execution order to minimize transmission time between tasks.
As shown in Fig. 7, Servers 1 and 2 are randomly selected as the operation targets. Task 2 from Server 2 is
inserted before Task 3 on Server 1, and the execution order of other tasks is adjusted accordingly to reduce the
transmission time between tasks.

Local search trigger strategy
To balance exploration and exploitation while reducing runtime, the local optimization strategy is probabilistically
triggered. The trigger probability ρ increases dynamically with the number of iterations, as defined in Eq. (20).
When ρ exceeds a random value, the local optimization strategy is executed. This design limits local optimization
in the early stages to preserve exploration potential and increases its application in the later stages to accelerate
convergence.

	
ρ(g) =

(
tan

(
π · g

G

))S

.� (20)

Fig. 5.  Illustration of mutation operator application.

Fig. 4.  Example of crossover operator.

Scientific Reports | (2025) 15:29754 11| https://doi.org/10.1038/s41598-025-08691-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Here, S is the suppression factor, ranging between (0,0.5], regulating the growth rate of ρ. Larger values of S result
in slower ρ growth.

Adaptive weight adjustment
To enhance search efficiency in global and local searches, an adaptive weight adjustment strategy dynamically
adjusts the selection probabilities of operators. Initially, all operators are assigned equal weights, with selection
probabilities proportional to their weights. During each iteration, the score of an operator is updated based on
the frequency of successful perturbations: the score increases by σ1 when |P F | increases, by σ2 (σ2 < σ1) when
|P F | stays the same, and by σ3 (σ3 < σ2) when |P F | decreases. At the end of each iteration, the weight of an
operator wj+1 is updated based on its score and usage frequency using Eq. (21):

	
wj+1 = wj · (1 − η) + η · πj

θj
.� (21)

Here, η is the response factor controlling the influence of the score on weight adjustment, πj represents the
operator’s score, and θj denotes its usage frequency.

Summary of the algorithm
Building upon the preceding algorithm design, the complete workflow of IMOMA is illustrated in Fig. 8. In
addition, the time complexity of IMOMA is O(G · N2), N is the population size.

 Numerical experiments
In this section, we designed and conducted a series of experiments to evaluate the performance of IMOMA and
analyze the impact of various factors on the problem. First, datasets reflecting real-world scenarios were developed,
and energy consumption formulas were constructed based on actual CPU and GPU loads. Subsequently, key
parameter configurations for IMOMA were determined through orthogonal experiments. Then, comprehensive
evaluations were performed using metrics such as Hypervolume (HV) and Inverted Generational Distance
(IGD) to assess the algorithm’s convergence performance, solution quality, and distribution uniformity. Statistical
reliability of the experimental results was further verified through significance analysis. Finally, the influence of
different factors on the optimization objectives was thoroughly investigated.

 Data description
In this study, we developed a specialized dataset to simulate dependency-aware task scheduling in cloud-
edge-end collaborative environments. The dataset was constructed using real-world data from a company
in Hangzhou, combined with extensive practical experience, and is available upon request from the authors.

Fig. 7.  Illustration of makespan optimization operator.

Fig. 6.  Illustration of energy consumption optimization operator.

Scientific Reports | (2025) 15:29754 12| https://doi.org/10.1038/s41598-025-08691-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Additionally, energy consumption data of servers under varying CPU and GPU loads were collected, based on
which the energy consumption formula was derived.

Data information
Existing public datasets fail to fully meet the specific requirements of this study, particularly in terms of
application resource demands and task scheduling characteristics. To address this, we constructed four datasets
of varying scales based on real-world resource demand data from applications in Hangzhou, combined with
extensive practical experience. Among them, datasets with application sizes of 50, 75, and 100 each contain three
instances, while the dataset with an application size of 200 contains a single instance. Each dataset consists of a
fixed number of edge servers (10) and cloud servers (2). The number of tasks, task priorities, and task replicas
for each application are all distributed within the range [1,3]. Detailed information is provided in Table 3, while
Table 4 presents additional parameter settings.

Energy consumption formula
In this study, the energy consumption of servers is mainly influenced by the actual utilization rates of CPUs
and GPUs. To develop a relevant model, we adopt a method based on Ridge regression and Lasso regression40
assuming a linear relationship between server energy consumption and the loads of CPUs and GPUs. This model
aims to accurately predict the energy consumption of servers under various workloads by collecting actual
energy - consumption data at different CPU and GPU utilization levels. The resulting energy consumption
formula is presented in Eq. (22), where ucpu

x , ugpu
x denotes CPU load and denotes GPU load.

