
A superpixel based self-attention 
network for uterine fibroid 
segmentation in high intensity 
focused ultrasound guidance 
images
Shen Wen, Dong Zhang, Yuting Lei & Yan Yang

Ultrasound guidance images are widely used for high intensity focused ultrasound (HIFU) therapy; 
however, the speckles, acoustic shadows, and signal attenuation in ultrasound guidance images hinder 
the observation of the images by radiologists and make segmentation of ultrasound guidance images 
more difficult. To address these issues, we proposed the superpixel based attention network, a network 
integrating superpixels and self-attention mechanisms that can automatically segment tumor regions 
in ultrasound guidance images. The method is implemented based on the framework of region splitting 
and merging. The ultrasound guidance image is first over-segmented into superpixels, then features 
within the superpixels are extracted and encoded into superpixel feature matrices with the uniform 
size. The network takes superpixel feature matrices and their positional information as input, and 
classifies superpixels using self-attention modules and convolutional layers. Finally, the superpixels 
are merged based on the classification results to obtain the tumor region, achieving automatic tumor 
region segmentation. The method was applied to a local dataset consisting of 140 ultrasound guidance 
images from uterine fibroid HIFU therapy. The performance of the proposed method was quantitatively 
evaluated by comparing the segmentation results with those of the pixel-wise segmentation networks. 
The proposed method achieved 75.95% and 7.34% in mean intersection over union (IoU) and mean 
normalized Hausdorff distance (NormHD). In comparison to the segmentation transformer (SETR), 
this represents an improvement in performance by 5.52% for IoU and 1.49% for NormHD. Paired t-
tests were conducted to evaluate the significant difference in IoU and NormHD between the proposed 
method and the comparison methods. All p-values of the paired t-tests were found to be less than 
0.05. The analysis of evaluation metrics and segmentation results indicates that the proposed method 
performs better than existing pixel-wise segmentation networks in segmenting the tumor region on 
ultrasound guidance images.
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High intensity focused ultrasound (HIFU) is a valid image-guided tumor treatment method with non-invasive 
features that greatly reduces the suffering of patients1–4. Image guidance plays an important role in HIFU therapy 
as it assists in integrated therapy planning, real-time control, and evaluation. Currently, HIFU therapy is carried 
out using either ultrasound or magnetic resonance imaging guidance5. Ultrasound guidance is widely used in 
HIFU therapy for real-time monitoring of tumor or organ peristalsis because of its flexibility and low cost, 
and the obtained ultrasound guidance images need to be accurately and rapidly segmented for tumor ablation. 
During the ablation of a tumor, if the tumor region cannot be accurately located, the tumor tissue may be ablation 
while surrounding normal tissues may be injured, causing unnecessary harm to the patient6. If the tumor region 
always needs to be manually segmented and located, the process becomes tedious and greatly reduces treatment 
efficiency. It is necessary to propose a computer-assisted segmentation method in HIFU therapy to reduce the 
burden of radiologists and improve the efficiency of treatment.

In recent years, various ultrasound image segmentation methods have emerged, demonstrating excellent 
performance in segmenting organs and tissues. Traditional ultrasound image segmentation methods can be 
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broadly divided into three categories, edge-based, region-based and those combined with specific theoretical 
models7,8. The edge-based segmentation method9,10 contains two basic steps: the first step is to identify the 
edge pixels in the ultrasound image with the image features, and the second step is to connect edge pixels to 
achieve image segmentation. Edge-based segmentation methods are sensitive to image noise and local features 
because of the various filters employed in identifying edge pixels. Therefore, edge-based segmentation methods 
are often used as the initial contours of other automated segmentation algorithms or in combination with other 
methods. The method of combining specific theoretical models of segmentation is represented by the active 
contour model11,12, which converges the initial contour to the target contour by minimizing the energy function. 
The active contour model requires a proper initial contour to ensure performance, and it is usually difficult to 
converge to the global optimum if the initial contour is far from the true contour13,14. Unlike organs or tissues 
with fixed shapes, it is challenging to obtain prior shape information for tumors, making it difficult to constrain 
the segmentation process. Region-based segmentation methods15–20 usually over-segment ultrasound images 
into several sub-regions such as superpixels, combine sub-regions of the same type into a region, and select 
tumor regions from these regions. A superpixel is a collection of pixels that share similar features and are grouped 
together, allowing for the extraction of specific features to represent the superpixel. By clustering or classifying 
the superpixel based on these features, segmentation can be achieved. These traditional methods can achieve 
satisfactory segmentation of ultrasound guidance images as long as effective features are selected beforehand. 
Therefore, there is still a need for an automatic feature extraction method with less manual intervention to 
segment ultrasound guidance images.

