
An elegant intellectual engine
towards automation of blockchain
smart contract vulnerability
detection
Balachandar Raju1 & Gayathri Devi K2

To prevent vulnerabilities and ensure app security, smart contract vulnerability detection identifies
flaws in blockchain code. To overcome the limitations of traditional detection methods, this study
introduces a novel approach that combines Explainable Artificial Intelligence (XAI) with Deep Learning
(DL) to detect vulnerabilities in smart contracts. The proposed intellectual engine operates in multiple
stages. First, a smart contract is created, and the user provides a value during the runtime phase.
XAI and DL then analyze the opcodes in high-value contracts to detect potentially risky processes. If
violations such as security protocol failures, insufficient funds, or account restrictions are found, the
engine halts the transaction and generates an error report. If the contract passes this vulnerability
assessment, it continues executing without interruption. This ensures flagged transactions remain
functional while being assessed. Our proposed Hybrid Boot Branch and Bound Long Short-Term
Memory (HB3LSTM) approach achieves outstanding performance, with an accuracy of 99.68%,
precision of 99.43%, recall of 99.54%, and an F1-score of 99.40%, which surpasses the performance of
existing methods.

Keywords  Blockchain, Branch and bound optimization, Deep learning, Opcode, Smart contract,
Vulnerability detection

Blockchains are distributed databases with immutability and tamper-resistance1. In smart contract systems, code
is law, and conditions in smart contracts cannot be modified2. Smart contracts offer multiple3. However, it can
be difficult to address exploitable bugs in smart contracts written in languages like Solidity4. Ethereum’s open
network and control of financial assets make smart contracts easy targets for attackers5. Bugs in smart contracts
can have global effects, leading to hard forks and significant financial losses6. Existing methods for preventing
financial losses due to flaw exploitation in smart contracts include data flow analysis, runtime monitoring,
fuzzing, symbolic execution, and Satisfiability Modulo Theories (SMT) solutions7.

These techniques require human expertise, have long detection times, and do not cover all vulnerabilities8.
Machine Learning (ML) has shown promise in detecting smart contract vulnerabilities, but existing solutions
have limitations, requiring access to source code and being unable to identify specific vulnerability types, only
classifying them as binary9. Smart contract vulnerabilities can be divided into four groups. Reentrancy attacks,
where malicious contracts recursively call the original contract; integer overflow/underflow, causing incorrect
calculations; improper access control, allowing unauthorized actions; and unchecked external calls, leading to
failed or exploited interactions. Mitigations include using safe math, access controls, and handling external call
errors10.

Additional risks, such as greedy contract designs and unprotected self-destruct instructions11, can lead
to Denial of Service (DoS) attacks. Miners can also influence transaction order, causing transaction order
dependence12. Mitigations include using safe math libraries, strong access control, error handling for external
calls, and the “Checks-Effects-Interactions” pattern13. The use of Deep Neural Network (DNN) detectors is also
gaining traction in automatically identifying and mitigating smart contract vulnerabilities14. These practices
emphasize the importance of secure coding and thorough audits to prevent exploitation15.

1Department of Computer Science and Engineering, Pollachi Institute of Engineering and Technology, Pollachi,
India. 2Department of Electronics and Communication Engineering, Dr. N.G.P Institute of Technology, Coimbatore,
India. email: balachandarraju.j@gmail.com

OPEN

Scientific Reports | (2025) 15:26104 1| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-08870-x&domain=pdf&date_stamp=2025-7-18

DNN detectors can detect a variety of problems by keeping track of historical vulnerabilities16. With little
data, transfer learning allows for rapid adaptability to new vulnerabilities17. It can be difficult to analyze Artificial
Intelligence (AI) models and feature selection in closed systems18.

Learning-based vulnerability detection techniques have benefited from DL success in IoT security19.
Effective vulnerability detection is becoming more and more necessary as smart contracts in blockchain systems
proliferate in order to stop exploitation20. Conventional approaches lack coverage and are labor-intensive and
slow. Although machine learning, especially DL, has potential, it finds it difficult to adjust to new weaknesses.
Models must retain prior knowledge while rapidly picking up new information through transfer learning. XAI
integration improves smart contract security and guarantees transparency. In this study, a DL model known
as HB3LSTM uses Long Short-Term Memory (LSTM) networks to identify smart contract vulnerabilities. For
clear and understandable vulnerability detection, it incorporates XAI. The principal findings of this study are
as follows:

•	 The goal is to improve finding vulnerabilities in smart contracts by using a phased approach that integrates DL
and XAI to identify violations and ensure the safe execution of high-value contracts.

•	 HB3LSTM intellectual engine detects smart contract vulnerabilities by combining Branch and Bound Op-
timization algorithms (BBO) with LSTM networks. BBO is used for optimization, and LSTMs are used for
sequence prediction. The model’s main goals are to spot potentially dangerous transactions and stop them.

•	 Improved Quantum online Portfolio Optimization (IQPO) to solve complex problems more quickly and
shorten the time it takes to find vulnerabilities. This improves scalability and makes it possible to react to
changes in the economy in real time by adjusting the portfolio.

•	 Smart contracts can be vulnerable to opcodes, causing issues like reentrancy, overflow, or access control flaws.
XAI’s SHAP (SHapley Additive exPlanations) values are employed; contracts with positive values are consid-
ered invulnerable, while those with negative values are considered vulnerable.

This study is divided into five components. A review of the literature is given in “Literature Survey” Section,
and the suggested model is explained in “Proposed methodology” Section. The outcomes of the suggested
procedures are displayed in “Results and discussions” Section, along with a comparison of this model with a
few other modern methods. The discussion is presented in “Conclusion” Section, and recommendations for
additional research are made in Sect. 6.

Literature survey
In 2021, He et al.21 introduced a model for smart contract vulnerability detection, leveraging BERT for semantic
feature extraction, BiLSTM for sequence learning, and an attention mechanism to prioritize critical features. This
approach enhances detection accuracy and generalization, outperforming traditional methods in identifying
security flaws in smart contracts.

In 2022, Jingya Dong et al.22 Proposed a feasible energy trading method to achieve a self-sufficient energy
consumption. It provides the accurate energy transfer signals in the blockchain to attain the better self-sufficiency
of transactions.

In 2022, Jingya Dong et al.23 suggested a novel transaction processing method to protect private data using
mapping algorithm to solve the privacy attacks. It also improves the performances of efficient executions of
transactions using the privacy preserving decentralized energy trading scheme.

In 2022, Jingya Dong et al.24 introduced a method light weight data fusion to reduce the network congestions
and wastage of bandwidth with the secure analysis for IOT. Furthermore, proposed an improved hierarchical
fuzzy based hashing technique to local the anomalies in the machine learning models to ensure the security of
the sensitive data.

In 2023, Wu et al.25 investigated the techniques for locating smart contract vulnerabilities, highlighting
the shortcomings of conventional methods. They highlighted the use of machine learning, especially DL and
attention processing, for improved accuracy. The paper’s conclusion noted the need for detecting methods that
are more dependable and scalable.

In 2023, Yazdinejad et al.26 introduced a secure, intelligent fuzzy blockchain framework to enhance threat
detection in blockchain-based IoT networks, addressing uncertainty and ambiguity in IoT data. It combines a
fuzzy DL model, optimized ANFIS, fuzzy matching, and a fuzzy control system to detect and mitigate network
attacks.

In 2023, Chen et al.27 suggested a novel method for smart contract vulnerability detection by constructing
a Semantic Graph (SG) for each function, capturing both syntax and semantic relationships. It then utilizes an
Edge-Attention Residual Graph Convolutional Network (EA-RGCN) to extract content and semantic features.

In 2023, Ma et al.28 introduced a Hierarchical Graph Attention Network (HGAT) for smart contract
vulnerability detection, addressing the inefficiencies of existing methods. It Constructs Code Graphs (CFG)
from Abstract Syntax Tree (AST) and Control Flow Graph (CFG) to extract node features and applies Graph
Attention Network (GAT) for feature learning.

In 2023, Jie et al.29 introduced static analysis and multimodal AI techniques that have improved the detection
of smart contract vulnerabilities. To define 84 efficient vulnerability-uncovering techniques, strategies make
use of code and graph embeddings from word2vec, Transformer-Based Bidirectional Encoder Representation
(BERT), and Graph Convolutional Network (GCN) models. In intermodal, intermodal, and multimodal
contexts, this encompasses feature selection, fusion, training, and decision-making units. Bidirectional Long
Short-Term Memory (BiLSTM) models, thick layers, Random Forest (RF), Max Pooling (MP), Spatial Pyramid
Pooling (SPP), and text Convolutional Neural Networks (CNNs) are examples of high-accuracy jobs.

Scientific Reports | (2025) 15:26104 2| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

In 2023, Dong et al.30 proposed a network called decentralized autonomous oracle network combined with
consensus protocol and non-interactive reputation maintenance to secure the smart contract to be more reliable
and tamper-proof inputs and output.

In 2024, Osei et al.31 suggested WIDENNET, a DL-based method using WDE and DNN to detect
vulnerabilities in smart contracts. It focuses on identifying reentrancy and timestamp dependence issues by
extracting byte codes and converting them into operational codes.

In 2024, Sharma et al.32 introduced two detection techniques used by the Intrusion Detection System (IDS):
anomaly-based IDS, which detects known hostile activities, and signature-based IDS, which detects abnormal
system behavior. Signature-based IDS is inefficient due to its reliance on pre-existing signatures and limitations
in storage and computation, making it unable to detect new attacks. Anomaly-based IDS can detect novel attacks
but may also produce false positives.

In 2024, Zhen et al.33 introduced a Dual Attention Graph Neural Network (DA-GNN) for smart contract
vulnerability detection. It converts Control Flow Graph (CFG) opcode sequences into feature matrices and
leverages a dual attention mechanism for improved node embedding updates.

In 2024, Wu et al.34 introduced a two-pronged approach to smart contract vulnerability detection. It improved
detection efficiency and accuracy by combining static and dynamic analysis. The approach provided a more
reliable security solution and performed better than conventional methods.

In 2024, Mothukuri et al.35 suggested a novel AI-driven solution to address the DeFi credibility issue by
introducing a Trust Score system that evaluates DeFi projects using four key risk factors. These include smart
contract vulnerabilities, suspicious transactions, anomalous price changes, and scam sentiment from social
media, two of which are novel in DeFi fraud detection.

In 2025, Dong et al.36 introduced a P2P energy efficient trading system to permit the users to conduct an
energy efficient transaction without the having the contribution of third party. It helps to improve the high
performance and efficiency to meet the energy efficient tractions in the trading system. A comparison of recent
works is presented in Table 1.