	 Px = 248.78 + 3.17ucpu
x + 2.10ugpu

x .� (22)

Instance Number of applications Number of edge servers Number of edge servers Priority range Range of task numbers Range of copy numbers

data_50 50 10 2 [1,3] [1,3] [1,3]

data_75 75 10 2 [1,3] [1,3] [1,3]

data_100 100 10 2 [1,3] [1,3] [1,3]

data_200 200 10 2 [1,3] [1,3] [1,3]

Table 3.  Data information.

Fig. 8.  Algorithm flowchart.

Scientific Reports | (2025) 15:29754 13| https://doi.org/10.1038/s41598-025-08691-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Experimental setup
The experimental environment in this study consists of MATLAB 2022a, Windows 10 operating system, and an
AMD Ryzen 7 5800 × 8-core processor. To assess the performance of the multi-objective algorithm, two widely
used metrics are employed:

HV: This metric calculates the volume of the hypercube formed by the non-dominated solution set PF and
a reference point refmax, which is determined by the maximum objective values of all scheduling schemes. A
higher HV value indicates better solution diversity.

IGD: This metric evaluates the convergence and distribution of solutions by calculating the average Euclidean
distance of each solution in PF to the true Pareto front. A smaller IGD value indicates better performance.

Both metrics are normalized to account for variations across different instances, with normalization formulas
given in Eq. (23). The reference point distance dmax and normalization range are determined based on the
endpoints of PF.

	
HVnorm =

HV (PF,refmax)
S(refmax, refmin) , IGDnorm = IGD(P F)

dmax
� (23)

Parameter experiments
Preliminary experiments identified three key parameters of IMOMA: population size (pop), archive size
(arc), and suppression factor (S), where arc is a fraction of the archive size. The optimal combination of these
parameters was determined using orthogonal experimental design (L9 (3^3)). Other parameters were configured
based on preliminary experimental results and domain expertise. To evaluate the parameter settings, the average
HV index was used as the response value (RV), and the algorithm was executed 10 times on multiple datasets to
mitigate randomness. For the nine parameter combinations in Table 5, we ran IMOMA independently ten times
on each benchmark dataset and recorded the average hypervolume (HV) as the response variable (RV), where a
larger value indicates better performance. Table 6 presents the mean HV at each parameter level, along with the
range and influence ranking.

As shown in Table 6, the population size (pop) has the most significant impact on algorithm performance,
contributing to an average 15% improvement in HV compared to other parameter levels. A larger population
size enhances global search capability by expanding the search space, thus improving solution diversity. Archive
size (arc) ranks second in importance, balancing storage efficiency and solution quality. A moderate archive size
avoids excessive computational overhead while ensuring effective solution retention. Finally, the suppression
factor (S) primarily influences the exploration-exploitation trade-off, where overly small values lead to premature
convergence, while excessively large values reduce convergence speed.

Based on the experimental results, the population size was chosen at Level 3, the archive size at Level 2, and
the suppression factor at Level 3; therefore, the optimal parameter combination is: pop = 60, arc = 0.5, and
S = 0.5.This configuration strikes a balance between search efficiency and solution quality.

Parameter
combination

pop arc S RV

1 20 0.3 0.2 0.5932

2 20 0.5 0.5 0.6338

3 20 0.7 0.3 0.6058

4 40 0.3 0.5 0.6979

5 40 0.5 0.3 0.7078

6 40 0.7 0.2 0.6979

7 60 0.3 0.3 0.6802

8 60 0.5 0.2 0.7409

9 60 0.7 0.5 0.7365

Table 5.  Orthogonal experiment.

Parameter Value Parameter Value

disy
x [10,500]km λ 2

T Ry
x 1Gbps η 0.5

T Sy
x 2 × 108m/s σ1 33

G 100 σ2 13

α 0.5 σ3 9

β 0.5 ε 0.02

Table 4.  Other parameters.

Scientific Reports | (2025) 15:29754 14| https://doi.org/10.1038/s41598-025-08691-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Verification of operator effectiveness
The IMOMA proposed in this study integrates three key strategies: DOL, EO, and MTO. To assess the contribution
of each strategy to algorithm performance, a controlled variable method was employed, wherein three algorithm
variants were constructed for comparison: MOMA_V1 refers to algorithm 1 excluding DOL, MOMA_V2 refers
to algorithm 2 without EO, and MOMA_V3 refers to algorithm 3 excluding MTO, as shown in Table 7. Table 8
presents the average HV, IGD, and runtime results for these three algorithms across four different problem
scales, where the best average results are highlighted in bold.