Nowadays, some machine learning methods, such as convolutional neural networks (CNN)21–25, have 
achieved favorable results in medical image segmentation and pioneered new paths for the automatic 
segmentation of ultrasound images. However, pixel-wise segmentation networks like U-Net26, do not perform 
as well in the segmentation of ultrasound guidance images from small datasets compared to other medical 
images, such as computed tomography (CT) scans and magnetic resonance imaging (MRI) scans. This is due to 
the strong noise interference in ultrasound guidance images, which can introduce randomness in pixel values. 
The lower quality and signal-to-noise ratio of ultrasound guidance images compared to general ultrasound 
images are attributed to the mode in which the transducer is mounted during imaging16. Convolution is widely 
used in common pixel-wise segmentation methods, where features extracted from a fixed-size rectangular box 
(referred to as the receptive field) centered on the pixel are typically used to determine the pixel’s category26–28. 
Near the boundary, both target and background regions are typically included within the receptive field of a 
pixel. In low signal-to-noise ratio ultrasound guidance images, this lack of specificity in boundary pixel features 
is exacerbated by strong noise, further blurring the distinctions between them and resulting in a decline in 
segmentation performance. This poses a challenge for implementing machine learning-based segmentation on 
ultrasound guidance images. To enhance segmentation performance on ultrasound guidance images, methods 
that integrate traditional methods with machine learning have been developed. Ni et al.29 proposed a method 
combining a deformable contour model and a neural network for segmenting ultrasound guidance images. It 
exploits deep neural networks to train contrastive loss as a boundary search metric for deformable contours 
to segment ultrasound image sequences. However, this method relies on a shape prior for the similarity of the 
lesion region in a sequence of images. The performance and computational efficiency of this method are affected 
by the initialization of contours, resulting in a computation time that is 2.5 times longer than that of Attention 
U-Net27.

A superpixel is a homogeneous subregion of an image, composed of a group of pixels with similar features 
such as position, color, brightness, and texture. Performing feature extraction and analysis with superpixels 
rather than individual pixels can effectively resist noise interference30,31. By using superpixels as primitives in 
subsequent steps, the computational cost is reduced and the method’s speed is improved. A well-performed 
superpixel segmentation method can result in superpixel boundaries that closely approximate the true contours 
of target regions32. Due to the heterogeneity of the tumor, the complete tumor region will be over segmented 
into multiple superpixels. After superpixel segmentation, both the tumor region and the background region are 
over segmented into multiple superpixels. The features extracted from the background superpixels and target 
superpixels can accurately represent the differences in the characteristics of different regions. It is promising to 
distinguish superpixels into tumor or background, effectively achieving ultrasound guidance image segmentation.

The traditional image segmentation methods based on superpixel include extracting features from 
superpixels and implementing feature-based classification or clustering to complete the final target region 
segmentation30,33,34. Due to the potential presence of diverse background regions in images, such as other organs, 
clustering methods typically aggregate background superpixels into multiple regions. Additional processing is 
required to extract the tumor region from these clustered result regions. In contrast, classification methods 
can be employed to distinguish superpixels as either tumor or background based on the presence or absence 
of features specific to the tumor region. Artificial neural networks can automatically extract effective features 
from images and perform classification tasks through machine learning without human intervention. However, 
superpixels’ shapes and sizes are irregular, posing a challenge on how to enable networks to effectively extract 
features from these irregular superpixels. To solve this problem, patches rather than superpixels are used as the 
basic input unit for neural network35–37. One method is to select one or more patches from the superpixel and 
put them into the network for classification36. In this method, if the selected patch is relatively small, the features 
to describe the superpixel cannot represent the superpixel well; if the selected patch is relatively large, there may 
be a large number of very small superpixels, which require manual intervention for post-processing if they are 
discarded; and if they are not discarded and used for classification, a huge number of pixels that do not belong to 
the superpixel are extracted for features, which may lead to unreliable features. Another method is to divide the 
image into patches, classify the patches, and then perform boundary correction with superpixels35,37. They only 
use superpixels as a post-processing method to correct the boundaries, which requires manual intervention. 
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There are few studies that use superpixels as basic input units in neural networks for classification and then 
merge the superpixels based on these classification labels to achieve medical image segmentation. This is due to 
the difficulty of extracting information from irregular superpixels and generating feature matrices of uniform 
size.

Moreover, segmentation through superpixel classification still faces a challenge: classification solely based 
on features extracted from individual superpixels does not utilize the prior knowledge that tumor regions and 
background regions are respectively connected, leading to a loss of information from adjacent superpixels. Even 
with a low error rate, incorrectly classified superpixels may occur in any part of the background or target region, 
potentially causing serious errors in the final segmentation result. The transformer introduces the self-attention 
mechanism38 and can use positional information to represent relationships between words. It has achieved great 
success in natural language processing and has also been successfully applied to computer vision39,40.