Problem statement
One of the main challenges to smart contract analysis is the dearth of open-source resources, the inability to
discover vulnerabilities in bytecode, and a high false rate in detection techniques. Complexity is increased
by scalability problems, lengthy vulnerability discovery times, and the requirement for ongoing IoT network
monitoring. Furthermore, issues with large data quality, computational cost, and the lack of transparency of AI
models undermine confidence in automated analysis, which makes it more difficult to properly protect these
systems. To address these drawbacks, the proposed method, “HB3LSTM: Smart contract-based vulnerability
detection using deep explainable AI,” uses an HB3LSTM intellectual engine framework to overcome these
challenges. The IQPO is used to reduce vulnerability detection processing time and improve scalability. The
HB3LSTM intellectual engine can improve predictive accuracy and reduce risks by efficiently resolving
vulnerabilities. Furthermore, SHAP helps to improve the accuracy. Our ultimate objective is to improve the
detection methods’ capacities in order to more accurately detect smart contract flaws.

Authors Focus Technique Advantages Limitations

Chen et al.27 Semantic-based vulnerability detection
Residual Graph Convolutional
Networks (GCN) with Edge
Attention

Captures contextual information in smart
contract code effectively

Edge attention mechanism increases
computational complexity

Ma et al.28 Graph-based vulnerability detection Hierarchical Graph Attention
Network (HGAT)

Improves detection accuracy by
considering hierarchical relationships

Requires high-quality labeled data
for optimal performance

Jie et al.29 Blockchain programs for IoT use contract-
oriented languages, executed automatically Blockchain technology Enhancing IoT solutions with technical

capabilities
Traditional methods rely on rules,
struggle with false positives, low
accuracy

Osei et al.31 Wide and DL for vulnerability detection Wide and Deep Neural Network
(WDNN)

Combines memorization and
generalization capabilities

May struggle with unseen
vulnerability patterns

Sharma et
al.32

IoT security layers discussed, DL model
proposed for intrusion detection,
explainable AI used for high accuracy

Intrusion Detection System
(IDS)

Detect intrusions in IoT networks,
prevent malicious activities efficiently

IoT systems face daily attacks,
identification and mitigation needed
for network protection

Zhen et al.33 Smart contract vulnerability detection Dual Attention Graph Neural
Network (DA-GNN)

Improves accuracy by leveraging dual
attention for better feature extraction

Computationally intensive due to
complex graph processing

He et al.21 Enhancing smart contract security Pre-trained language models for
vulnerability detection

Leverages NLP advancements for precise
vulnerability identification

Requires extensive training data and
high computational resources

Wu et al.25 Smart contract vulnerability detection using
hybrid attention

Combine self-attention and
convolutional layers

Improved accuracy, handles complex
patterns well

Computationally expensive, struggles
with large datasets

Wu et al.34
Improved dual-channel technique for
identifying vulnerabilities in smart
contracts

Dual-channel approach for
syntactic and semantic analysis

Enhanced detection performance and
faster processing

Increased computational cost and
scalability issues

Mothukuri
et al.35

Trust scoring and vulnerability detection in
DeFi projects XGBoost Multi-perspective evaluation with

Enhanced transparency and trust
May not scale efficiently across all
DeFi platforms

Yazdinejad
et al.26

Threat detection in IoT networks using
blockchain DNN Decentralized architecture enhances

security
High resource requirements for fuzzy
logic and blockchain computation

Table 1.  Comparisons for recent works.

Scientific Reports | (2025) 15:26104 3| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Proposed methodology
The proposed methodology for identifying smart contract vulnerabilities includes several important phases.
First, data from Smart Bugs Wild Dataset uses Natural Language Processing (NLP) techniques for preprocessing,
such as word segmentation, lexical analysis, word-to-vector conversion, and TF-IDF for feature extraction.
To maximize processing time and scalability, feature selection is then carried out using IQPO. A new hybrid
approach called the HB3LSTM intellectual engine finds and blocks risky transactions and extracts code fragments
that highlight vulnerabilities. To improve vulnerability detection, the model collaborates with expert systems.
The next step involves interpreting model outputs using XAI approaches like SHAP values. Negative values
draw attention to aspects associated with vulnerabilities, making it easier to identify crucial opcodes influencing
contract security, while positive values show characteristics that contribute to invulnerable contracts. Figure 1
describes the overall proposed methodology.

Dataset collection
Our study leverages the Kaggle Smart Bugs Wild Dataset37, which includes over 1250 Solidity-written smart
contracts, vulnerable and non-vulnerable, annotated with specific vulnerability types such as reentrancy, integer
overflow/underflow, and access control issues.

Opcode extraction
Smart contracts are self-executing agreements with terms encoded in opcode. Simplifying opcode enhances
efficiency and reduces transaction costs by minimizing complexity. This ensures correct operation across
scenarios like caller authorization and transaction validity while preserving functionality [38]. Table 2 describes
the opcode extraction from the SmartBug wild dataset.

The input–output mechanism of SOLC is used to extract opcodes, guaranteeing consistency between
compiler versions. The function name can be compared to the Application Binary Interface (ABI); a cross-check
is carried out to retrieve opcodes solely from injected contracts. Algorithm (1) describes the opcode extraction
algorithm in detail. An ABI and an ordered set of opcodes are both included in every contract.

	 C = {(ABI1, O1) , (ABI2, O2) , . . . , (ABIn, On)}� (1)

Fig. 1.  Overall proposed methodology.

Scientific Reports | (2025) 15:26104 4| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

where C is the collection of contracts that SOLC returned in order to explain the sifting procedure,ABIn
indicates the ABI for the nth contract and On indicates the ordered list of opcode for the nth contract. Opcodes
like PUSH, which has 32 possibilities, and other operations like MSTORE, CALL VALUE, ISZERO, and JUMPI
are simplified to minimize variations.

Preprocessing
In data preprocessing, smart contract code undergoes lexical analysis, symbol removal, and word segmentation;
TF-IDF is applied for feature and word-to-vector conversion maps25.

Lexical analysis in smart contract vulnerability identification tokenizes raw Solidity code into meaningful
units like keywords, operators, identifiers, and delimiters while removing comments and whitespace. Symbol
removal eliminates non-informative components like comments, blank lines, and useless code, reducing noise
and computational complexity. This helps the model focus on relevant code patterns, improving accuracy
and speeding up training and inference. Word segmentation divides code into discrete tokens, ensuring each
component is processed independently while preserving structure. This enhances the model’s ability to detect
vulnerabilities by focusing on important patterns and relationships. TF-IDF is a text vectorization method
for feature extraction. It combines Term Frequency (TF), which weights words based on their frequency in
a document, with Inverse Document Frequency (IDF), which reduces the weight of common terms across
documents.

	
T F (t, d) = b

B
� (2)

where b represents the number of times t appears in the document d and B represents the total number of terms
in a document d.

Table 2.  Opcode extraction from SmartBug wild dataset.

Scientific Reports | (2025) 15:26104 5| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	
IDF (t, D) = log

(
a

A

)
� (3)

where a denotes the total number of documents in the corpus and A denotes the number of documents
containing term t. The TF-IDF score for a term in a document is obtained by multiplying its TF and IDF scores.

	 T F − IDF (t, d, D) = T F (t, d) × IDF (t, D)� (4)

TF-IDF transformation can be as a

	 z = encoder (X)� (5)

where X denotes the input feature matrix extracted from smart contract opcode and z denotes the resulting TF-
IDF vector representation of the input data. This map is to the actual application of converting tokens to vector
form using the TF-IDF encoder. Figure 2 shows the code for the preprocessing.

The parameter settings for the TF-IDF were selected based on a systematic hyperparameter tuning procedure.
Each setting was evaluated through repeated experiments using a validation split to measure its effect on
downstream model performance. The max_features parameter was set to 10,000 after testing various thresholds;
this value best preserved relevant vocabulary while preventing overfitting. The choice of n-grams (1, 2) was
validated through comparisons with unigram- and trigram-only setups, where (1, 2) provided optimal contextual
richness. Stop word removal via NLTK improved classification accuracy by reducing noise. L2 normalization
outperformed L1 in maintaining consistent feature scaling and stable model behavior. Smooth_IDF was enabled
to handle unseen terms without destabilizing inverse frequency values. Sublinear TF scaling was included
after observing improvements in model generalization and robustness. This tuning process involved grid-like
evaluation and iterative refinement across these parameters, as shown in Table 3.

Word-to-vector conversion captures the semantic linkages between code parts by converting tokens into
numerical vectors using embedding approaches. This improves the model’s capacity to identify vulnerabilities
like inappropriate variable use or dangerous dependencies by helping it comprehend how the contract interacts.

Parameters Values Description

max_features 10,000 Captures the most relevant tokens

N-grams (1,2) Uses unigram and bigram for context preservation

Stop words Removed
(NLTK) Removes common words using the NLTK stopword list

TF-IDF Norm L₂ Normalizes feature weights using L2 norm

smooth_IDF True Prevents zero division errors in IDF computation

Sublinear TF Scaling True Applies to dampen the effect of frequent terms

Table 3.  TF-IDF parameter settings.

Fig. 2.  Preprocessing code.

Scientific Reports | (2025) 15:26104 6| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Improved quantum online portfolio optimization (IQPO) for feature selection
IQPO39 is a quantum computing-based framework that enhances online decision-making in financial markets
by leveraging quantum algorithms such as quantum state preparation, norm estimation, and inner product
estimation. It is chosen for feature selection because of its ability to process high-dimensional data efficiently,
dynamically adapt to evolving datasets, and achieve a quadratic speedup in computation compared to classical
methods. The key advantage of IQPO is its ability to use quantum oracles to encode feature relevance scores,
perform fast probabilistic sampling using multi-sampling algorithms, and estimate importance measures
through quantum inner product computations, making it ideal for selecting the most informative features in
real-time machine learning tasks.

Quantum representation of feature data
Instead of classical access to feature vectors, assume quantum access through a set of unitaries Pρ(u) , representing
the transformed feature importance values at time u. The input data is encoded as

	
Pρ(u) |j⟩

∣∣⃗0〉
= |k⟩

∣∣∣ρ(u)
j

〉
� (6)

where ρ(u) =
(

ρ
(u)
1 , ρ

(u)
2 , . . . , ρ

(u)
n

)
 is the feature vector at the time u, maxjε[o] ρ

(u)
j = 1 ensures feature

values are normalized and ρ(u)
j ≥ smin > 0 guarantees all features have a minimum significance level. This

encoding allows efficient quantum computations on the feature space, preparing for importance ranking.

Quantum portfolio weight update rule
The weight update for each feature follows a softmax-like transformation, capturing cumulative importance over
multiple time steps:

	

ω
(u+1)
j =

exp
(

η
∑u

u′=1
ρ

(u)
j

ω(u′)·ρ(u′)

)

∑o

j=1 exp
(

η
∑u

u′=1
ρ

(u′)
j

ω(u′)·ρ(u′)

) � (7)

where ω (1) =
(

1
n

, . . . , 1
n

)
 initializes all features with equal importance, η denotes a learning rate that controls

the impact of past observations, and ρ(u)
j denotes the importance score of feature j at time u. This update ensures

that the most relevant features gain higher importance while less significant features are gradually suppressed.