As shown in Table 8, the full version of IMOMA, integrating all three strategies, consistently achieves the best
HV and IGD across all scenarios, demonstrating superior performance in both solution diversity and convergence
precision. Specifically: MOMA_V1 performs well for small-scale problems, achieving comparable HV and
runtime to IMOMA. However, as the problem size increases, its IGD worsens significantly, suggesting that the
absence of DOL reduces solution diversity and convergence precision. MOMA_V2 achieves reasonable runtime
but exhibits poorer HV and IGD compared to IMOMA, indicating that EO plays a critical role in improving
solution quality. MOMA_V3 shows slightly longer runtime and inferior HV compared to IMOMA, highlighting
the importance of MTO in balancing efficiency and quality. These results confirm that the combination of DOL,
EO, and MTO enhances IMOMA’s global search capability and solution efficiency, particularly for large-scale
problems. The findings validate the effectiveness of integrating all three strategies to achieve robust and scalable
task scheduling solutions.

Comparison with other algorithms
To comprehensively evaluate the relative performance of IMOMA, it is compared with three widely used multi-
objective optimization algorithms: MOPSO[13], NSGA-II[14], and SPEA-II[15]. The time complexity of these
algorithms is O(G · N2), ensuring a similar computational cost and fairness in comparisons. The experiments
are conducted under two scenarios: equal runtime and equal iterations, aiming to evaluate solution quality and
convergence efficiency under fair conditions (with identical parameter configurations and other parameters
set according to the respective references). Tables 9 and 10 present the average HV and IGD values for all
algorithms, with the best results highlighted in bold. Additionally, Fig. 9 visualizes the Pareto frontiers obtained
by the four algorithms for task counts of 50, 75, 100, and 200, providing a clear comparison of solution diversity
and convergence performance.

According to Table 9, IMOMA achieves superior HV results across most datasets under the same runtime
conditions, demonstrating its ability to generate diverse, high-quality solutions. For larger task counts (e.g.,
data_200_01), IMOMA shows a clear HV advantage, highlighting its scalability and robustness in handling
complex problems. However, IMOMA exhibits slightly higher IGD values than NSGA-II on data_50_01 and

IMOMA MOMA_V1 MOMA_V2 MOMA_V3

HV IGD time(s) HV IGD time(s) HV IGD time(s) HV IGD time(s)

data_50_01 0.82 0.03 27.39 0.77 0.03 27.71 0.77 0.03 32.11 0.75 0.03 28.06

data_75_03 0.74 0.08 53.44 0.71 0.09 55.23 0.73 0.1 62.03 0.73 0.11 61.28

data_100_02 0.81 0.06 68.71 0.77 0.08 67.55 0.79 0.05 73.41 0.8 0.06 76.60

data_200_01 0.82 0.1 140.10 0.8 0.15 132.99 0.81 0.12 185.85 0.81 0.11 161.26

Table 8.  Comparison of solution results under different operators.

Strategy IMOMA MOMA_V1 MOMA_V2 MOMA_V3

DOL √ × √ √

EO √ √ × √

MTO √ √ √ ×

Table 7.  Identification of each algorithm and improvement strategies for fusion.

level

Parameter

pop arc S

1 0.6109 0.6571 0.6773

2 0.7012 0.6942 0.6646

3 0.7192 0.6801 0.6894

range 0.1803 0.0371 0.0248

influence ranking 1 2 3

Table 6.  Average response values of each parameter level.

Scientific Reports | (2025) 15:29754 15| https://doi.org/10.1038/s41598-025-08691-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

data_50_03, and larger IGD than SPEA-II on data_200_01, indicating marginal advantages of these algorithms
in specific scenarios.

Table 10 shows that, under equal iteration settings, IMOMA consistently outperforms competitors in most
cases, delivering better solution distribution and higher convergence precision. On average, IMOMA improves
HV by 93%, 7%, and 19% over MOPSO, NSGA-II, and SPEA-II, respectively, and achieves IGD improvements
of 58%, 1%, and 23%. The significant improvement over MOPSO highlights the limitations of particle swarm
optimization in addressing dependency-aware, discrete optimization problems.