To address the problems mentioned above, this study proposes a machine learning network incorporating 
self-attention based on superpixel classification for the segmentation of ultrasound guidance images. The 
proposed method addresses the challenge of delivering complete and accurate information with irregularly 
shaped superpixel to the neural network. Subsequently, a superpixel classification network based on a self-
attention mechanism is proposed, which utilizes the mutual aggregation of tumor superpixels to enhance 
classification accuracy, thereby providing improved segmentation results. The three main contributions of this 
study are as follows.

	1.	 proposed a method for encoding superpixel information based on texture primitives, which can extract 
texture features of superpixels with less manual intervention, and designed algorithms to convert superpixel 
feature matrices with different sizes into the uniform size by dimensionality transformation.

	2.	 proposed a neural network based on self-attention mechanism for the classification of superpixel matrices 
to achieve tumor segmentation. The network aggregates all superpixel feature matrices for learning and can 
make full use of the category information of neighboring superpixels in classification to ensure the connec-
tivity of the output tumor region, which solves the problem of random position distribution of tumor labeled 
superpixels when superpixel is classified individually.

	3.	 The quantitative analysis of the seven metrics was performed to compare the proposed method with several 
other pixel-wise segmentation methods. The analysis shows that the segmentation results of the method are 
closer to the ground truth segmentation.

Materials and methods
Datasets
This work includes 140 uterine fibroid ultrasound guidance images of different patients from Model JC200 
HIFU systems (Chongqing Haifu Tech Co., Ltd, Chongqing, China) in the First Affiliated Hospital of Chongqing 
Medical University (Chongqing, China). The guiding transducer (CA430, Esaote, Italy) is fixed to the therapeutic 
transducer and its center frequency is 3.5  MHz. All data collection complies with the Helsinki Declaration. 
The study received approval from the Medical Ethics Committee of the First Affiliated Hospital of Chongqing 
Medical University. Informed consent for the use of all data has been obtained from the patients participating 
in the study. The original image collected by the HIFU system is 768 × 576 pixels. Because the ultrasound scan 
area was shaped like a sector rather than a rectangle, the radiologists identified the region of interest (ROI) and 
corresponding tumor contours using only the imaging data and tumor size without using any of the patient’s 
personal information. The grayscale of each image is between 0 and 255. The radiologist defined the tumor 
contour, which was applied as a reference contour in the quantitative evaluation of segmentation results.

There are 140 ultrasound guidance images of uterine fibroids in our dataset, of which 80 images are the training 
set, 20 are the validation set, and 40 are the test set. To improve the generalization ability and the robustness 
of the network, data augmentation was applied to the training set and validation set. Specifically, the original 
images are processed by applying horizontal flipping, vertical flipping, and rotation. These methods expand the 
dataset to 8 times its original size, providing more samples for the network. Data augmentation techniques41 
based on basic image manipulations include geometric transformations, flipping, rotation, translation, color 
space transformations, noise injection, etc. It has been demonstrated that ultrasound images inevitably feature 
severe speckle noise, which is neither plain gaussian noise nor multiplicative noise42–44, and contain abundant 
texture features. Therefore, data augmentation is performed with only affine transformation or cropping of the 
images in order to avoid losing the detailed texture features in the ultrasound guidance images.

Method overview
The flowchart of the method proposed for ultrasound guidance image segmentation is shown in Fig. 1, which 
is based on superpixel segmentation, classification, and merging. The HIFU image is first over-segmented into 
superpixels using the iterative multiple region growth (IMRG)17 algorithm. The image is then encoded into 
a superpixel feature matrix. The steps include extracting the features within the superpixels and converting 
them into a uniform matrix using dimensionality transformation and then concatenating them into a superpixel 
feature matrix. The superpixels are then classified using a self-attention-based network. Finally, the superpixels 
are merged based on the predicted superpixel categories of the classifier and postprocessed to obtain the final 
segmentation result. The loss function for training the classifier is calculated from the superpixel labels and 
predicted superpixel classes.

Generating superpixels
A modified algorithm based on IMRG17 is used to generate superpixels on ultrasound guidance images. The 
simple linear iterative cluster (SLIC)33 algorithm may generate numerous outliers in HIFU ultrasound guidance 
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images with strong noise interference, necessitating forced connections that can result in an uncontrolled 
number of superpixels. Given that IMRG does not exhibit this issue and demonstrates superior computational 
efficiency, it is more suitable for generating superpixels in ultrasound guidance images.