Quantum computations for feature selection
To efficiently compute cumulative feature importance in superposition, define the following transformations:

	
|j⟩

∣∣⃗0〉
→ |j⟩

∣∣∣∣∣
u−1∑
u′=1

ρ
(u′)
j

J̃(u′)

〉
� (8)

This transformation allows encoding past feature gains into a quantum state for efficient parallel computation.
Furthermore, a quantum unitary to extract feature selection scores:

	

|j⟩ |0⟩ → |j⟩ r
(u)
j , r

(u)
j = exp


η

u−1∑

u
′=1

ρ
(u′)
j

J̃(u′)


� (9)

This representation allows rapid ranking of features based on their cumulative contribution.

Quantum norm estimation for feature importance
To measure the total contribution of each feature vector w, estimate its norm using quantum queries:

	
∣∣∥w∥1 − ã

∣∣ ≤ ε ∥w∥ 1� (10)

The required query complexity for this estimation is

	
P

(
)z

∈ log
(1

δ

))
� (11)

where ∈ controls the approximation accuracy, δ denotes the confidence level of the estimation, and z denotes
the total number of features. This step ensures that feature importance scores are precisely quantified, helping to
refine the selection process.

Scientific Reports | (2025) 15:26104 7| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Quantum inner product estimation for feature ranking
To evaluate the correlation between feature vectors, compute the inner product using quantum estimation:

	
∣∣J̃Q̃ − v · w

∣∣ ≤ ε v · w� (12)

where J̃Q̃ denotes the quantum estimate of v.w. This estimation is performed efficiently with a quantum
complexity of

	
P

(√
m

ε
√

vmin
log

(1
δ

))
� (13)

where δ denotes the failure probability, P denotes the number of quantum gates, m denotes the feature vectors,
vmin ensures that no feature has a negligible contribution. By applying inner product estimation, features
undergo ranking based on their relevance.

Quantum multi-sampling for feature selection
To finalize feature selection, quantum multi-sampling identifies the top p features by ensuring:

	 U ≥ ∥qx∥1� (14)

	 |U − ∥q∥ 1| ≤ min {1/
√

p, ε} ∥q∥ 1� (15)

where U denotes the inner product sum over selected features,||q|| denotes the expected outcome, √p denotes
the number of quantum gates root values, and ||qx|| denotes the length of the vector. The expected run-time
complexity for multi-sampling is

	
P

(√
tz log

(1
δ

))
� (16)

where P denotes the cumulative importance of selected features, tz denotes the number of features to select.
This step ensures that only the most significant features are retained for vulnerability detection. Once IQPO
selects the most informative features, they are used as input to the HB3LSTM model.

	 X ′ = QOP O (X)� (17)

where X denotes the original feature matrix before selection, and X ′ denotes the optimized and selected subset
of features most relevant to vulnerability detection. This represents IQPO transforming the original feature
set into a selected, optimized set. HB3LSTM processes the feature vectors and applies DL techniques to detect
software vulnerabilities. This integration enhances both accuracy and computational efficiency, enabling real-
time detection of potential security threats. The IQPO algorithm was tested primarily on Qiskit’s statevector
simulator to emulate noiseless quantum computations. The simulation utilized 8 qubits to represent the feature
space encoding and enable quantum operations such as state preparation, norm estimation, and inner product
estimation. The choice of 8 qubits balances computational tractability with sufficient feature dimensionality
representation for the datasets in use.

Table 4 shows the parameter settings for the IQPO. The QLR was set to 0.001 to ensure gradual convergence
while maintaining stability, particularly in complex search spaces. The decay rate of 0.95 was chosen to enable
adaptive learning rate reduction, helping the algorithm fine-tune its learning behavior over time. A regularization
factor of 0.01 was incorporated to mitigate overfitting by penalizing overly complex solutions, which is essential
for generalization. The quantum walk probability was fixed at 0.5 to strike a balance between global exploration
and local exploitation. Although a systematic hyperparameter tuning procedure such as grid search or Bayesian
optimization was not exhaustively applied due to computational constraints, the selected values were empirically
validated through sensitivity analysis across benchmark datasets. This approach ensured that the chosen
parameters provided consistently good performance, even if not globally optimal.

Hybrid boot branch and bound long short-term memory (HB3LSTM) for vulnerability
detection
The HB3LSTM is a combination of Boot LSTM40 and BBO. It is a novel strategy that combines the advantages
of several approaches to enhance smart contract vulnerability identification. This method combines an LSTM

Parameter Values Description

Quantum learning rate (QLR) 0.001 Controls convergence speed

Decay rate 0.95 Adjusts learning rate adaptively

Regularization factor 0.01 Prevents overfitting by adding a penalty term

Quantum walk probability 0.5 Balances exploration and exploitation

Table 4.  Parameter settings for IQPO.

Scientific Reports | (2025) 15:26104 8| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

network, which functions well for a series of prediction tasks, with algorithms that are commonly employed in
optimization problems. With an emphasis on identifying potentially hazardous transactions and preventing
risky behavior in smart contracts, the HB3LSTM model is especially made to extract code fragments that expose
vulnerabilities.

LSTM
A specialized kind of Recurrent Neural Network (RNN) called an LSTM is employed in our study as a model to
capture temporal dependencies in sequential data. LSTM learns sequence patterns by retaining knowledge across
time steps through gates (input, forget, output) and a tanh layer. The cell state carries important information,
enabling selective updates. This architecture is ideal for sequence prediction tasks. The typical LSTM cell
structure is depicted graphically in Fig. 3.

Which data from earlier time steps should be ignored is decided by the first layer, also referred to as the forget
layer. Equation (18) provides the mathematical expression of the forget gate’s output (gt).

	 gt = σ (Wg · [nt−1, Xt] + bf)� (18)

where σ denotes the sigmoid role of activation, Wg denotes the forget gate’s weight, bf indicates the forget gate’s
bias, Xt denotes the time t,and nt−1 is the hidden layer of time. In the LSTM, the input gate (jt) is the second
layer that decides whether the cell state receives fresh data. This choice, determined by applying the subsequent
formula, is shown in Eq. (19).

	 jt = σ (Wj · [nt−1, Xt] + bj)� (19)

where Wj indicates input gate weight and bj indicates input gate bias. The tanh layer, sometimes referred to
as the cell state layer (D̂t), is the third layer. Equation (20) defines the vector of new candidate values that are
produced by this layer:

	 D̂t = ϕ (WD · [ht−1, Xt] + bD)� (20)

where φ denotes the function of tanh, WD denotes the weight of the cell, and bD denotes the bias cell. The old
cell state D̂t is changed into the new cell state Dt following the first three layers. The interplay between the input
gate and the forget gate produces this update. According to Eq. (21), new data is added by the input gate, while
old data is discarded by the forget gate.

	 Dt = gtDt−1 + jtD̂t� (21)

where Dt new cell, Jt denotes the input gate, and gt denotes the output gate. The last layer, the output gate, is in
charge of generating the final output in accordance with the modified cell state. The output gate operates in the
following manner:

	 pt = σ (Wp · [ht−1, Xt] + bp) · ϕ (Dt)� (22)

Fig. 3.  Typical LSTM cell structure.

Scientific Reports | (2025) 15:26104 9| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

where Wp denotes output gate weight and the bp indicates output gate bias.

Bootstrap
Bootstrap is a general statistical inference approach that builds a sampling distribution by uniformly sampling
with replacements from the original data. It is widely used as a robust alternative to parametric statistical
inference, which may be unreliable due to complexities in computing standard errors. Bootstrap methods are
particularly useful when parametric assumptions fail or are difficult to verify. Three bootstrap techniques exist
for regression analysis: pairs bootstrap, standard residuals bootstrap, and wild residuals bootstrap. Among these,
pairs bootstrap is preferred for problems like SPF, where observations are correlated. This method helps preserve
the dependence structure between observations, ensuring more reliable statistical inference. By resampling
from the original data, it provides better estimations without relying on strict distributional assumptions. For
vulnerability detection, bootstrap and LSTM integrate by leveraging bootstrap resampling to enhance training
data variability and model robustness. Bootstrap helps generate diverse datasets, reducing overfitting, while
LSTM captures temporal dependencies for accurate predictions. This combination improves the reliability and
generalization of the vulnerability detection model.

Integrated boot LSTM
In the proposed Boot-LSTM framework for vulnerability detection, bootstrapping enhances the robustness of
LSTM models by training them on multiple bootstrapped datasets. This approach is particularly beneficial in
handling the variability and uncertainty in cybersecurity threat patterns caused by evolving attack techniques.
Furthermore, bootstrapping facilitates the exploration of LSTM behavior on different resampled sequences of
vulnerability datasets, each potentially representing diverse cyber threat scenarios. By continuously generating
diverse detection outcomes during resampling and leveraging temporal correlations identified by LSTM, the
model produces high-quality predictive indicators that account for the inherent uncertainty of threat evolution.
To improve detection accuracy, the model’s weights are refined through the BBO algorithm, enhancing the
reliability of vulnerability assessments. This hybrid approach strengthens adaptability and reduces false positives,
leading to more effective cyber threat detection in dynamic environments. The optimized feature set is passed
through an encoding module of HB3LSTM to generate latent representations z, which are further used by a
classifier layer to produce vulnerability predictions ypred.

	 ypred = classifier (z)� (23)

Where ypred denotes the predicted output indicating software vulnerability status. The detection stage identifies
various classes of software vulnerabilities, including time manipulation, front running, DoS, reentrancy, access
control issues, arithmetic errors, unchecked low-level calls, and other types. The architecture of HB3LSTM has
been shown in Fig. 4.

Table 5 shows the hyperparameter settings for HB3LSTM. The hyperparameters were chosen based on a
combination of empirical testing, and domain-specific considerations to ensure robust performance. The three-
layer structure allows HB3LSTM to effectively capture hierarchical temporal features, a common practice in deep
sequence models. A hidden unit size of 256 provides a balance between expressive power and computational
tractability. The dropout rate of 0.3 was selected based on preliminary experiments that indicated it effectively
reduced overfitting without compromising learning. A batch size of 64 was used to balance memory constraints
with training stability. The BBO optimizer was chosen for its proven adaptability and fast convergence in DL
tasks. The learning rate of 0.0005 was fine-tuned empirically to ensure smooth training dynamics. Overall, the
selected hyperparameters reflect a pragmatic balance between experimental insight and best practices from the
existing performance.

Enhancing weight update with branch and bound algorithm
An optimization technique called BBO41 has been effectively used for smart contract vulnerability detection.
BBO is an optimization algorithm that systematically explores solution spaces by computing bounds and
eliminating suboptimal solutions, making it effective for constrained problems. It is chosen over heuristic or
greedy methods because it guarantees global optimality while efficiently navigating large solution spaces through
intelligent pruning. Unlike heuristic or greedy methods, BBO avoids unnecessary computation by bounding
suboptimal regions, making it scalable and practical for high-dimensional problems. Its flexibility supports
complex constraints like sparsity, and it can be tailored to exploit specific problem structures. It balances
optimality, efficiency, and adaptability, making it ideal for structured optimization tasks. In the optimization,
the weight parameters of the Boot LSTM network are trained using BBO to enhance convergence and prevent
getting stuck in local minima. By applying BBO, the model efficiently refines weight updates, prioritizing critical
features related to smart contract vulnerabilities.