Fig. 9.  Comparison of PF for several algorithms on examples.

Data

IMOMA MOPSO[13] NSGA-II[14] SPEA-II[15]

HV IGD time(s) HV IGD Time(s) HV IGD Time(s) HV IGD Time(s)

data_50_01 0.82 0.03 27.39 0.49 0.06 24.62 0.81 0.03 26.63 0.73 0.04 24.33

data_50_02 0.86 0.07 25.42 0.52 0.12 22.53 0.82 0.07 24.82 0.68 0.12 22.75

data_50_03 0.83 0.24 28.94 0.38 0.73 26.78 0.63 0.10 27.56 0.53 0.18 25.12

data_75_01 0.85 0.04 51.01 0.46 0.14 47.81 0.83 0.04 66.64 0.75 0.09 60.32

data_75_02 0.74 0.13 50.25 0.41 0.34 46.67 0.70 0.14 64.65 0.64 0.16 58.25

data_75_03 0.74 0.08 53.44 0.40 0.10 50.19 0.77 0.06 69.48 0.71 0.07 62.73

data_100_01 0.77 0.12 65.38 0.38 0.12 63.91 0.64 0.18 80.46 0.57 0.26 73.41

data_100_02 0.81 0.06 68.71 0.45 0.29 65.14 0.80 0.11 86.19 0.75 0.11 75.93

data_100_03 0.88 0.09 70.35 0.42 0.19 66.85 0.87 0.12 87.62 0.79 0.09 77.01

data_200_01 0.82 0.10 140.10 0.29 0.19 127.48 0.72 0.09 180.53 0.67 0.12 165.66

Table 10.  Experimental results of four algorithms with the same number of iterations.

Data

IMOMA MOPSO[13]
NSGA-
II[14]

SPEA-
II[15]

HV IGD HV IGD HV IGD HV IGD

data_50_01 0.87 0.05 0.50 0.07 0.67 0.04 0.71 0.05

data_50_02 0.80 0.09 0.45 0.07 0.59 0.05 0.67 0.05

data_50_03 0.68 0.08 0.48 0.18 0.60 0.09 0.61 0.14

data_75_01 0.86 0.09 0.38 0.17 0.56 0.09 0.61 0.12

data_75_02 0.87 0.10 0.54 0.35 0.65 0.18 0.66 0.22

data_75_03 0.88 0.10 0.47 0.55 0.57 0.33 0.64 0.44

data_100_01 0.93 0.24 0.63 0.76 0.74 0.36 0.78 0.37

data_100_02 0.88 0.14 0.53 0.68 0.68 0.40 0.72 0.40

data_100_03 0.86 0.06 0.46 0.21 0.59 0.10 0.64 0.16

data_200_01 0.86 0.10 0.45 0.11 0.60 0.10 0.70 0.06

Table 9.  Experimental results of four algorithms at the same time.

Scientific Reports | (2025) 15:29754 16| https://doi.org/10.1038/s41598-025-08691-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Figure 9 further illustrates that IMOMA consistently produces well-distributed Pareto fronts, providing
better coverage of the objective space. These performance advantages stem from three key design features in
IMOMA that are absent or underdeveloped in the classical methods:

•	 MOPSO lacks both a dedicated local search mechanism and an elite archive to retain high-quality solutions.
While its lightweight particle‐swarm framework incurs low computational overhead, it cannot maintain suf-
ficient population diversity in discrete, dependency-aware scheduling problems, leading to low HV values
and uneven front coverage.

•	 NSGA-II uses a crowding-distance operator to preserve diversity, but its generic crossover and mutation
operators are not tailored to the structure of workflow‐scheduling solutions. As a result, NSGA-II converges
more slowly and yields lower solution quality than IMOMA on our model.

•	 SPEA-II employs a strength-Pareto archive to filter non-dominated solutions, which helps maintain diversity
but at the cost of high computational effort for large‐scale instances. Moreover, SPEA-II does not include an
adaptive local‐search trigger, so under identical runtime it converges less precisely (higher IGD) than IMO-
MA.

In contrast, IMOMA’s dynamic opposition-based learning broadens the global search space; its two objective-
specific local search operators fully exploit the underlying problem structure; and its adaptive triggering strategy
progressively balances exploration and exploitation. Moreover, the archive mechanism—which preserves and
prunes solutions according to crowding distance—ensures that these components collectively enable IMOMA
to produce well-distributed, high-quality Pareto fronts for practical multi-objective scheduling.