The original IMRG algorithm has been optimized in two key aspects. Firstly, we adopted the hash algorithm 
to index the priority queues to improve the computing speed. Secondly, upon dequeuing and labeling a pixel, an 
additional step has been introduced to detect whether neighboring pixels possess a cluster label different from 
the current pixel’s label. When encountering a different label, the algorithm calculates the priority of the pixel 
and the cluster center of the neighboring pixel. If the calculated priority is lower than the current priority of the 
pixel, the pixel’s current label is updated to match that of the neighboring pixel. This step enhances algorithmic 
consistency, particularly at boundaries.

Encoding
Due to the irregular shape and variable size of superpixels, which cannot be directly used as input for a 
convolutional neural network requiring fixed-size rectangles, an approach to encoding superpixels is proposed to 
address this issue. The specific flow is shown in Fig. 2. The ultrasound guidance image is initially over-segmented 
into superpixels. The grayscale values of neighboring regions around each valid pixel within the superpixel are 
extracted and arranged into a column matrix to represent that pixel. These features from all valid pixels within the 
superpixel are concatenated to form a superpixel feature matrix describing the entire superpixel. Subsequently, 
the features extracted from each superpixel are compressed dimensionally and transformed to a uniform size. 
This approach for extracting superpixel features and encoding for normalization is detailed as follows.

Feature extraction
The grayscale values of pixels within the l × l rectangular window centered at pixel p are sequentially obtained 
and stored in a column vector of length l2, which can represent the feature of pixel p. This method can reflect 
the joint probability distribution of the grayscale values of a pixel and its neighboring pixels, considering spatial 
relationships of this pixel45. Several experiments have validated it as an effective technique for texture feature 
description46,47. Since each superpixel contains a large number of pixels and represents a homogeneous region, 
the extracted texture features exhibit better statistical stability due to the increased number of statistical samples. 

Fig. 1.  Flowchart of the proposed method.
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The proposed method does not apply filtering or other preprocessing to the image, which helps preserve the 
texture information embedded in the speckle noise.

Based on the method of extracting features from pixels, the column feature vectors generated by pixels within 
each superpixel are concatenated into a second-order structure tensor, forming a superpixel feature matrix of size 
l2 × T , where T  is the number of valid pixels within the superpixel. Due to the irregular shape of superpixels 

and the rectangular window used for feature extraction, some pixels within the superpixel may have l × l 
neighboring pixels that are mostly located outside the same superpixel. This inconsistency in neighboring pixels 
reduces the coherence of the features. To mitigate this issue, the feature extraction window should be positioned 
to remain within the boundaries of the same superpixel as much as possible. Nevertheless, if all the pixels near the 
superpixel boundaries are left unprocessed, it will lead to difficulty in extracting features from small superpixels. 
Therefore, prior to feature extraction within superpixels, the superpixel masks are dilated to achieve boundary 
dilation. Using a small kernel for the dilation operation helps maintain internal similarity within the superpixels.

Dimensionality transformation
The size of the superpixel feature matrix obtained from the superpixel is l2 × T . This vector can be further 
compressed using algorithms to reduce data volume and enhance the efficiency of feature description. In addition, 
the number of columns T  in the superpixel feature matrix is the number of valid pixels in that superpixel. For 
different superpixels, the numbers of columns in the feature matrices are different, which makes it difficult to 
input these matrices into a classification neural network. A compression algorithm for the superpixel feature 
matrix has been designed, which not only enhances the description efficiency of the feature matrix but also 
converts the feature matrix to a fixed column size.

For the matrix Am× n, the formula for the singular value decomposition is given in Eq. (1):

	 Am× n = Um× mΣ m× nV T
n× n � (1)

Fig. 2.  The flowchart of the superpixel encoding.
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where Σ m× n = diag(σ 1, σ 2 . . . σ p), σ i is the singular value of Am× n, p = min(m, n), 
σ 1 ≥ σ 2 ≥ . . . ≥ σ p. In the matrix Σ m× n, the singular values σ i are ordered from the largest to the 
smallest, and decrease rapidly. In many cases, the sum of the first 10% or even 1% of the singular values account 
for more than 99% of the sum of total singular values. Therefore, the matrix Am× n can be approximately 
restored from the first r nontrivial singular values as shown by Eq. (2), where Vn× r  and Um× r  both denote 
matrices composed of the first r column vectors of their original matrix, Σ r× r  denotes the diagonal matrix 
composed of the first r singular values of Σ m× n. Projecting Am× n into a new eigenspace using Eq. (3) can 
preserve almost all of its information while transforming the column dimensions.

