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The rapid proliferation of Internet of Things (IoT) devices has significantly expanded the network 
attack surface, necessitating the deployment of advanced AI (artificial intelligence)-based intrusion 
detection systems (IDS) to bolster IoT security. But existing methods face two significant challenges: 
(1) Feature redundancy: Current approaches extract numerous flow-level features to learn attack 
behavior, resulting in high computational complexity and substantial redundant information. (2) 
Class imbalance: Limited attack traffic samples hinder models from effectively learning attack 
patterns. However, existing algorithms typically address only one of these issues, overlooking their 
interconnection. Therefore, we propose a Feature Selection and Large Language Models (LLMs)-based 
IoT intrusion detection framework (FSLLM). At its core is a multi-stage feature selection algorithm 
combining Minimum Redundancy Maximum Relevance algorithm (mRMR) and a Pearson Correlation 
Coefficient (PCC)-improved Covariance Matrix Adaptation Evolution Strategy algorithm (CMA-ES). This 
algorithm utilizes the CMA-ES algorithm for feature search while also taking into account the mutual 
information and collinearity among features, thereby more effectively reducing redundancy features. 
Subsequently, we employ the selected representative features to fine-tune LLMs and generate 
additional attack samples. This approach effectively reduces the computational cost of fine-tuning 
while producing higher-quality samples. Furthermore, we employ Focal Loss (FL) function-improved 
LightGBM as the classifier to improve detection performance. We evaluate our framework on five 
IoT intrusion detection datasets: NF-ToN-IoT-v2, NF-UNSW-NB15-v2, NF-BoT-IoT-v2, NF-CSE-CIC-
IDS2018-v2, and CIC-ToN-IoT. Experimental results demonstrate that FSLLM achieves comparable or 
superior accuracy to current state-of-the-art methods while reducing redundant features by over 80%.
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With the proliferation of IoT services, the interconnection and intercommunication of heterogeneous devices 
across different platforms have become increasingly facilitated1. An analysis conducted in 2023 projected that 
the global number of IoT devices would increase from 15.1 billion in 2020 to over 29 billion by 20302. However, 
the widespread adoption of IoT devices has also expanded the attack surface for hackers, rendering these devices 
primary targets for cyberattacks. IoT networks are particularly susceptible to attacks such as denial of service 
(DoS), distributed DoS (DDoS), and reconnaissance attacks3. The severity of these threats is exemplified by 
two major incidents: the 2015 cyberattack on Ukraine’s power grid, which left over 230,000 people without 
electricity, and the 2016 Mirai worm-fueled DDoS attack that disrupted IoT devices worldwide4,5. Consequently, 
detecting and preventing cyber threats in IoT networks has emerged as a critical task in the field of cybersecurity.

To enhance IoT security and address emerging threats, AI-based intrusion detection algorithms have 
been widely adopted6. Methods based on graph neural networks7 and deep learning8 have currently achieved 
promising results in the field of intrusion detection. However, due to the significantly lower proportion of 
complex attack traffic (e.g., “worm attacks” and “shell-code attacks”) in IoT scenarios, current algorithms face 
two major challenges: (1) Feature redundancy: Existing methods extract numerous flow-level features to learn 
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at-tack behaviors, resulting in high computational complexity and redundant information. (2) Class imbalance: 
Limited attack traffic samples hinder effective model learning of attack patterns.

For feature redundancy, two main approaches are used: feature selection and feature extraction. Feature 
selection includes wrapper, filter, and embedded methods9–11, while feature extraction primarily employs 
unsupervised learning techniques12,13. Heuristic algorithm-based feature selection methods10,11 have gained 
attention for their ability to search for efficient feature subsets. However, current heuristic-based feature 
selection methods often simplify feature selection into a single-objective optimization problem, neglecting 
feature collinearity and correlations with target variables. This limitation hinders effective identification and 
elimination of redundant features in datasets, potentially affecting model performance and generalization.

For class imbalance, researchers have proposed various methods, including data-level resampling techniques 
and algorithm-level deep learning approaches. Resampling techniques include Oversampling, undersampling14, 
and Synthetic Minority Oversampling Technique (SMOTE) and its variants15. However, these techniques 
may lead to data distribution distortion or overfitting. With the advancement of deep learning, techniques 
such as Generative Adversarial Networks (GANs)16 and Variational Autoencoders (VAEs)17 have been used 
to generate minority class samples. These methods attempt to generate more realistic samples by learning the 
latent distribution of data. However, they often struggle with high-dimensional tabular data and may produce 
inconsistent sample quality.