Analysis of key factors in workflow scheduling
This section analyzes the key factors influencing cloud-edge collaborative task scheduling, focusing on the
impact of scheduling strategies, server numbers, and the number of replicas on energy consumption and
makespan. Understanding these factors is critical to optimizing scheduling efficiency and achieving a balanced
trade-off between energy and performance in real-world applications. Furthermore, the optimal solution on the
PF, denoted as pareto_best, is defined as the solution that minimizes the total deviation from the entire PF. This
definition ensures that the selected solution represents a balanced compromise between conflicting objectives,
providing actionable insights for scheduling decisions.

Validation of scheduling strategies
This experiment explores the effects of three scheduling strategies on the optimization objectives: (1) Cloud-
Edge Collaboration (tasks are allocated to both cloud and edge servers); (2) Edge-Only Scheduling (tasks
are assigned exclusively to edge servers); and (3) Cloud-Only Scheduling (tasks are allocated solely to cloud
servers). The datasets were adjusted accordingly to suit the requirements of these three strategies. Each strategy
was run 10 times across problem instances of four different scales, recording the average energy consumption
and makespan of the pareto_best. The results are compiled in Table 11 and visualized in Fig. 10.

Table 11; Fig. 10 illustrate that the edge server scheduling strategy generally outperforms the other two
strategies in terms of energy consumption but has a significantly higher latency. The cloud server scheduling, on
the other hand, exhibits lower latency but higher energy consumption. In contrast, the cloud-edge collaborative
scheduling achieves a better balance between energy consumption and latency. Therefore, cloud-edge
collaborative scheduling demonstrates strong flexibility in practical applications and can be rationally selected
according to actual requirements.

Validation of server quantities
This section investigates the impact of server quantity on optimization objectives, focusing on energy consumption
and latency in cloud-edge collaborative task scheduling. Server configuration is a critical factor that influences
both system performance and resource allocation efficiency. To analyze this, four server configurations were
tested: (1) 13 edge servers and 2 cloud servers; (2) 15 edge servers and 3 cloud servers; (3) 18 edge servers and 3
cloud servers; and (4) 20 edge servers and 4 cloud servers. For each configuration, the algorithm was executed 10
times, and the average energy consumption and makespan were recorded. The results summarized in Table 12
and visualized in Fig. 11.

Table 12; Fig. 11 show that increasing the number of servers effectively reduces both energy consumption and
makespan, with both showing a downward trend. Increasing the number of servers helps balance the load, reduce
waiting times, and enhance scheduling efficiency. Although energy consumption decreases, when the number
of servers reaches a certain level (e.g., the 20_4 configuration), the improvement in energy consumption tends

Data

Cloud-edge
collaboration Edge-only Cloud-only

EC MS EC MS EC MS

data_50_01 0.36 156.36 0.27 337.91 0.44 44.43

data_75_03 0.64 256.21 0.47 514.65 0.87 92.78

data_100_02 0.73 320.18 0.56 616.74 1.06 108.39

data_200_01 1.49 486.90 1.14 996.27 2.06 158.84

Table 11.  Different scheduling strategies.

Scientific Reports | (2025) 15:29754 17| https://doi.org/10.1038/s41598-025-08691-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

to stabilize, and the delay slightly increases. This could be due to the excessive number of servers expanding the
search space, thereby increasing scheduling complexity. Overall, moderately increasing the number of servers
can effectively reduce both energy consumption and makespan, improving scheduling performance. However,
excessive servers should be avoided to prevent efficiency bottlenecks.

Validation of multiple replicas
The number of task replicas has a significant impact on resource allocation efficiency across servers. To study
the effects of different replica numbers on optimization objectives, the experiment included the following four
ranges: no replicas, [1,2], [1,4], and [1,5]. The datasets were adjusted to meet the experimental requirements
and align with the algorithm’s constraints. The algorithm was executed 10 times for each configuration, and the
average energy consumption and makespan were recorded. The results are presented in Table 13 and visually
displayed in Fig. 12.

Table 13 indicates that increasing the number of replicas significantly affects makespan, primarily due to
increased resource redundancy, reduced available server capacity, and prolonged task waiting times. In contrast,
the impact of replicas on energy consumption is less noticeable, with only minor fluctuations observed across
different configurations. While increasing the number of replicas enhances task fault tolerance by ensuring
higher reliability, it also results in significant makespan and slightly higher energy consumption. These findings
highlight the importance of carefully balancing the number of replicas in practical applications to optimize
scheduling performance while meeting system requirements for both reliability and efficiency.