	 Am× n ≈ Um× rΣ r× rV T
r× n � (2)

	 A′
m× r = Am× nVn× r ≈ Um× rΣ r× r � (3)

For simplicity, let r = l2. In this way, the superpixel feature matrix is compressed and transformed to a fixed 
size of r × r.

Inevitably, some superpixels generated in superpixel segmentation are extremely small, resulting in the 
number of columns in these superpixel matrices being smaller than a reasonable setting of r. If such a superpixel 
matrix appears, it is not possible to apply dimensionality transformation to it. Instead, the superpixel matrix is 
replaced with an r × r matrix where all elements are zero. After processing, all the superpixels are concatenated 
in order to produce a matrix of size r × r × K , where K  is the number of superpixels. An all-1 matrix of 
1 × K  is also generated, called the padding mask. The elements representing the small superpixels mentioned 

previously are set to 0, which means that these superpixels are not focused by the neural network.

Labeling superpixel
Supervised learning for superpixel classification using neural networks involves optimizing the network based 
on labels assigned to input data. During training and validation, we divided the superpixels into two categories: 
object (referring to the tumor tissue region) and background (referring to the normal tissue region), with label 
0 representing the background and label 1 representing the object. Typically, segmentation results annotated 
by radiologists are presented as binary images, classified at the pixel-level. Therefore, when assigning labels to 
superpixels, the same pixel-level perspective is considered. Using the ground truth as the reference, a superpixel 
is labeled as ‘background’ if the number of pixels belonging to the tumor tissue region within the superpixel 
is less than 50% of all pixels within the superpixel; otherwise, it is labeled as ‘object ‘. This process results in 
generating a label 1 × K  matrix. To provide adjacency information of superpixels for enhancing classification 
performance, the centroid coordinates of each superpixel are stored in a 2 × K  matrix, referred to as ‘SP center 
coordinate’, which is used by the classifier.

Figure 3 illustrates the steps of superpixel generation, encoding, and labeling for one image, resulting in an 
r × r × K  superpixel feature matrix, a 1 × K  padding mask, and a 2 × K  SP center coordinate, which 
serve as inputs to the neural network, along with a 1 × K  label for supervised learning.

Network architecture
In the proposed method, the superpixel feature matrix composed of all superpixels is used for classification. 
This approach utilizes the self-attention mechanism to address the problem of information loss from adjacent 
superpixels and achieves image segmentation without the need for a decoder.

The specific structure of the proposed network is shown in Fig. 4. First, trainable linear projections are applied 
to flatten the r × r × K  superpixel feature matrix and project it onto a tensor of shape C × K . Then, it is 
reshaped to H × W × C , where H and W are the number of seed points in horizontal and vertical directions 
of the image, respectively. The SP center coordinate is likewise projected and reshaped into a tensor of shape 
H × W × C , termed as position embedding, to preserve the positional information between each superpixel 
in an image. The embedded superpixel is composed by adding the projection and position embedding, and is 
then fed into the subsequent module.

The network is composed of the MSABlock, the SP Merge block, and the prediction head. The details of 
MSABlock and SP Merge are shown in Fig. 5. The MSABlock consists of a normalization layer and a multi-
head attention block, with a residual connect after38. The MSABlock dynamically models feature relationships 
between embedded superpixels through a dynamic, data-driven mechanism that enables each superpixel to 
interact with all others in a sequence. Multi-head attention captures diverse semantic or spatial patterns in 
parallel subspaces. Positional embeddings encode the spatial order of superpixels. The pairwise correlations 
are computed adaptively by querying the key-value matrix, followed by context-aware feature aggregation. The 
SP Merge block consists of a convolution layer with a kernel size of 2 and a stride of 2, and a normalization 
layer. The embedded superpixel is alternately processed by the MSABlock and the SP Merge block, followed 
by global averaging pooling. Finally, the results are fed into the prediction head, producing a final output of a 
1 × K  tensor representing the predicted classes of each superpixel. The activation function in the linear layer 

is gaussian error linear units (GELU). The activation function used in the output layer of the network is sigmoid.

Merging and postprocess
To obtain the binarized segmentation result, all pixels are set as object in the superpixels identified as object by 
the classification result, and all pixels are set as background in the superpixels identified as background. For the 
previously mentioned small superpixels that are not prioritized, their labels will be assigned based on the labels 
of adjacent superpixels: if the adjacent superpixels are mostly labeled as object (or background), the label of the 
small superpixel will be set to object (or background). After assigning labels to the superpixels following the 
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Fig. 4.  Structure of the proposed network.

 

Fig. 3.  The flowchart of the image preprocessing.

 

Scientific Reports |        (2025) 15:21970 7| https://doi.org/10.1038/s41598-025-08711-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


above steps and obtaining the binarized segmentation result, the jagged superpixel boundaries are smoothed 
using the morphological opening operation.