Initialization
For the initialization of the first and second blocks, it can be represented as

	

M (0) =




0
0
...
0


 , v(0) =




1
1
...
1


� (24)

Scientific Reports | (2025) 15:26104 10| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

where M (0) denotes the initialization phase of the upper bound, and v(0) denotes the initialization phase of the
lower bound.

Fitness function
In the fitness function, LSTM weight parameters are optimized to minimize detection error and enhance model
accuracy. It can be denoted as

	 F itness function = Min(WD)� (25)

where Min(WD) denotes the minimizing the weight from the Boot LSTM. By optimizing this function, BBO
ensures that the model reduces false positives, improves convergence speed, and focuses on learning from
critical opcode sequences related to smart contract vulnerabilities. The fitness evaluation continues iteratively
until optimal or near-optimal values are found.

Branching process
The branching process is central to the BBO algorithm. It systematically explores the search space using a binary
enumeration tree, where each node corresponds to a candidate subproblem. At each node, a pair of binary
vectors is maintained. For the lower bound vector:

	 M := (M1, M2, . . ., Mq+r)T ∈ {0, 1}q+r � (26)

Parameter Values Description

Number of layers 3 Defines a deep hierarchical structure

Hidden UNITS 256 Optimal for learning contextual dependencies

Dropout rate 0.3 Prevents overfitting by randomly dropping units

Batch size 64 Balances computational efficiency and performance

Optimizer BBO Uses an adaptive learning optimization algorithm

Learning rate 0.0005 Fine-tuned for stability

Table 5.  Hyperparameter settings for HB3LSTM.

Fig. 4.  Architecture of HB3LSTM.

Scientific Reports | (2025) 15:26104 11| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

For the upper bound vector:

	 v := (v1, v2, . . . , vq+r)T ∈ {0, 1}q+r � (27)

Each binary variable ak ∈ {0, 1} is bounded by the corresponding entries Mk ≤ ak ≤ vk for all k ∈ {1, . . . , p}
.. At the root node, starts with M = 0 and v = 1, representing the unconstrained space. . The process of branching
involves selecting an unfixed variable ak and creating two child nodes as Mk = vk = 0 and Mk = vk = 1.This
recursive process continues until all variables are uniquely determines a. The feasibility of a node is ensured by a
constraint that the number of non-zero entries in a subset of a should lay within a desired target:

	

q∑
k=1

Mk ≤ θy ≤
q∑

k=1

vk,

r∑
k=1

Mq+k ≤ θz ≤
r∑

k=1

vq+k � (28)

where q denotes the number of variables in the first block, r denotes the number of variables in the second block,
and θy, θz denotes the target sparsity level for each block. This branching structure allows for efficient pruning
and ensures only feasible and promising paths are explored.

Terminal node
A terminal node is one where no further branching is necessary because the solution is either fully determined
or satisfies the stopping condition. The terminal node function can be represented as:

	
ter min al ((M, v) , (t, u) , θ) :=

{
true if

∑u

k=t
Mk = θ,

true f
∑u

k=t
vk = θ,

false otherwise
� (29)

For the first block, the node is terminal if:

	

ter min al ((M, v) , (1, q) , θy) = true
q∑

k=1

Mk = θy (or)
q∑

k=1

vk = θy
� (30)

For the second block, the node is terminal if:

	

ter min al ((M, v) , (q + 1, q + r) , θy) = true
r∑

k=1

Mq+k = θz (or)
r∑

k=1

vq+k = θz
� (31)

If both conditions are met, the solution vector xx is complete and marks the terminal node. Terminal nodes
represent either optimal or bounded suboptimal solutions and are essential in concluding viable paths in the
solution tree.

Lower and upper bounds
To avoid unnecessary exploration, each feasible node is evaluated by computing bounds on the objective value.
An upper bound is computed by relaxing the sparsity constraint and setting all unfixed variables to their upper
limit.

	 upper (M, v) = λ∗
max (v)� (32)

where a = v denotes all the remaining variables active and λ∗
max denotes the objective value. A lower bound

is derived by greedily building a feasible solution within the sparsity constraint. Variables are selected based on
descending importance measured from the first block and the second block until the sparsity limits θy and θz
are met. The resulting vector aLB is used to compute

	 lower = (M, v) = λ∗
max

(
aLB

)
� (33)

This provides a valid bound from a feasible configuration. These bounds help eliminate suboptimal paths
early and prioritize exploration of the most promising branches. Evaluating bounds is critical for maintaining
computational efficiency while ensuring the search remains on track toward optimal solutions.

Re-evaluating the fitness
The optimization process repeatedly re-evaluates the LSTM weights and feature selections to minimize detection
error and refine accuracy. This cycle continues until the model converges to the most optimal and globally
accurate configuration.

Scientific Reports | (2025) 15:26104 12| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Termination
The process terminates once the best solution is found that satisfies all constraints with minimal error. At this
point, no further branching is needed, and the optimized weights are finalized for deployment. The optimized
weights from the Boot LSTM model, refined using the BBO, are fed into SHAP for interpretability. SHAP
analyzes the model predictions by attributing contributions to each input feature. This integration enhances
transparency and trust in smart contract vulnerability detection. Table 6 shows the pseudocode for the BBO.

Theoretical convergence proof
The convergence of the BBO algorithm is theoretically guaranteed under standard assumptions. Specifically,
BBO ensures global convergence when:

•	 The objective function is bounded below.
•	 The branching process partitions the feasible space exhaustively.

Table 6.  Pseudocode for BBO.

Scientific Reports | (2025) 15:26104 13| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

•	 The bounding functions compute valid lower and upper bounds for all subproblem.

The objective function is continuous and bounded. The pruning strategy in BBO eliminates suboptimal nodes
using reliable bounds, and the branching process ensures exhaustive exploration of feasible regions. According
to established theory, ensures that the optimal solution will eventually be found:

	
lim

u→∞
g∗

u = gopt
� (34)

where g∗
u denotes the best solution at iteration u, and gopt denotes the global optimum. The stopping criterion

|V C − MC| ≤∈ ensures termination when a near-optimal solution is reached within acceptable tolerance. This
theoretical foundation, together with the empirical evidence in Fig. 5, validates BBO’s convergence properties for
high-dimensional, constrained optimization tasks.

On the x-axis, generations are plotted, while the y-axis shows the corresponding objective function
values. Initially, at generation 0, the objective function starts at approximately − 9.5, indicating a suboptimal
configuration. By generation 3, the value improves to − 10, reflecting early-stage optimization progress. At
generation 5, a sharper drop is observed as the value reaches − 13.08, suggesting that BBO is effectively pruning
suboptimal branches and focusing on more promising solutions. By generation 10, the objective value stabilizes

Table 6..  (continued)

Scientific Reports | (2025) 15:26104 14| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

between − 13.05 and − 12, demonstrating strong convergence characteristics. This smooth and monotonic decline
without significant oscillations highlights BBO’s ability to avoid local minima and maintain a stable optimization
path. The convergence trend also indicates that the BBO bounding mechanism effectively eliminates non-viable
candidate’s early, accelerating convergence. Compared to heuristic algorithms, BBO structured search ensures
global optimality by thoroughly exploring feasible solutions. The absence of erratic spikes in the graph affirms
the method’s efficiency and stability. This behavior validates BBO’s suitability for high-dimensional, constrained
optimization tasks.

Explainable AI interpretation of SHAP
HB3LSTM intellectual engines, highly effective, are often hard to interpret because of their black-box nature,
which makes it challenging to rely on their results for vulnerability detection. To enhance trust and usability in
vulnerability detection, XAI techniques such as SHAP42 provide insights into feature contributions, improving
transparency and model reliability. For complex models like DNN, Kernel SHAP approximates each feature’s
contribution using weighted linear regression. It employs a surrogate linear model that closely aligns with the
original model’s predictions, ensuring interpretability. The Shapley value for a feature quantifies its influence on
the final prediction:

	
g

(
z′) = φ0 +

N∑
i=1

φiz
′
i,� (35)

where z′
i indicates whether the feature i is present (1) or not (0); φi represents relative feature contribution using

the Shapley value and ϕ0 is the starting value in the event that no input features are present (0). By systematically
analyzing feature combinations, SHAP assigns values to each input, highlighting their impact on predictions.
Summing Shapley values across all instances:

	
Ii = 1

m

m∑
j=1

∣∣∣ϕ(j)
i

∣∣∣� (36)

where m denotes how many occurrences there are in the dataset. This method ensures model-agnostic
explanations, maintaining consistency across different DL architectures.

To evaluate the interpretability of the HB3LSTM model, SHAP values were analyzed across multiple
predictions. A consistent pattern emerged, showing that certain opcodes such as add, push1, call, and delegate
call regularly ranked among the top contributors. These opcodes are closely associated with critical operations
like arithmetic computations and external contract interactions, which are often targeted in common smart
contract vulnerabilities. The repeated prominence of these opcodes in the SHAP rankings strongly indicates
their significance in model decisions. Additionally, cross-referencing these findings with known vulnerability
patterns from curated datasets confirmed that opcodes with higher Shapley values are indeed aligned with
commonly exploited code fragments. This alignment reinforces the conclusion that SHAP not only facilitates
interpretability but also effectively highlights security-relevant features that correlate with actual vulnerabilities.

Figure 6 shows the code for vulnerability identification logic of SHAP. Figure 7 illustrates the SHAP flowchart
of proposed methodology, where feature-level explanations pinpoint the most significant attributes influencing

Fig. 5.  Convergence characteristics of BBO.

Scientific Reports | (2025) 15:26104 15| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

vulnerability detection. This aids security teams in identifying root causes of attacks and prioritizing key metrics
for faster detection with reduced false positives.

The methodology uses IQPO to optimize feature selection and NLP techniques to preprocess data in order
to identify smart contract vulnerabilities. In addition to identifying dangerous transactions, a hybrid HB3LSTM
intellectual engine extracts vulnerable code fragments. In order to evaluate results and identify certain
vulnerability types, XAI approaches such as SHAP values are employed. TF-IDF and opcode extraction help
with feature extraction, and LSTM manages sequence prediction. This method increases blockchain security
and strengthens vulnerability detection. Table 7 shows the code presentation of the overall proposed approach.