Conclusion
This paper proposes the IMOMA algorithm to address the dependency-aware task scheduling problem under
the cloud-edge-end collaboration framework. The algorithm integrates the DOL mechanism to enhance
global search capability, utilizes the external archiving mechanism to accelerate convergence, and introduces
local optimization operators, effectively improving the performance of task scheduling in terms of energy
consumption and makespan. Experiments show that the proposed multi-objective memetic algorithm
demonstrates remarkable advantages in tackling task scheduling challenges in the cloud-edge collaborative

Data

IMOMA_10_2 IMOMA_13_2 IMOMA_15_3 IMOMA_18_3 IMOMA_20_4

EC MS EC MS EC MS EC MS EC MS

data_50_01 0.36 156.36 0.34 140.40 0.32 133.31 0.31 114.58 0.31 130.28

data_75_03 0.64 256.21 0.57 234.34 0.56 228.35 0.54 225.81 0.54 259.41

data_100_02 0.73 320.18 0.70 285.62 0.70 265.16 0.70 258.92 0.70 239.64

data_200_01 1.49 486.90 1.43 441.03 1.42 435.06 1.42 424.14 1.41 430.09

Table 12.  Impact of the number of servers on the solution.

Fig. 10.  Energy and time consumption under different scheduling strategies.

Scientific Reports | (2025) 15:29754 18| https://doi.org/10.1038/s41598-025-08691-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

environment. Compared with MOPSO, NSGA-II, and SPEA-II, its HV index improves by 93%, 7%, and 19%
respectively, and the IGD index improves by 58%, 1%, and 23% respectively.

Compared with scheduling modes relying solely on edge computing or cloud computing, cloud-edge
collaborative scheduling has more advantages in balancing energy consumption and delay. Future research will
focus on the following directions: First, centering on the flexibility optimization of multi-copy task scheduling,
constructing a dynamic resource allocation model, and designing an adaptive copy management strategy
combined with the reinforcement learning framework to achieve fine-grained control of resource consumption

Fig. 12.  Energy and makespan under different numbers of replicas.

[1,1] [1,2] [1,3] [1,4] [1,5]

EC MS EC MS EC MS EC MS EC MS

data_50_01 0.36 156.06 0.36 156.33 0.36 156.36 0.37 163.09 0.38 175.11

data_75_03 0.63 245.65 0.64 248.34 0.64 256.21 0.65 268.81 0.66 270.83

data_100_02 0.73 306.24 0.72 313.66 0.73 320.18 0.74 331.03 0.76 349.90

data_200_01 1.43 466.40 1.45 482.28 1.49 486.90 1.57 497.05 1.63 505.14

Table 13.  Impact of the number of replicas on the solution.

Fig. 11.  Energy consumption and completion time under different server quantities.

Scientific Reports | (2025) 15:29754 19| https://doi.org/10.1038/s41598-025-08691-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

while ensuring task reliability. Second, expanding the applicability verification of the algorithm in complex
scenarios, covering typical vertical fields such as industrial Internet of Things, intelligent transportation systems,
and Agent applications, and verifying the algorithm’s universality in heterogeneous environments through cross-
domain experiments. Third, combining the characteristics of server load fluctuations, constructing a multi-
source heterogeneous resource prediction model integrating spatio-temporal features, and achieving dynamic
perception and pre-judgment of computing resources.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason
able request.

Received: 3 January 2025; Accepted: 23 June 2025

References
	 1.	 Gasmi, K. et al. A survey on computation offloading and service placement in fog computing-based IoT. J. Supercomput. 78,

1983–2014 (2022).
	 2.	 Jin, X. M. et al. A survey of research on computation offloading in mobile cloud computing. WIREL. NETW. 28, 1563–1585 (2022).
	 3.	 Mao, Y. et al. A survey on mobile edge computing: the communication perspective. IEEE Commun. Surv. Tutor. 19, 2322–2358

(2017).
	 4.	 Islam, A. et al. A survey on task offloading in multi-access edge computing. J. Syst Archit. 118, 102225 (2021).
	 5.	 Shi, W. et al. Edge computing: vision and challenges. IEEE Internet Things J. 3, 637–646 (2016).
	 6.	 Xu, J., Chen, L. & Zhou, P. Joint service caching and task offloading for mobile edge computing in dense networks. In IEEE

INFOCOM 2018–IEEE Conf. Comput. Commun, 207–215 (2018).
	 7.	 Tang, T., Li, C. & Liu, F. Collaborative cloud-edge-end task offloading with task dependency based on deep reinforcement learning.