Experiment configuration
During the superpixel generation and encoding, hyperparameters such as the number of superpixels, weighting 
factor, and kernel size not only affect the size and shape of the superpixels but also relate to the effectiveness of 
the training and testing of the neural network. Table 1 shows the key hyperparameters utilized in the method. 
Experiments are performed according to the hyperparameters in the table, and eventually 256 superpixels are 
obtained for each image. The reason for choosing 256 superpixels is to give the superpixel a reasonable size to be 
able to extract features from it. After encoding, each superpixel is converted into a matrix of size 25 × 25 and a 
corresponding label of 0 or 1 is attached to each superpixel.

We implemented the superpixel classification network in PyTorch by training on an NVIDIA RTX 3060 GPU. 
The AdamW optimizer is applied to optimize our network. The epoch size and batch size of the network are set 
to 100 and 4, respectively. The base learning rate is set to 0.0001. During training, if the loss of the validation 
set of 4 epochs remains constant, the learning rate decreases to 1/10 of the previous one. To address the issue 
of imbalanced positive and negative samples obtained after superpixel generation, we employ a weighted cross-
entropy loss function.

Evaluation metrics
The performance of the proposed method is evaluated by comparing the differences between the segmentation 
results of the method and the clinical technicians. In addition to direct visual observation of images for 

Hyperparameter Value

Quantity of superpixels K 256

Weighting factor t 0.08

Iteration num 10

Kernel size ( l × l) 5 × 5

Table 1.  Hyperparameters for superpixel generation and encoding.

 

Fig. 5.  Detail of the modules.
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qualitative evaluation, evaluation metrics were used to quantitatively and objectively assess the quality of 
automatic segmentation algorithms. The metrics include region-based and distance-based evaluation metrics, 
both of them were chosen for evaluation in this study. The true positive rate (TPR), false positive rate (FPR) 
and intersection over union (IoU) belong to the region-based evaluation metrics for evaluating the difference 
between the automatic segmentation results and the ground truth. The formulas are shown in Eq. (4).

	




T P R = Aa∩ Am
Am

F P R = Aa∪ Am−Am
∁ U Am

IoU = Aa∩ Am
Aa∪ Am

� (4)

where Aa represents the predicated foreground region by the method, Am represents the foreground region of 
ground truth, and ∁ U Am represents the background region of ground truth.

The distance-based evaluation metrics, which is different from the region-based evaluation metrics, pay 
more attention to the performance of the segmentation results at the contour. The following Eqs. (5) and (6) are 
the formulas for two distance-based assessment metrics: Hausdorff distance (HD) and mean absolute distance 
(MAD).

	




HD (Ca, Cm) = max
(

max
m∈ Cm

d (m, Ca) , max
a∈ Ca

d (a, Cm)
)

MAD (Ca, Cm) = 1
2

[
1

|Cm|

∫
m∈ Cm

d (m, Ca) dm + 1
|Ca|

∫
a∈ Ca

d (a, Cm) da

] � (5)

where a denotes a pixel located on the contour of the predicted mask generated by the method, Ca represents the 
contour of predicated mask, and m denotes a pixel located on the contour of the ground truth, Cm represents 
the contour of ground truth. The distance from pixel a to contour Cm is calculated as:

	
d (a, Cm) = min

m∈ Cm

∥a − m∥ � (6)

where ∥ a − m∥  denotes the two-dimensional Euclidean distance from pixel a to pixel m. Since the tumor 
size in each image varies and HD and MAD are positively correlated with the length of contour, the HD and 
MAD should be divided by the tumor size factor for normalization when applying HD and MAD to evaluate the 
segmentation performance. The normalized HD and MAD are defined as Eq. (7).

	

{
NormHD = HD

|Cm|
NormMAD = MAD

|Cm|
� (7)

Results
In this section, to demonstrate the effectiveness of the proposed method for ultrasound guidance image 
segmentation, the performance of the proposed method is compared with existing pixel-wise segmentation 
networks. Four networks were selected for the comparison experiments: U-Net26, Attention U-Net27, 
DeeplabV3plus28, and SETR40. The U-Net has demonstrated high performance on small datasets and has 
become the mainstream method for medical image segmentation among the numerous CNN-based medical 
image segmentation algorithms. The encoder-decoder network structure of U-Net has enlightened a huge 
number of segmentation methods for medical images since it was developed48. DeeplabV3plus also employs the 
encoder-decoder structure as its main structure and joins the atrous convolution to extend the receptive field 
while retaining the resolution of the feature map, which improves the performance of the network. Attention 
mechanisms have played an increasingly prominent role in computer vision over the past decade since they 
were first proposed49. Oktay et al. introduced the Attention U-Net, which adds attention mechanisms to the 
U-Net to improve the performance of the network. After self-attention-based transformer was proposed39, it 
was quickly and widely used in the field of natural language processing with remarkable success, and then the 
transformer was introduced into the field of computer vision. Sixiao Zeng et al. applied the transformer to 
semantic segmentation, proposed the SETR. The train set, validation set, and test set used in the comparison 
networks are consistent with those used in the proposed method, and the loss functions employed are dice loss 
combined with cross-entropy loss.