Results and discussions
To address the generalizability of the proposed model, additional experiments were conducted using smart
contracts developed for the Hyperledger fabric platform. These contracts, sourced from open-access repositories
and executed within a simulated Fabric chain code environment, enabled comprehensive testing within a
permissioned blockchain framework. To address key limitations of Ethereum, such as potential overfitting,
the model was adapted and implemented in the Hyperledger environment. The experiments conducted on
Hyperledger analyzed platform-specific performance metrics, including success rate, throughput, latency,
and resource consumption. The results demonstrate that the proposed method maintains strong performance
across these metrics, indicating effective generalization and adaptability for vulnerability detection on diverse
blockchain platforms. The approach classifies vulnerability types with high accuracy by leveraging advanced
DL techniques, implemented using Python’s robust libraries and frameworks, and optimized Hyperledger
ecosystems. Python’s complex DL libraries and frameworks are utilized in the method, and the implementations
are done on the Hyperledger platform. The quantum feature selection algorithm IQPO was implemented
on IBM Qiskit’s simulator with 8 qubits to represent feature vectors. Quantum operations such as norm and
inner product estimations were executed in a noiseless simulation environment, enabling precise evaluation of
feature importance rankings without noise interference. This simulation-based approach allowed us to verify
IQPO’s computational advantages and scalability before deployment on physical quantum hardware. The
implementation runs on a Windows 10 operating system with Python 3.12.7, utilizing a 2.15 GHz processor
and 1267 GB of RAM. Visual Studio Code is used as the development environment for executing the code. The
experimental findings are presented in this section, along with an examination of how the method generates
classifications that are highly accurate.

Dataset description
The SmartBugs Wild dataset is a large-scale collection of 47,331 Ethereum smart contracts, curated for the
purpose of analyzing and detecting real-world security vulnerabilities. It is designed for use in training and
testing machine learning and DL models aimed at smart contract vulnerability detection. The dataset includes
both vulnerable and non-vulnerable contracts, providing balanced data for binary and multi-class classification
tasks. A subset of the dataset, which includes over 1250 Solidity-written smart contracts, is annotated with
specific vulnerability types such as reentrancy, integer overflow/underflow, and access control issues. These
labeled contracts allow for fine-grained vulnerability classification and supervised learning. The dataset supports
empirical evaluation of security analysis tools by offering realistic and diverse samples from the Ethereum

Fig. 6.  Code for vulnerability identification logic of SHAP.

Scientific Reports | (2025) 15:26104 16| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

network. It enables the training of robust models capable of identifying subtle and complex flaws in contract logic.
The diversity and scale of the data also help reduce model overfitting and improve generalization. Researchers
can use the dataset to benchmark detection techniques across various types of smart contract vulnerabilities.
Ultimately, SmartBugs Wild aims to advance the security and reliability of blockchain applications through
improved vulnerability detection methodologies.

Performance metrics
Key metrics for categorization models are compiled in Table 8. While memory measures the ability to recognize
good instances, precision demonstrates the consistency of favorable predictions. While accuracy denotes complete
correctness, the F1-score finds a balance between recall and precision. A higher AUROC rating indicates better
class distinction. TP (True Positives), TN (True Negatives), FP (False Positives), FN (False Negatives), TPR (True
Positive Rate), and FPR (False Positive Rate) are key terms that help compare model performances.

Exploratory data analysis
Table 9 contrasts different security tools based on how well they can identify smart contract vulnerabilities using
the Smart Bugs Wild Dataset. It evaluates the accuracy, recall, F1-score, and FPR of every instrument for a variety
of vulnerabilities. No single tool performs better than the others, even though Mythril and Oyente are excellent
in terms of recall and precision for certain vulnerabilities. While Mythril frequently has superior precision but
a higher FPR, Maian and Securify exhibit balanced performance with differing strengths in recall and F1-score.

Taxonomical analysis of vulnerabilities in hyperledger fabric using HB3LSTM
To enhance vulnerability detection in Hyperledger Fabric, a refined taxonomy based on the HB3LSTM model is
proposed, focusing on actual exploit types rather than architectural layers. The detection process identifies key
vulnerability classes, including reentrancy, where repeated function calls compromise contract state, and access
control issues due to improper identity verification. DoS vulnerabilities are flagged when resource exhaustion
or execution blocking is detected. Arithmetic errors, such as overflows or underflows, are also recognized as

Fig. 7.  Flowchart for proposed methodology.

Scientific Reports | (2025) 15:26104 17| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

critical risks. The model detects unchecked low-level calls, which may lead to unexpected behaviors and time
manipulation vulnerabilities arising from misuse of temporal data. Front-running is identified when transaction
ordering is exploited for gain. These categories are supplemented by other miscellaneous vulnerabilities
representing less common yet dangerous flaws. This taxonomy enhances threat classification and interpretability,
ensuring HB3LSTM alignment with practical security challenges in Fabric-based smart contracts.

import pandas as pd

import numpy as np

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.model_selection import train_test_split

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, Dense, Bidirectional

import shap

from sklearn.metrics import accuracy_score

from sklearn.feature_selection import SelectKBest, mutual_info_classif

import re

from nltk.tokenize import word_tokenize

from nltk.corpus import stopwords

Load Smart Bugs Wild Dataset

Assume 'data' is a pandas DataFrame with contract code and labels

Define a function for preprocessing

def preprocess_text(text):

Convert to lowercase

text = text.lower()

Remove special characters and digits

text = re.sub(r'[^a-zA-Z\s]', '', text)

Tokenize the text

tokens = word_tokenize(text)

Remove stopwords

stop_words = set(stopwords.words('english'))

tokens = [token for token in tokens if token not in stop_words]

Join the tokens back into a string

text = ' '.join(tokens)

return text

Apply the preprocessing function to the dataset

data['code'] = data['code'].apply(preprocess_text)

Define a TF-IDF vectorizer

vectorizer = TfidfVectorizer()

Fit the vectorizer to the preprocessed data and transform it into a matrix

Table 7.  Open code Presentation of Proposed Approach.

Scientific Reports | (2025) 15:26104 18| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

X = vectorizer.fit_transform(data['code'])

y = data['label']

Feature selection using IQPO (simplified example)

selector = SelectKBest(mutual_info_classif, k=1000)

X_selected = selector.fit_transform(X, y)

Split data

X_train, X_test, y_train, y_test = train_test_split(X_selected, y, test_size=0.2,

random_state=42)

Reshape data for LSTM

X_train = X_train.toarray().reshape(X_train.shape[0], X_train.shape[1], 1)

X_test = X_test.toarray().reshape(X_test.shape[0], X_test.shape[1], 1)

HB3LSTM model

model = Sequential()

model.add(Bidirectional(LSTM(64, return_sequences=True),

input_shape=(X_train.shape[1], 1)))

model.add(Bidirectional(LSTM(32)))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

Train model

model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test,

y_test))

Evaluate model

y_pred = model.predict(X_test)

y_pred_class = (y_pred > 0.5).astype('int32')

print("Accuracy:", accuracy_score(y_test, y_pred_class))

XAI using SHAP

explainer = shap.DeepExplainer(model, X_train)

shap_values = explainer.shap_values(X_test)

Visualize SHAP values

shap.force_plot(explainer.expected_value[0], shap_values[0], X_test[0])

Table 7..  (continued)

Parameter Formula

Accuracy Accuracy = T P +T N
T P +T N+F P +F N × 100

Precision Pr ecision = T P
T P +F P × 100

Recall Recall = T P
T P +F N × 100

F1-score F 1 − score = 2×Pr ecision×Recall
Pr ecision+Recall

Area_Under_ROC (AUROC) T P R = T P
T P +F N

F P R = F P
F P +T N

Table 8.  Binary classification and performance metrics.

Scientific Reports | (2025) 15:26104 19| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Vulnerabilities Tools Precision Recall F1-score FPR

Time manipulation

Mythril 0.94 0.79 0.90 0.61

Slither 0.86 0.91 0.78 0.86

Oyente 0.93 0.92 0.92 0.54

Osiris 0.86 0.76 0.97 0.77

Smartcheck 0.72 0.86 0.87 0.65

Manticore 0.85 0.91 0.79 0.76

Maian 0.92 0.89 0.91 0.24

Securify 0.78 0.80 0.89 0.67

Honeybadger 0.81 0.92 0.78 0.45

Front running

Mythril 0.79 0.93 0.95 0.64

Slither 0.94 0.89 0.78 0.82

Oyente 0.90 0.91 0.89 0.56

Osiris 0.72 0.89 0.75 0.62

Smartcheck 0.89 0.75 0.90 0.54

Manticore 0.83 0.79 0.73 0.76

Maian 0.76 0.82 0.79 0.65

Securify 0.79 0.90 0.93 0.84

Honeybadger 0.91 0.82 0.91 0.76

DoS

Mythril 0.90 0.89 0.74 0.64

Slither 0.78 0.75 0.91 0.65

Oyente 0.79 0.90 0.88 0.87

Osiris 0.90 0.82 0.80 0.68

Smartcheck 0.82 0.79 0.75 0.76

Manticore 0.90 0.72 0.79 0.87

Maian 0.92 0.94 0.83 0.43

Securify 0.89 0.92 0.92 0.73

Honeybadger 0.93 0.83 0.88 0.84

Reentrancy

Mythril 0.73 0.76 0.87 0.56

Slither 0.89 0.83 0.94 0.69

Oyente 0.81 0.92 0.70 0.76

Osiris 0.87 0.90 0.85 0.54

Smartcheck 0.92 0.76 0.89 0.65

Manticore 0.86 0.89 0.90 0.84

Maian 0.84 0.92 0.92 0.54

Securify 0.93 0.80 0.76 0.74

Honeybadger 0.80 0.82 0.72 0.85

Access control

Mythril 0.89 0.76 0.78 0.56

Slither 0.90 0.82 0.90 0.74

Oyente 0.74 0.88 0.92 0.81

Osiris 0.79 0.76 0.76 0.55

Smartcheck 0.83 0.90 0.87 0.82

Manticore 0.90 0.89 0.73 0.88

Maian 0.79 0.72 0.79 0.75

Securify 0.87 0.80 0.80 0.77

Honeybadger 0.88 0.76 0.88 0.84

Arithmetic

Mythril 0.78 0.91 0.87 0.80

Slither 0.90 0.78 0.88 0.63

Oyente 0.86 0.85 0.90 0.87

Osiris 0.82 0.91 0.78 0.76

Smartcheck 0.92 0.70 0.94 0.65

Manticore 0.79 0.89 0.76 0.80

Maian 0.91 0.72 0.92 0.56

Securify 0.92 0.80 0.80 0.52

Honeybadger 0.76 0.91 0.82 0.76

Continued

Scientific Reports | (2025) 15:26104 20| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Case study
Protect Decentralized Finance (DeFi) platforms by scanning their deployed smart contracts for vulnerabilities
using the dataset.

Real-Time Application: Analyze the blockchain mempool (where unconfirmed transactions reside) to
prevent attacks like front running.

Confirmed Example:
A mempool monitor detects a front running attack where an attacker tries to outbid a trade by submitting a

transaction with a higher gas fee.
Steps to Apply Dataset:

•	 Train a model Use the dataset to train a model that identifies malicious transaction patterns, such as excessive
gas usage in attacks.

•	 Deploy on nodes Run the model on Ethereum nodes to monitor transactions in the mempool.
•	 Block malicious transactions Flag and prevent suspicious transactions from being confirmed.