Comput. Commun. 209, 78–90 (2023).
	 8.	 Chen, L. et al. Collaborative service placement for edge computing in dense small cell networks. IEEE Trans. Mob. Comput. 20,

377–390 (2019).
	 9.	 Kai, C. et al. Collaborative cloud-edge-end task offloading in mobile-edge computing networks with limited communication

capability. IEEE Trans. Cogn. Commun. Netw. 7, 624–634 (2020).
	10.	 Zhang, L. et al. Min-max worst-case design for computation offloading in multi-user MEC system. In IEEE INFOCOM 2020–IEEE

Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), 1075–1080 (2020).
	11.	 Li, K. Scheduling independent tasks on multiple cloud-assisted edge servers with energy constraint. J. Parallel Distrib. Comput.

184, 104781 (2024).
	12.	 Moscato, P. & Cotta, C. A gentle introduction to memetic algorithms. In Handbook of Metaheuristics, 105–144 (Springer US,2003).
	13.	 Coello, C. A. C. & Lechuga, M. S. MOPSO: A proposal for multiple objective particle swarm optimization. In Proceedings of the

2002 Congress on Evolutionary Computation (CEC’02) vol. 2, 1051–1056 (IEEE, 2002).
	14.	 Deb, K. et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol Comput. 6, 182–197 (2002).
	15.	 Zitzler, E. SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Inst. Für Techn. Inf. und Kommunkationary (TIK)-report

vol. 103, 1–21 (2001).
	16.	 Dai, X. et al. Task co-offloading for D2D-assisted mobile edge computing in industrial internet of things. IEEE Trans. Industr Inf.

19, 480–490 (2022).
	17.	 Zhu, X. & Zhou, M. C. Multi-objective optimized cloudlet deployment and task offloading for mobile-edge computing. IEEE

Internet Things J. 8, 15582–15595 (2021).
	18.	 You, Q. & Tang, B. Efficient task offloading using particle swarm optimization algorithm in edge computing for industrial internet

of things. J. Cloud Comput. 10, 41 (2021).
	19.	 Zhou, J. et al. Mobility-aware computation offloading in satellite edge computing networks. IEEE Trans. Mob. Comput. 23, 9135–

9149 (2024).
	20.	 Panda, S. K. et al. An energy, delay and priority-aware task offloading algorithm for fog computing incorporating load balancing.

J. Supercomput. 81 (1), 1–24 (2025).
	21.	 Al-Habob, A. A., Dobre, O. A. & Armada, A. G. Sequential task scheduling for mobile edge computing using genetic algorithm. In

2019 IEEE Globecom Workshops (GC Wkshps),, 1–6 (IEEE, 2019).
	22.	 Liu, Y. et al. Dependency-aware task scheduling in vehicular edge computing. IEEE Internet Things J. 7, 4961–4971 (2020).
	23.	 Maray, M. et al. Dependent task offloading with deadline-aware scheduling in mobile edge networks. Internet Things. 23, 100868

(2023).
	24.	 Rao, R. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J.

Ind. Eng. Comput. 7 (1), 19–34 (2016).
	25.	 Rao, R. V., Savsani, V. J. & Vakharia, D. P. Teaching–learning-based optimization: an optimization method for continuous non-

linear large scale problems. Inf. Sci. 183 (1), 1–15 (2012).
	26.	 Tak M, Joshi A, Panda S K. Cloud task scheduling algorithms using teaching-learning-based optimization and Jaya algorithm[C]//

Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing. 106–113 (2022).
	27.	 Topcuoglu, H., Hariri, S. & Wu, M. Y. Performance-effective and low-complexity task scheduling for heterogeneous computing.

IEEE Trans. Parallel Distrib. Syst. 13 (3), 260–274 (2002).
	28.	 Kumar, M. S. et al. Granularity-based workflow scheduling algorithm for cloud computing. J. Supercomput. 73, 5440–5464 (2017).
	29.	 Sun, Y. et al. Vehicular task offloading and job scheduling method based on cloud-edge computing. IEEE Trans. Intell. Transp. Syst.