Previous research reveals that current methods still have many shortcomings, and many approaches focus 
on either feature redundancy or class imbalance without considering their interrelationship. However, by 
using feature selection algorithms to select representative feature subsets, we can obtain higher-quality feature 
sets, effectively aiding data augmentation algorithms in reducing training costs and generating higher-quality 
samples. In this study, we propose FSLLM, an IoT intrusion detection framework that integrates multi-stage 
feature selection and data augmentation. Our approach leverages a novel MCP feature selection algorithm to 
reduce redundancy and improve feature representation. Furthermore, we fine-tune LLMs using these selected 
features to generate high-quality synthetic samples, thereby mitigating class imbalance. Finally, we employ a 
lightweight LightGBM classifier with an FL function to enhance detection performance in imbalanced datasets. 
The main contributions of this paper are as follows:

	1.	 We have developed a multi-stage feature selection algorithm (MCP feature selection algorithm) that consid-
ers both feature collinearity and redundancy, significantly reducing the number of features while maintain-
ing model performance.

	2.	 By fine-tuning LLMs with representative features selected through our algorithm, we achieved high-quality 
minority class sample generation while reducing fine-tuning costs. This approach offers a novel perspective 
on addressing class imbalance in the field of intrusion detection.

	3.	 We have employed the lightweight LightGBM as a classifier and introduced FL function to optimize its per-
formance on imbalanced datasets.

	4.	 We have conducted experiments on five recent IoT intrusion detection datasets: NF-CSE-CIC-IDS2018-v2, 
NF-ToN-IoT-v2, NF-UNSW-NB15-v2, NF-BoT-IoT-v2, and CIC-ToN-IoT. These experiments validated the 
generalizability and feasibility of our proposed method.

The remainder of this paper is organized as follows. “Related work” section briefly reviews related research on 
feature selection and data augmentation applied to IoT intrusion detection. “Methodology” section introduces 
our framework, focusing on the three components illustrated in Fig. 1. “Results and discussion” section evaluates 
the proposed framework in various environments and presents the experimental results through detailed 
analysis. Finally, we conclude this study and propose future work directions in “Conclusions” section.

Related work
AI-based IoT intrusion detection
In the ?eld of AI-based NIDS, many studies have been conducted to apply machine learning and deep learning 
technologies to anomaly detection. Sarhan et al.12 employed Principal Component Analysis (PCA), Auto-
encoder (AE), and Linear Discriminant Analysis (LDA) for feature extraction on UNSW-NB15, ToN-IoT, and 
CSE-CIC-IDS2018 datasets, followed by evaluations using Deep Feed Forward (DFF), Convolutional Neural 
Networks (CNNs), Recurrent Neural Networks (RNNs), Decision Tree (DT), Logistic Regression (LR), and 
Naive Bayes (NB) models. Yang et al.13 utilized stacked sparse autoencoder (SSAE) for feature extraction and 
temporal convolutional network (TCN) for IoT attack detection. The approach reduces training time and resource 
demands by over 50% while maintaining detection accuracy. Majhi et al.18 proposed an IoT intrusion detection 
algorithm using LightGBM, optimized with the Grasshopper Optimization Algorithm (GOA), achieving a 97% 
detection success rate on the NF-UNSW-NB15 dataset.

In contrast, Shaker et al.19 explored deep learning models: CNNs, Deep Neural Networks (DNNs), RNNs on 
NF-UNSW-NB15, NF-BoT-IoT, and NF-ToN-IoT datasets, finding DNNs performed best in binary classification 
with 98.74% accuracy. However, all models showed moderate performance in multi-class classification. To 
leverage long-term behavior recognition, Manocchio et al.20 framed traffic classification as a text classification 
task, using Transformer-based architectures like GPT-2 and BERT. GPT-2 performing best on NSL-KDD, 
CSE-CIC-IDS, and UNSW-NB15 datasets. Karthikeyan et al.21 introduced the FA-ML technique, combining 
machine learning with the Firefly Algorithm, to enhance intrusion detection in IoT systems. Using a support 
vector machine (SVM) model with parameter tuning via the Grey Wolf Optimizer (GWO), the FA-ML method 
achieves a high accuracy of 99.34% on the NSL-KDD dataset.