The boxplots of the region-based evaluation metrics are shown in Fig. 6. As shown in the figure, the proposed 
method outperforms the others in terms of TPR, FPR, and IoU. The shorter length of the boxes suggests a 
more concentrated data distribution for the proposed method. The Table 2 lists the mean values and standard 
deviations of region-based evaluation metrics for these methods. The proposed method achieved a mean TPR 
of 89.86% with a standard deviation of 8.84%, a mean FPR of 4.53% with a standard deviation of 4.21%, and 
the mean IoU of 75.95%, which is an improvement of 5.52% over SETR, with a standard deviation of 11.24%. 
Furthermore, the paired t-test was employed to demonstrate that the proposed method improves the IoU. The 
results of the test comparing the proposed method with the other methods are shown in Table 3, with four 
p-values listed. In addition, in order to quantify the improvement of the proposed method compared to other 
methods, the Cohen’s d50 for assessing the effect sizes is calculated as shown in Table 3. From the table, it can be 
inferred that the proposed method outperforms the other comparative models in terms of IoU at a significance 
level of 0.01. Additionally, a medium improvement in IoU is achieved compared to SETR.
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The boxplots of the distance-based evaluation metrics are shown in Fig. 7. As shown in the figure, the proposed 
method outperforms the others in terms of HD, NormHD, MAD, and NormMAD. The Table 4 lists the mean 
values and standard deviations of distance-based evaluation metrics for these methods. The proposed method 
also performs well, achieving an average HD of 27.39 pixels, an average NormHD of 7.34%, an average MAD of 
8.03 pixels, and an average NormMAD of 2.17%. The paired t-test was also employed to demonstrate that the 
proposed method improves the NormHD. The results of the paired t-test comparing the proposed method with 
the other methods are presented in Table 5. The Cohen’s d is also shown in Table 5. At a significance level of 0.05, 
the proposed method was found to outperform the other comparison models in NormHD. Moreover, a small 
improvement in NormHD is achieved by the proposed method compared to SETR.

Comparing methods U-Net26 Attention U-Net27 DeeplabV3plus28 SETR40

p-value 1.6 × 10− 4 4.0 × 10− 5 5.7 × 10− 7 4.3 × 10− 3

Cohen’s d 0.684 0.804 0.887 0.419

Table 3.  p-values of paired t-tests and cohen’s d for IoU between the proposed method and comparing 
methods.

 

TPR (%) FPR (%) IoU (%)

U-Net26 84.33 ± 23.32 8.08 ± 6.76 64.94 ± 19.48

Attention U-Net27 83.03 ± 22.33 8.03 ± 6.50 63.63 ± 18.23

DeeplabV3plus28 81.00 ± 19.85 7.39 ± 7.15 62.72 ± 17.55

SETR40 87.11 ± 13.77 5.89 ± 4.89 70.43 ± 14.55

SANet (proposed) 89.86 ± 8.84 4.53 ± 4.21 75.95 ± 11.24

Table 2.  Region-based evaluation of various methods.

 

Fig. 6.  Region-based evaluation of various methods, from left to right: (a) TPR, (b) FPR, and (c) IoU. The 
methods in each plot are, from left to right, U-Net, Attention U-Net, DeeplabV3plus, SETR, and proposed.
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The segmentation results of these methods for the same image are shown in Fig. 8. As shown in the figure, on 
images with low noise, all methods give satisfactory segmentation results. However, on images with strong noise 
and unclear tumor boundaries, the segmentation results of the other methods decrease substantially, whereas 
the proposed method exhibits a smaller decline and maintains high segmentation accuracy, demonstrating 
stronger robustness.

Comparing methods U-Net26 Attention U-Net27 DeeplabV3plus28 SETR40

p-value 8.9 × 10− 6 6.5 × 10− 8 1.4 × 10− 5 0.019

Cohen’s d 0.867 1.187 0.605 0.301

Table 5.  p-values of paired t-tests and cohen’s d for NormHD between the proposed method and comparing 
methods.