24, 14651–14662 (2023).
	30.	 Jiang, Q. et al. Metsm: multiobjective energy-efficient task scheduling model for an edge heterogeneous multiprocessor system.

Future Gener Comput. Syst. 152, 207–223 (2024).
	31.	 Zhang, J., Gong, B., Waqas, M., Tu, S., & Han, Z. A hybrid many-objective optimization algorithm for task offloading and

resourceallocation in multi-server mobile edge computing networks. IEEE Trans. Serv. Comput., 16, 3101–3114 (2023).
	32.	 Nandi, P. K. et al. Task offloading to edge cloud balancing utility and cost for energy harvesting internet of things. J. Netw Comput.

Appl. 221, 103766 (2024).
	33.	 Salehan, A., Deldari, H. & Abrishami, S. An online context-aware mechanism for computation offloading in ubiquitous and mobile

cloud environments. J. Supercomput. 75, 3769–3809 (2019).
	34.	 Guo, H. & Liu, J. Collaborative computation offloading for multiaccess edge computing over fiber–wireless networks. IEEE Trans.

Veh. Technol. 67, 4514–4526 (2018).
	35.	 Chakraborty, S. & Mazumdar, K. Sustainable task offloading decision using genetic algorithm in sensor mobile edge computing. J.

King Saud Univ. Comput. Inf. Sci. 34, 1552–1568 (2022).

Scientific Reports | (2025) 15:29754 20| https://doi.org/10.1038/s41598-025-08691-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	36.	 Shukla, P. & Pandey, S. MOTORS: multi-objective task offloading and resource scheduling algorithm for heterogeneous fog-cloud
computing scenario. J. Supercomput. 80, 22315–22361 (2024).

	37.	 Yao, X. A multi-objective cloud workflow scheduling optimization based on evolutionary multi-objective algorithm with
decomposition. Res. Square (2021).

	38.	 Song, F. H. et al. A multi-objective computation offloading algorithm for mobile-edge computing. IEEE Internet Things J. 7, 8780–
8799 (2020).

	39.	 Dauzère-Pérès, S. et al. The flexible job shop scheduling problem: A review. Eur. J. Oper. Res. 314, 409–432 (2024).
	40.	 Bedoui, A. & Lazar, N. A. Bayesian empirical likelihood for ridge and Lasso regressions. Comput. Stat. Data Anal. 145, 106917

(2020).

Acknowledgements
This work was supported by the Zhejiang Provincial Science and Technology Program (No. 2023C01042).

Author contributions
G. C. and W. Z. established the system model and designed the scheduling algorithm. G. C. designed the ex-
periments. W. Z. and W. X. conducted the experiments. G. C., W. Z., and H. B. analyzed the results. All authors
reviewed the manuscript.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to H.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025

Scientific Reports | (2025) 15:29754 21| https://doi.org/10.1038/s41598-025-08691-y

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Efficient workflow scheduling using an improved multi-objective memetic algorithm in cloud-edge-end collaborative framework
	﻿﻿Related work
	﻿Task scheduling
	﻿Solution method
	﻿Summary

	﻿﻿Problem description
	﻿Scenario description
	﻿Application description
	﻿Task description
	﻿Scheduling strategy

	﻿﻿Mathematical model
	﻿Decision variables
	﻿Application completion time
	﻿Energy consumption model
	﻿Constraint analysis
	﻿Complexity analysis
	﻿Formal definition of problem A
	﻿ Reduction to JSP
	﻿Solution equivalence
	﻿NP-hard conclusion

	﻿﻿Algorithm design
	﻿Encoding and decoding
	﻿Archive
	﻿Global optimization strategies
	﻿Dynamic opposition-based learning strategy
	﻿Crossover

	﻿Local optimization strategy
	﻿Individual selection
	﻿ Local search
	﻿Local search trigger strategy

	﻿Adaptive weight adjustment
	﻿Summary of the algorithm
	﻿﻿ Numerical experiments
	﻿ Data description
	﻿Data information
	﻿Energy consumption formula

	﻿Experimental setup
	﻿Parameter experiments
	﻿Verification of operator effectiveness
	﻿Comparison with other algorithms
	﻿Analysis of key factors in workflow scheduling
	﻿Validation of scheduling strategies
	﻿Validation of server quantities
	﻿Validation of multiple replicas

	﻿﻿Conclusion
	﻿References