Termos et al.7 presented the Graph Deep Learning framework based on Centrality measures (GDLC) to 
improve intrusion detection in IoT networks by dynamically selecting centrality measures and integrating them 
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with deep learning models like CNNs, Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). 
The approach tested on various datasets, shows a detection rate improvement of up to 7.7%. Nguyen et al.22 and 
Wang et al.23 both focused on graph-based approaches. Nguyen’s self-supervised graph neural network achieved 
99% accuracy in binary classification by enhancing graph representations through auxiliary attribute learning. 
Similarly, Wang’s graph attention networks, which considered both state and temporal features, also achieved 
99% bi-nary classification accuracy on the NF-ToN-IoT-v2 dataset.

Feature selection algorithms in IoT intrusion detection
Currently, feature selection algorithms for IoT intrusion detection have also been extensively researched, 
effectively enhancing models’ interpretability and prediction speed. Sarhan et al.9 conducted feature selection 
experiments on six IoT intrusion detection datasets using chi-square test, Information Gain (IG), and PCC 
methods. For UNSW-NB15, Random Forest (RF) achieved 98.62% and 98% accuracy on original and NetFlow 
versions, using 7 and 3 features respectively. On ToN-IoT, RF reached 97.49% accuracy with 20 features on 
the original dataset and 99.38% with 6 features on the NetFlow version. For CSE-CIC-IDS2018, RF attained 
98.36% and 95.51% accuracy on original and NetFlow versions, using 3 and 6 features respectively. Leevy et al.24 
evaluated the impact of ensemble feature selection techniques (FSTs) on detecting IoT attacks using the Bot-IoT 
dataset. They employed IG, IG ratio, and Chi-squared as feature selection methods, experimenting with four 
ensemble learners and four non-ensemble learners. The study found that the method reduced computational 
burden by decreasing the number of features.

Mohy-Eddine et al.25 combined Isolation Forest (IF) and PCC for feature selection. They employed two 
strategies: (1) using IF to remove anomalies followed by PCC feature selection, and (2) applying PCC feature 
selection before removing anomalies. Their method achieved accuracies of 99.30% and 99.18% on the NF-
UNSW-NB15-v2 dataset. Komisarek et al.26 used chi-square test, RF feature importance, and Lasso L1 to select 
ten crucial features from five Net-Flow datasets.

Amin et al.27 proposed the Chaotic Zebra Optimization Algorithm (CZOA) for feature selection, achieving 
99.83% accuracy with LSTM on CSE-CIC-IDS2018. Khammassi et al.10 utilized Genetic Algorithms (GA) and 
logistic regression(LR) for feature selection, achieving 99% accuracy on the KDD99 dataset and 81.42% accuracy 
on the UNSW-NB15 dataset. Subramani et al.11 introduced a rule-based and multi-objective PSO algorithm 
for feature selection, combined with an improved SVM for classification. This approach demonstrated reduced 
training and prediction times while achieving strong results on three public datasets.

Traffic data augmentation algorithms for IoT intrusion detection
Due to the complexity and diversity of IoT attacks, collecting attack traffic during the data acquisition process 
is often challenging. Consequently, many researchers have attempted to generate attack traffic using data 

Fig. 1.  FSLLM framework for IoT intrusion detection: (a) The feature selection algorithm identifies essential 
features from IoT intrusion detection traffic. (b) LLMs are fine-tuned using a dataset constructed from these 
critical features, allowing the model to generate new data samples. (c) The LightGBM classifier is improved 
with the FL function.
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augmentation algorithms. Talukder et al.14 proposed a novel ML-based network intrusion detection model 
using Random Oversampling, Stacking Feature Embedding based on clustering results, and PCA for dimension 
reduction. Their model achieved high accuracy rates on UNSW-NB15 (99.59% for RF, 99.95% for Extra Trees), 
CIC-IDS-2017 (99.99% for RF), and CIC-IDS-2018 (99.94% for Decision Tree and RF) datasets. sayegh et al.15 
developed an LSTM-based intrusion detection system for IoT networks, incorporating SMOTE to address data 
imbalance. Their model outperformed existing methodologies on CICIDS2017, NSL-KDD, and UNSW-NB15 
datasets, demonstrating improved accuracy in detecting network intrusions and contributing to enhanced IoT 
security. Mouiti et al.28 employed Adaptive Synthetic Sampling (ADASYN) for Oversampling, achieving 99% 
binary classification accuracy on UNSW-NB15. Similarly, Liu et al.29 combined ADASYN with LightGBM, 
obtaining accuracies of 92.57%, 89.56%, and 99.91% on NSL-KDD, UNSW-NB15, and CI-CIDS2017 datasets.