 

HD (pixels) NormHD (%) MAD (pixels) NormMAD (%)

U-Net26 47.54 ± 27.76 12.48 ± 7.13 12.10 ± 6.48 3.35 ± 2.05

Attention U-Net27 55.51 ± 30.27 14.64 ± 7.48 12.75 ± 6.10 3.49 ± 1.84

DeeplabV3plus28 37.95 ± 19.58 10.23 ± 5.18 13.27 ± 6.85 3.66 ± 2.15

SETR40 32.15 ± 17.55 8.83 ± 5.49 10.20 ± 5.35 2.86 ± 1.88

SANet (proposed) 27.39 ± 15.78 7.34 ± 4.21 8.03 ± 4.33 2.17 ± 1.25

Table 4.  Distance-based evaluation of various methods.

 

Fig. 7.  Distance-based evaluation of various methods: (a) HD is shown in the top left, (b) NormHD in the top 
right, (c) MAD in the bottom left, and (d) NormMAD in the bottom right. The methods in each plot are, from 
left to right, U-Net, Attention U-Net, DeeplabV3plus, SETR, and proposed.
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Discussion
It is a challenge to achieve the automatic segmentation of ultrasound guidance images under strong noise 
interference. In this study, we successfully implemented ultrasound guidance image segmentation under strong 
noise interference based on superpixel classification. This study proposed a superpixel feature extraction method 
based on texture primitives, and a dimensionality transformation method to convert a coding matrix of variable 
size into a superpixel feature matrix of fixed size, which solves the problem that superpixels are of variable 
size and shape and cannot be inputted into the neural network for processing. And a superpixel classification 

Fig. 8.  The segmentation results of ultrasound guidance images by various methods.
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network based on the self-attention mechanism was proposed, which solves the problem of holes in continuous 
tumor and background regions due to the lack of positional information when individual superpixels are directly 
classified by introducing positional information and self-attention.

The effectiveness of the proposed method is demonstrated through experimental comparison with other pixel-
wise segmentation networks on uterine fibroid ultrasound guidance images. As demonstrated in Table 2; Fig. 6, 
the proposed method exhibits superior performance in the IoU, TPR and FPR metrics, with improvements of 
5.52%, 2.75% and 1.36%, respectively, in comparison to SETR. As shown in Table 4; Fig. 7, the proposed method 
also performs well with average HD, average NormHD, average MAD and average NormMAD of 27.39 pixels 
and 7.34%, 8.03 pixels and 2.17%, respectively, which is an improvement of 4.76 pixels, 1.49%, 2.17 pixels and 
0.69%, when compared to SETR. The proposed method achieved medium improvement in IoU and NormMAD, 
and small improvement in NormHD. It demonstrates that the improvement of the proposed method is relatively 
large at the mean boundary and small at the maximum boundary. This is because misclassified superpixels at 
the boundary can seriously impact the maximum boundary of the segmentation result. As shown in Fig. 8, the 
proposed method performs better than other methods on images with strong noise and unclear tumor boundaries. 
The proposed method does not suffer from the problem of holes in continuous tumor and background regions 
compared to methods such as U-Net, due to the introduction of the self-attention mechanism and positional 
information. Compared to pixel-wise segmentation networks, the proposed method can segment the tumor 
region more efficiently in ultrasound guidance images under strong noise interference, and the mean contour is 
closer to the contour drawn by the radiologist. In future studies, post-processing methods can be considered to 
smooth the jagged boundaries to further improve the performance of segmentation. Figure 9 shows examples 
of input images, labeled images, and attention maps of superpixels. It can be seen that the network focuses more 
on superpixels at the tumor boundary.

Moreover, the proposed method is not limited to the ultrasound guidance image and is able to be applied to 
other medical images with strong noise interference. However, the preprocessing step of the method is relatively 
complex, and the proposed method may not be able to outperform existing pixel-wise segmentation methods for 
high signal-to-noise ratio medical images or natural images.

Conclusions
We proposed the superpixel based self-attention network, which combines superpixels and self-attention 
mechanism to automatically segment tumor regions for ultrasound guidance images. Specifically, in this 
method, the image is first segmented into superpixels, then each superpixel is encoded to the uniform size 
and concatenate, then fed into a self-attention-based network for classification, and finally, based on the 
classification result, the superpixels are merged to obtain the segmentation result. Compared with pixel-wise 
image segmentation networks, the superpixel-based method is more effective for ultrasound guidance images. 

Fig. 9.  Visualization of network’s attention of superpixel: (a) images, (b) ground truth, and (c) attention maps 
of superpixels.
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The effectiveness of the method was further validated by quantitatively evaluating the segmentation results of 
uterine fibroids ultrasound guidance images from HIFU therapy and comparative experiments with the existing 
segmentation network.

Data availability
The data analyzed for this study can be accessed from the corresponding author upon reasonable request.
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