Dataset analysis
Figure 8 presents the distribution of vulnerability classes in the SmartBugs Wild Dataset, visualized using a pie
chart. With 30.4% of the total, “arithmetic” is the largest sector, followed by “other” with 22.9%. “Unchecked_
low_calls” and “reentrancy” are about equal, at about 11.8% and 11.9%, respectively. “Time manipulation” is
3.3%, “front running” is 6.6%, “access control” is 3.1%, and “denial service” is 10.0%. This graph helps prioritize
security efforts by highlighting the frequency of various vulnerabilities.

The feature importance graph for the Smart Bugs Wild Dataset illustrates the significance of various features
in the dataset. The x-axis represents the feature importance, ranging from 0.00 to 0.12, while the y-axis lists the
features being evaluated. The features, from highest to lowest importance, are add, and, 0 × 0, dup2, push1, dup1,
jumpdest, pop, swap1, and push2. Each feature has a corresponding horizontal bar indicating its importance,
with error bars showing the uncertainty or variability in the measurement. The feature “add” has the highest
importance, followed by “and” and “0 × 0,” while “push2” has the lowest importance among the listed features.
This Fig. 9 helps in understanding which features are most significant in the Smart Bug Wild Dataset, potentially
guiding further analysis or model development.

The features in Smart Bugs Wild Dataset’s ROC curve illustrates how well classifiers work in identifying
smart contract vulnerabilities, as described in Fig. 10. For different classifiers, it compares the true positive rate
against the false positive rate. Effectiveness is indicated by the Area Under the Curve (AUC) values; greater
values signify superior performance. The capacity of classifiers to differentiate between smart contracts that are
vulnerable and those that are not is compared using this curve.

Figure 11 shows the confusion matrix for the SmartBugs. Wild Dataset shows the model’s performance in
identifying smart contract vulnerabilities. The actual class is represented by each row, while the anticipated
class is represented by each column. The model accurately detected instances of arithmetic, front-running,
denial-of-service, time-manipulation, unchecked-low-calls, reentrancy, and access-control vulnerabilities.
Better performance is indicated by higher diagonal values, which also reveal areas for improvement and areas
of strength.

Vulnerabilities Tools Precision Recall F1-score FPR

Unchecked low calls

Mythril 0.87 0.92 0.77 0.89

Slither 0.92 0.79 0.80 0.80

Oyente 0.76 0.89 0.93 0.67

Osiris 0.79 0.76 0.74 0.46

Smartcheck 0.90 0.70 0.90 0.88

Manticore 0.82 0.88 0.87 0.67

Maian 0.89 0.86 0.73 0.49

Securify 0.78 0.92 0.92 0.81

Honeybadger 0.91 0.81 0.80 0.69

Others

Mythril 0.91 0.80 0.89 0.84

Slither 0.78 0.85 0.70 0.87

Oyente 0.72 0.92 0.76 0.49

Osiris 0.79 0.87 0.88 0.77

Smartcheck 0.93 0.75 0.92 0.67

Manticore 0.87 0.80 0.74 0.80

Maian 0.82 0.73 0.83 0.66

Securify 0.80 0.77 0.89 0.67

Honeybadger 0.73 0.89 0.84 0.59

Table 9.  Comparison of different tools in smart bugs wild dataset.

Scientific Reports | (2025) 15:26104 21| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Figure 12 shows the performance of the model in terms of accuracy and loss over 100 training epochs for
the task of vulnerability detection. In (a) presents the accuracy trends, where the training accuracy reaches
approximately 0.98, the testing accuracy stabilizes around 0.86, and the validation accuracy achieves about 0.78.
(b) Shows the corresponding loss values, with the training loss at approximately 0.38, testing loss around 0.28,
and validation loss reaching as low as 0.17. These results indicate good generalization ability of the model, with a
slight performance drop in the validation phase suggesting potential areas for further optimization.

Figure 13 shows the computational efficiency of the proposed HB3LSTM model compared to existing
methods in terms of the number of nodes processed and their corresponding running time. The existing
methods like EA-RGCN27, WIDENET31, and DA-GNN33 demonstrate a running time of approximately 104
units over 500 nodes and higher. While the proposed HB3LSTM model significantly outperforms these methods
with a substantially reduced running time of approximately 10−1, indicating its superior computational efficiency
and scalability in handling large-scale data. This improvement is primarily attributed to the integration of BBO
into the training phase of the Boot LSTM network. Within the computational graph, BBO replaces traditional
gradient-based optimization by systematically evaluating candidate weight configurations to minimize detection
error. By computing upper and lower bounds on the objective function, BBO prunes suboptimal paths and
focuses computation on promising regions of the search space. This intelligent pruning strategy not only

Fig. 9.  Feature importance graph for smart bugs wild dataset.

Fig. 8.  Class distribution in the smart bugs wild dataset.

Scientific Reports | (2025) 15:26104 22| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

improves convergence and accuracy but also drastically reduces computational overhead, contributing to the
superior performance.

Figure 14 presents a SHAP summary plot illustrating the most influential TF-IDF features in predicting
vulnerabilities in smart contracts from the Smart Bugs Wild dataset. Features such as “push1,” “and,” “jumpdest,”
and “swap1” exhibit the highest mean SHAP values, indicating strong contributions to the model’s classification
outcomes. Specifically, high SHAP values for “jumpdest” correlate with control-flow vulnerabilities like
reentrancy, while “push1” is tied to arithmetic flaws such as overflows. The x-axis represents the mean SHAP
values, and the color gradient indicates the original feature values, aiding in interpretability. “dup2” shows a
consistent positive impact on vulnerability detection, whereas features like “add” and “and” demonstrate mixed
influence. The plot provides a quantitative lens into not just feature importance but also their directional impact.
SHAP thus enhances the transparency of complex models, which ensures explainable predictions. Overall, the
analysis validates SHAP’s role in highlighting security-critical patterns in smart contract code.

Table 10 shows the statistical validation of SHAP feature contributions for key opcodes in HB3LSTM based
vulnerability detection. The mean SHAP values for each opcode, indicating their average contribution to the
model’s predictions. The opcode call has a mean SHAP value of 0.084 with a t-value of 6.41 and a highly significant
p-value (< 0.001), alongside a large effect size d = 1.25, highlighting its strong influence. The opcode delegatecall
has the mean of 0.079, t = 5.87, p < 0.001, and d of 1.15, and selfdestruct has the mean value of 0.075, t = 5.42,

Fig. 11.  Confusion matrix of smart bugs wild dataset.

Fig. 10.  ROC curve of classes in smart bugs wild dataset.

Scientific Reports | (2025) 15:26104 23| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

p < 0.001, and d = 1.05, also showing significant positive contributions. The add opcode contributes moderately
with a mean SHAP value of 0.067, t = 4.22, p = 0.0002, and effect size d = 0.89. In contrast, opcodes like jumpdest
have the mean of 0.014, t = 1.13, p = 0.26, and d = 0.21; log0 has the mean of 0.011, t = 0.97, p = 0.33, and d = 0.18;
and revert has the mean of 0.008, t = 0.42, p = 0.68, and d = 0.10 have lower mean values and non-significant p-
values, indicating weaker or inconsistent influence. The statistical tests confirm that most key opcodes contribute
meaningfully to vulnerability detection, reinforcing the model’s interpretability via SHAP. Overall, this analysis
validates the importance of these features and supports the reliability of the HB3LSTM model in identifying
smart contract vulnerabilities.

Figure 15 shows the performance comparison of the proposed HB3LSTM model on original and adversarial
smart contracts using key evaluation metrics. The model achieved high values on the original dataset, with an
accuracy of 0.97, precision of 0.98, recall of 0.99, and F1-score of 0.98, indicating excellent predictive capabilities.
In contrast, the performance significantly declined on adversarial contracts, where accuracy dropped to 0.85,
precision to 0.75, recall to 0.7, and F1-score to 0.65. This stark performance gap highlights the robustness of the
original model against data perturbations. It also confirms the effectiveness of the BBO algorithm in optimizing
the model’s weights.

Comparison analysis
The accuracy of three distinct approaches, like Hierarchical Attention Network (HAN), Dual-Channel
Convolutional Neural Network (DC-CNN), and the suggested HB3LSTM across tenfold cross-validation, is
shown in the graph in Fig. 16. The accuracy is shown on the y-axis, which ranges from 0.60 to 1.00, and the number
of folds is shown on the x-axis, which ranges from 1 to 10. The accuracy of the suggested HB3LSTM approach

Fig. 13.  Computational efficiency comparison of the proposed model.

Fig. 12.  Performance evaluation of training, testing, and validation phases. (a) accuracy versus epochs (b) loss
versus epochs.

Scientific Reports | (2025) 15:26104 24| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

is higher across all folds, consistently outperforming the other two techniques. This superior performance
of HB3LSTM can be attributed to its hybrid architecture, which combines the strengths of Boot-LSTM with
BBO. The LSTM component enables effective sequence learning and temporal pattern recognition, which is
particularly beneficial for modeling contextual dependencies in sequential data. BBO adaptively optimizes
model parameters, enhancing convergence and generalization. Furthermore, the hierarchical structure of

Fig. 15.  Comparative performance metrics of HB3LSTM on original vs. adversarial smart contracts.

Opcode Mean SHAP value t-value p-value Effect Size (Cohen’s d)

Call 0.084 6.41  < 0.001 1.25

Delegatecall 0.079 5.87  < 0.001 1.15

Add 0.067 4.22 0.0002 0.89

Push1 0.0059 3.78 0.001 0.73

Jumpest 0.014 1.13 0.26 0.21

Log0 0.011 0.97 0.33 0.18

Revert 0.008 0.42 0.68 0.10

Self_destruct 0.075 5.42  < 0.001 1.05

Table 10.  Statistical validation of SHAP feature contributions for key opcodes in HB3LSTM based
vulnerability detection.

Fig. 14.  SHAP summary plot for smart bugs wild dataset.

Scientific Reports | (2025) 15:26104 25| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

HB3LSTM allows it to capture both local and global features more effectively than the flat architectures of HAN
and DC-CNN. This integrated and adaptive design leads to more robust learning and explains the consistently
higher accuracy observed across all folds.

Figure 17 shows the comparative convergence behavior analysis of four optimization algorithms, like
Particle Swarm Optimization (PSO), Lyrebird Optimization (LBO), Single Candidate Optimization (SCO),
and the BBO, over 20 iterations. The y-axis denotes the loss values, while the x-axis represents the number of
iterations. Among the existing methods, PSO has the loss of 0.85, LBO has the loss of 0.75, and SCO has the
loss of 0.65, respectively. While the proposed BBO achieves the lowest loss of 0.55, indicating faster and more
stable convergence. This superior performance is primarily due to BBO’s structured approach to optimizing the
weight parameters of the Boot LSTM network. Unlike population-based methods like PSO and LBO, which
often suffer from premature convergence due to limited global coordination. But BBO employs bounding and
pruning techniques. These methods eliminate suboptimal regions of the solution space early in the search,
improving both convergence speed and accuracy while reducing the risk of getting trapped in local minima.

Fig. 17.  Comparative convergence analysis of optimization algorithms.

Fig. 16.  Cross-validation of existing and proposed methods.

Scientific Reports | (2025) 15:26104 26| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Compared to SCO, which explores a single solution path at a time, BBO maintains a strategic balance between
exploration and exploitation. This balance is particularly valuable in high-dimensional spaces, such as those
found in smart contract analysis, where solution landscapes are often complex and filled with deceptive local
optima. Overall, BBO’s systematic and scalable search strategy enhances both the robustness and precision of
the optimization process, making it highly effective in minimizing loss and improving the detection of smart
contract vulnerabilities.

Figure 18 shows the computational analysis of BBO over the existing algorithms, addressing concerns
related to computational placement and efficiency. The x-axis reflects the number of function evaluations, while
the y-axis presents the function error value on a logarithmic scale. The proposed BBO algorithm maintains a
consistent error around 100, indicating it rapidly converges and stabilizes early in the optimization process. This
stability demonstrates where BBO fits in the computational graph as an efficient optimizer with bounded weight
updates. Unlike PSO, which continues to decrease error to below 10−2, and LBO, which reaches around 10−1,
BBO emphasizes early convergence and conservative updates. These bounded behaviors are a result of adaptive
limits placed on neural weight changes, implicitly acting as a pruning mechanism. Therefore, BBO contributes
to computational efficiency by enforcing stability and reducing unnecessary exploration. This reflects its role in
constraining weight space evolution and potentially aiding in implicit network pruning.

Table 11 presents a comparative analysis of existing methods against the proposed HB3LSTM model using
key performance metrics. Among static-based tools, Mythril shows the lowest accuracy at 39.48% and F1-
score at 37.04%, while Oyente has 70.04% accuracy and a 59.41% F1-score. DL models demonstrate superior
performance, with HAN achieving 94.76% accuracy and a 96.29% F1-score and a DC-CNN further improving
to 96.89% accuracy and a 97.64% of F1-score. The LLM, like CodeBERT, has an accuracy of 85.42%, a precision
of 75.23%, recall of 69.45, and an F1-score of 7.32%. FinBERT has the accuracy of 82.45%, precision of 79.73%,
recall of 69.06%, and F1-score of 70.26%. The proposed HB3LSTM outperforms all with 99.34% accuracy,
99.52% precision, 99.28% recall, and a 99.13% F1-score. This clearly highlights the effectiveness of HB3LSTM in
vulnerability detection.

Figure 19 shows the comparative performance of the proposed HB3LSTM model against existing LLMs
based on the accuracy metric. The existing models like the N-Gram27 model achieved an accuracy of 40.87%,
CodeBERT with 56.89%, and FinBERT with 78.35%. In contrast, the HB3LSTM model demonstrated a
remarkable accuracy of 98.79%, significantly outperforming all baseline models. This superior performance is
attributed to the HB3LSTM hybrid architecture that combines the optimization strength of the BBO algorithm
with the sequential learning capabilities of LSTM networks. The BBO component efficiently navigates complex
search spaces to enhance model precision, while LSTM excels at capturing temporal dependencies in transaction
sequences. Together, they enable HB3LSTM to detect smart contract vulnerabilities more effectively. Overall,
HB3LSTM offers a robust, scalable solution for identifying potentially malicious blockchain transactions.

Figure 20 shows a performance comparison between Ethereum27 and Hyperledger across four key metrics. In
(a), the success rate shows that Ethereum achieved 40% in Test Case (TC) 1, 20% in TC 2, 65% in TC 3, and 60%
in TC 4. In contrast, Hyperledger showed much higher success rates of 96% in TC 1, 93% in TC 2, 97% in TC 3,
and 96% in TC 4 in the respective test cases. In (b), the throughput shows. Ethereum recorded 50 transactions
per second in Scenario (S) 1, 70 in S2, 62 in S3, and 78 in S4. Hyperledger outperformed with 65 in S1, 95 in
S2, 90 in S3, and 91 transactions per second, respectively. In (c), the latency shows that Ethereum had values

Fig. 18.  Computational analysis of BBO.

Scientific Reports | (2025) 15:26104 27| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

of 75 ms, 60, 68, and 70 across the scenarios, while Hyperledger maintained lower latency at 92, 90, 90, and
87 ms. In (d), it shows the resource utilization; Ethereum used 200% CPU and 900 Mega Bytes (MB) of memory,
whereas Hyperledger consumed only 120% CPU and 550 MB of memory, showcasing its higher efficiency. Table
12 shows the example code for SHAP.

Figure 21 illustrates the cross-platform performance evaluation of the proposed HB3LSTM model across four
operating systems: Windows, Linux, Ubuntu, and macOS. The model achieved the highest accuracy on Ubuntu
at 99.8%, followed closely by macOS at 99.7%, Linux at 99.2%, and Windows at 98.5%. In terms of memory usage,
Ubuntu again performed best, consuming only 260 MB, followed by Linux with 280 MB, macOS at 300 MB, and
Windows using the most at 320 MB. Throughput analysis revealed that Ubuntu also led in request handling,
achieving 1750 requests/sec, with Linux at 1700, macOS at 1600, and Windows trailing at 1500. These results
underscore Ubuntu’s superior efficiency across all three metrics. Linux and macOS also showed competitive
performance, while Windows lagged slightly in comparison. This cross-platform consistency highlights the
robustness and portability of the proposed model.

Ablation study
Table 13 presents an ablation study highlighting the performance of various existing methods. EA-RGCN achieved
90.47% accuracy, 91.16% precision, 89% recall, and a 90.03% F1-score. BERT showed 92.53% accuracy, 94.21%
precision, 95.77% recall, and 89.47% F1-score. ANFIS reached 96.4% accuracy, 99.4% precision, 96% recall, and
a 99.1% F1-score. CNN-LSTM obtained 91% accuracy, 92% precision, 99% recall, and 95% F1-score. While these
methods deliver competitive results, our proposed HB3LSTM with Explainable AI significantly outperforms
them all, achieving 99.68% accuracy, 99.43% precision, 99.54% recall, and 99.40% F1-score. The proposed
method outperforms established baselines like CNN-LSTM and BERT. The proposed HB3LSTM + Explainable

Fig. 19.  Performance comparison of the proposed HB3LSTM model with existing LLM based on accuracy.

Accuracy (%) Precision (%) Recall (%) F1-score (%)

Statics-based tools

 Mythril34 39.48 55.58 42.25 37.04

 Oyente27 70.04 45.62 61.23 59.41

DL models

 HAN25 94.76 95.65 96.43 96.29

DC- CNN34 96.89 96.45 97.23 97.64

Large language models (LLM)

 CodeBERT34 85.42 75.23 69.45 71.32

 FinBERT35 82.45 79.73 69.06 70.26

 HB3LSTM 99.34 99.52 99.28 99.13

Table 11.  Dataset comparison of existing methods with the proposed model.

Scientific Reports | (2025) 15:26104 28| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

AI method demonstrates superior performance compared to other methods, highlighting its potential for
effective vulnerability detection. The results suggest that the combination of HB3LSTM and Explainable AI
provides a robust and accurate approach for identifying vulnerabilities.

Discussion
Our suggested approach improves the detection of smart contract vulnerabilities in several steps. First, NLP
methods are used to preprocess the input. The significance of important terms in the smart contract is then
captured by applying TF-IDF for feature extraction. Improved Quantum Online Portfolio scalability is used for
feature selection. In order to find vulnerabilities and stop dangerous transactions, the hybrid HB3LSTM then
extracts important code fragments. Lastly, the model’s decisions are interpreted using XAI approaches, such as
SHAP values, which show how particular aspects affect the vulnerability or invulnerability of a contract. This
method increases detection accuracy while offering insightful information about the security of smart contracts.

To further enhance the robustness of smart contract vulnerability detection systems, future work can explore
adversarial training strategies. Adversarial examples are inputs deliberately crafted to deceive the model, which
poses significant threats to the reliability of security classifiers. Incorporating adversarial training could increase
model resilience by exposing it to potential attack vectors during the learning phase. The integrating modular
defense mechanisms, such as runtime behavior analyzers or transaction simulation engines, could serve as an
added layer of protection. These modules can act in tandem with the static analysis approach, offering both
proactive and reactive security coverage. Another promising direction is the fusion of semantic-aware graph
representations with HB3LSTM to better model code dependencies and interactions. Combining this with
adversarial robust training regimes may yield systems that are both interpretable and resistant to manipulation.

Fig. 20.  Comparative metrics analysis between ethereum and hyperledger platforms. (a) success rate, (b)
throughput, (c) latency, (d) resource utilization.

Scientific Reports | (2025) 15:26104 29| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Extending explainability modules to incorporate user-friendly visualizations could facilitate broader adoption by
auditors and developers who may not be familiar with machine learning outputs but require actionable insights.

Methods Accuracy (%) Precision (%) Recall (%) F1-score (%)

Edge attention-residual graph convolutional networks (EA-RGCN)27 90.47 91.16 89 90.03

BERT34 92.53 94.21 95.77 89.47

Adaptive neuro-fuzzy inference system (ANFIS)26 96.4 99.4 96 99.1

CNN-LSTM43 91 92 99 95

HB3LSTM + explainable AI (proposed) 99.68 99.43 99.54 99.40

Table 13.  Ablation study of proposed method.

Fig. 21.  Cross platform performance evaluation.

Table 12.  Example code for SHAP.

Scientific Reports | (2025) 15:26104 30| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Conclusion
In the final analysis, by comparing several approaches, the suggested methodology successfully improves smart
contract vulnerability identification. The method uses IQPO for effective feature selection, cutting down on
processing time and improving scalability after preprocessing the data and extracting features using NLP and
TF-IDF. By identifying important code segments and preventing dangerous transactions, the novel HB3LSTM
enhances detection even further and works in combination with expert models. The final stage, which uses XAI
with SHAP values, allows for the identification of critical opcodes that impact smart contract vulnerabilities and
transparent decision-making. A reliable, scalable, and interpretable system for identifying and reducing smart
contract risks is produced by this multi-step process.

However, adversarial testing reveals certain robustness gaps in the current model, suggesting the need
for proactive defense mechanisms. Future research can explore the integration of adversarial training and
lightweight defense modules to improve resilience against sophisticated evasion attempts. Additionally,
extending the system to operate within decentralized or federated environments can enhance both data privacy
and scalability. Embedding the approach within blockchain-native security frameworks and enabling real-time
anomaly monitoring will further ensure adaptability to evolving threat landscapes. These enhancements can lay
the groundwork for a more trustworthy and future-ready smart contract analysis platform.

Data availability
The data that support the findings of this study are openly available at ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​d​​a​t​a​s​e​​t​s​/​t​r​a​​n​d​u​
o​n​g​​m​i​n​h​d​a​​i​/​s​m​a​r​t​b​u​g​-​d​a​t​a​s​e​t reference number42.

Received: 2 March 2025; Accepted: 24 June 2025

References
	 1.	 He, D. et al. Smart contract vulnerability analysis and security audit. IEEE Netw. 34(5), 276–282 (2020).
	 2.	 Xu, Y., Hu, G., You, L. & Cao, C. A novel machine learning-based analysis model for smart contract vulnerability. Secur. Commun.

Netw. 2021(1), 5798033 (2021).
	 3.	 Singh, A., Parizi, R. M., Zhang, Q., Choo, K. K. R. & Dehghantanha, A. Blockchain smart contracts formalization: Approaches and

challenges to address vulnerabilities. Comput. Secur. 88, 101654 (2020).
	 4.	 Xing, C. et al. A new scheme of vulnerability analysis in smart contract with machine learning. Wirel. Netw. 30(7), 6325–6334

(2020).
	 5.	 Chu, H. et al. A survey on smart contract vulnerabilities: Data sources, detection and repair. Inf. Softw. Technol. 159, 107221 (2023).
	 6.	 Tang, X., Du, Y., Lai, A., Zhang, Z. & Shi, L. Deep learning-based solution for smart contract vulnerabilities detection. Sci. Rep.

13(1), 20106 (2023).
	 7.	 Zhang, L. et al. Smart contract vulnerability detection combined with multi-objective detection. Comput. Netw. 217, 109289

(2022).
	 8.	 Huang, J. et al. Hunting vulnerable smart contracts via graph embedding based bytecode matching. IEEE Trans. Inf. Forens. Secur.

16, 2144–2156 (2021).
	 9.	 Ma, F. et al. Security reinforcement for Ethereum virtual machine. Inf. Process. Manage. 58(4), 102565 (2021).
	10.	 Jj, L., Singh, K. & Chakravarthi, B. Digital forensic framework for smart contract vulnerabilities using ensemble models. Multimed.

Tools Appl. 83(17), 51469–51512 (2024).
	11.	 Porkodi, S. & Kesavaraja, D. Smart contract: A survey towards extortionate vulnerability detection and security enhancement.

Wirel. Netw. 30(3), 1285–1304 (2024).
	12.	 Dingman, W. et al. Defects and vulnerabilities in smart contracts, a classification using the NIST bugs framework. Int. J. Netw.

Distrib. Comput. 7(3), 121–132 (2019).
	13.	 Bhardwaj, A. et al. Penetration testing framework for smart contract blockchain. Peer-to-Peer Netw. Appl. 14, 2635–2650 (2021).
	14.	 Hu, T. et al. Transaction-based classification and detection approach for Ethereum smart contract. Inf. Process. Manage. 58(2),

102462 (2021).
	15.	 Vangala, A., Sutrala, A. K., Das, A. K. & Jo, M. Smart contract-based blockchain-envisioned authentication scheme for smart

farming. IEEE Internet Things J. 8(13), 10792–10806 (2021).
	16.	 Lu, N., Wang, B., Zhang, Y., Shi, W. & Esposito, C. NeuCheck: A more practical Ethereum smart contract security analysis tool.

Softw. Pract. Exp. 51(10), 2065–2084 (2021).
	17.	 Charmet, F. et al. Explainable artificial intelligence for cybersecurity: A literature survey. Ann. Telecommun. 77(11), 789–812

(2022).
	18.	 Cao, S. et al. EXVUL: Towards effective and explainable vulnerability detection for IoT devices. IEEE Internet Things J. 11(12),

22385–22398 (2024).
	19.	 Tanga, C., Madhukar Mulpuri, D. A., Hemalatha, P. K., Singh, G., Pattewar, T. & Parveen, N. Advanced deep learning techniques

for information security vulnerability detection using machine learning.
	20.	 Aquilina, S. J., Casino, F., Vella, M., Ellul, J. & Patsakis, C. EtherClue: Digital investigation of attacks on Ethereum smart contracts.

Blockchain: Res. Appl. 2(4), 100028 (2021).
	21.	 He, F., Li, F. & Liang, P. Enhancing smart contract security: Leveraging pre-trained language models for advanced vulnerability

detection. IET Blockchain 4, 543–554 (2024).
	22.	 Dong, J. et al. Decentralized peer-to-peer energy trading strategy in energy blockchain environment: A game-theoretic approach.

Appl. Energy 325, 119852 (2022).
	23.	 Dong, J. et al. Efficient and privacy-preserving decentralized energy trading scheme in a blockchain environment. Energy Rep. 8,

485–493 (2022).
	24.	 Dong, J., Song, C., Zhang, T., Li, Y. & Zheng, H. Integration of Edge Computing and Blockchain for Provision of Data Fusion and

Secure Big Data Analysis for Internet of Things (Wiley, 2022).
	25.	 Wu, H., Dong, H., He, Y. & Duan, Q. Smart contract vulnerability detection based on hybrid attention mechanism model. Appl.

Sci. 13(2), 770 (2023).
	26.	 Yazdinejad, A., Dehghantanha, A., Parizi, R. M., Srivastava, G. & Karimipour, H. Secure intelligent fuzzy blockchain framework:

Effective threat detection in iot networks. Comput. Ind. 144, 103801 (2023).
	27.	 Chen, D., Feng, L., Fan, Y., Shang, S. & Wei, Z. Smart contract vulnerability detection based on semantic graph and residual graph

convolutional networks with edge attention. J. Syst. Softw. 202, 111705 (2023).

Scientific Reports | (2025) 15:26104 31| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

https://www.kaggle.com/datasets/tranduongminhdai/smartbug-dataset
https://www.kaggle.com/datasets/tranduongminhdai/smartbug-dataset
http://www.nature.com/scientificreports

	28.	 Ma, C., Liu, S. & Xu, G. HGAT: smart contract vulnerability detection method based on hierarchical graph attention network. J.
Cloud Comput. 12(1), 93 (2023).

	29.	 Jie, W. et al. A novel extended multimodal AI framework towards vulnerability detection in smart contracts. Inf. Sci. 636, 118907
(2023).

	30.	 Dong, J., Song, C., Sun, Y. & Zhang, T. DAON: A decentralized autonomous oracle network to provide secure data for smart
contracts. IEEE Trans. Inf. Forens. Secur. 18, 5920–5935 (2023).

	31.	 Osei, S. B., Ma, Z. & Huang, R. Smart contract vulnerability detection using wide and deep neural network. Sci. Comput. Program.
238, 103172 (2024).

	32.	 Sharma, B., Sharma, L., Lal, C. & Roy, S. Explainable artificial intelligence for intrusion detection in IoT networks: A deep learning
based approach. Expert Syst. Appl. 238, 121751 (2024).

	33.	 Zhen, Z., Zhao, X., Zhang, J., Wang, Y. & Chen, H. DA-GNN: A smart contract vulnerability detection method based on dual
attention graph neural network. Comput. Netw. 242, 110238 (2024).

	34.	 Wu, H., Peng, Y., He, Y. & Lu, S. EDSCVD: Enhanced dual-channel smart contract vulnerability detection method. Symmetry
16(10), 1381 (2024).

	35.	 Mothukuri, V., Parizi, R. M., Massa, J. L. & Yazdinejad, A. An AI multi-model approach to DeFi project trust scoring and security.
in 2024 IEEE International Conference on Blockchain (Blockchain) 19–28 (IEEE, 2024).

	36.	 Dong, J. et al. Decentralized peer-to-peer energy trading: A blockchain-enabled pricing paradigm. J. King Saud. Univ. Comput. Inf.
Sci. 37, 10 (2025).

	37.	 ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​k​a​g​g​l​​e​.​c​​o​m​​/​d​a​t​a​s​​e​​t​s​/​t​​r​a​n​d​u​o​​n​g​m​i​n​h​​​d​a​i​/​s​m​a​r​t​​b​u​g​-​d​a​t​​a​s​e​t​,​a​n​d https://github.com/smartbugs/smartbugs-wild
	38.	 Li, P. et al. A smart contract vulnerability detection method based on deep learning with opcode sequences. Peer-to-Peer Network.

Appl. 17(5), 3222–3238 (2024).
	39.	 Lim, D. & Rebentrost, P. A quantum online portfolio optimization algorithm. Quant. Inf. Process. 23(3), 63 (2024).
	40.	 Bazionis, I. K., Kousounadis-Knousen, M. A., Katsigiannis, V. E., Catthoor, F. & Georgilakis, P. S. An advanced hybrid boot-LSTM-

ICSO-PP approach for day-ahead probabilistic PV power yield forecasting and intra-hour power fluctuation estimation. IEEE
Access 12, 43704–43720 (2024).

	41.	 Watanabe, A., Tamura, R., Takano, Y. & Miyashiro, R. Branch-and-bound algorithm for optimal sparse canonical correlation
analysis. Expert Syst. Appl. 217, 119530 (2023).

	42.	 Annuzzi, G. et al. Exploring nutritional influence on blood glucose forecasting for Type 1 diabetes using explainable AI. IEEE J.
Biomed. Health Informat. 28(5), 3123–3133 (2023).

	43.	 Nazir, A. et al. A deep learning-based novel hybrid CNN-LSTM architecture for efficient detection of threats in the IoT ecosystem.
Ain Shams Eng. J. 15(7), 102777 (2024).

Acknowledgements
None

Author contributions
Contributed to overall draft writing.

Funding
No funding was received.

Declarations

Competing interests
The authors declare no competing interests.

Ethical approval
This study did not involve any animal subjects.

Informed consent
Formal consent is not essential for this particular type of research.

Additional information
Correspondence and requests for materials should be addressed to B.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025

Scientific Reports | (2025) 15:26104 32| https://doi.org/10.1038/s41598-025-08870-x

www.nature.com/scientificreports/

https://www.kaggle.com/datasets/tranduongminhdai/smartbug-dataset,and
https://github.com/smartbugs/smartbugs-wild
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿An elegant intellectual engine towards automation of blockchain smart contract vulnerability detection
	﻿﻿Literature survey
	﻿Problem statement

	﻿﻿Proposed methodology
	﻿Dataset collection
	﻿Opcode extraction
	﻿Preprocessing
	﻿Improved quantum online portfolio optimization (IQPO) for feature selection
	﻿Quantum representation of feature data
	﻿Quantum portfolio weight update rule
	﻿Quantum computations for feature selection
	﻿Quantum norm estimation for feature importance
	﻿Quantum inner product estimation for feature ranking
	﻿Quantum multi-sampling for feature selection

	﻿Hybrid boot branch and bound long short-term memory (HB﻿3﻿LSTM) for vulnerability detection
	﻿LSTM
	﻿Bootstrap
	﻿Integrated boot LSTM
	﻿Enhancing weight update with branch and bound algorithm

	﻿Initialization
	﻿Fitness function
	﻿Branching process
	﻿Terminal node
	﻿Lower and upper bounds
	﻿Re-evaluating the fitness
	﻿Termination
	﻿Theoretical convergence proof
	﻿Explainable AI interpretation of SHAP

	﻿﻿Results and discussions
	﻿Dataset description
	﻿Performance metrics
	﻿Exploratory data analysis
	﻿Taxonomical analysis of vulnerabilities in hyperledger fabric using HB﻿3﻿LSTM
	﻿Case study
	﻿Dataset analysis
	﻿Comparison analysis
	﻿Ablation study
	﻿Discussion

	﻿﻿Conclusion
	﻿References