Ding et al.16 utilized a hybrid model with Conditional Generative Adversarial Network (CGAN), Deep AE, 
and RF, achieving 99.8% binary and 99.6% multi-class classification accuracy. Soflaei et al.30 addressed data 
imbalance in UNSW-NB15 with Conditional Tabular Generative Adversarial Network (CTGAN), achieving 
98% binary and 95% multi-class classification accuracy using XGBoost. Wang et al.31 combined WGAN-gp with 
graph neural networks, achieving 93.7% binary classification accuracy on NF-BoT-IoT using E-GraphSAGE. Li 
et al.32 introduced a CGAN and BERT-based model, enhancing data generation quality and achieving optimal 
performance on NF-ToN-IoT-v2, CSE-CIC-IDS2018, and NF-UNSW-NB15-v2.

Methodology
As shown in Fig. 1, the core of the FSLLM framework is a multi-stage feature selection algorithm, which we call 
the MCP algorithm. This algorithm comprises two main steps:

	1.	 Redundant Feature Elimination: We first assess the redundancy between features and their relevance to the 
target variable using the mRMR algorithm33. The mRMR algorithm is a widely used feature selection method 
that evaluates both feature redundancy and feature importance. It ensures that selected features are not only 
highly relevant to the target variable but also minimally redundant among themselves. To achieve this, we 
use mutual information to measure dependencies between features, helping to reduce the initial search space 
for subsequent steps.

	2.	 Feature Search Optimization: After the initial filtering, we refine the feature selection process using the 
CMA-ES algorithm34. CMA-ES is an evolutionary black-box optimization algorithm that is particularly 
effective for complex, high-dimensional optimization problems. Since CMA-ES operates in a continuous 
space, we employ a continuous relaxation encoding mechanism to map its solutions to a binary feature selec-
tion space. Furthermore, to mitigate feature redundancy caused by collinearity, we incorporate an adaptive 
search strategy that dynamically adjusts the PCC threshold during the optimization process. The PCC is used 
to measure the linear correlation between variables and helps in refining feature selection by ensuring that 
highly correlated features do not introduce redundancy.

Following feature selection, FSLLM constructs a fine-tuning dataset using the selected key features and addresses 
class imbalance by generating additional samples for underrepresented attack traffic. The quality of the generated 
samples improves due to the more representative features obtained during feature selection.

After feature selection and data augmentation, FSLLM employs FL-improved LightGBM as the classifier to 
enhance detection performance. LightGBM is a tree-based machine learning algorithm that leverages gradient 
boosting to improve classification accuracy while maintaining low computational requirements, making it 
suitable for real-world deployment scenarios.

MCP feature selection algorithm
The purpose of feature selection for IoT intrusion detection datasets is to eliminate redundant features in 
the original dataset while maintaining a relatively high prediction performance, thereby enhancing the 
model’ s interpretability, training efficiency, and prediction speed. Formally, let’ s consider an IoT intrusion 
detection dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi = (xi1, xi2, . . . , xip) represents a p
-dimensional feature vector, and yi is the corresponding label. The objective of feature selection is to select a 
subset S ⊆ {1, . . . , n} from the p features to minimize the number of features while keeping the loss in model 
performance as low as feasible.

To better address the feature redundancy problem, this paper proposes a feature selection algorithm named 
MCP. The detailed implementation of the MCP feature selection algorithm is presented in Algorithm 1. Firstly, 
the algorithm determines the minimum threshold for subsequent calculation of collinear features by computing 
the PCC between features of the training set. For the dataset, we calculate the PCC between each pair of features 
x and y and subsequently identify the most frequently occurring value as the minimum threshold for collinear 
feature calculation.
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Algorithm 1.  MCP feature selection algorithm.

Redundant feature elimination (mRMR)
In the feature selection phase, we initially employ the Fast-mRMR35 (An improved version of the mRMR 
algorithm, accelerated by introducing GPU support for computation.) algorithm to obtain a preliminary feature 
subset. The mRMR algorithm aims to select a subset from a given feature set by computing the mutual information 
between features and the target variable, as well as among the features themselves. Its goal is to maximize the 
relevance of the selected features to the target variable while minimizing redundancy within the subset. Mutual 
information serves as a metric to quantify the interdependence between two random variables. For variables 
X  and Y , their mutual information can be calculated using equation (1), where p(x, y) represents the joint 
probability distribution of variables X  and Y , and p(x) and p(y) are the marginal probability distributions of 
X  and Y . This formula measures the dependency between variables. If X  and Y  are completely independent, 
then I(X; Y ) = 0. For example, suppose a dataset contains two variables: traffic size (bytes) and attack type 
(e.g., DoS attack). If attack traffic is typically larger in size, then these two variables will have a high mutual 
information value.

	
I(X; Y ) =

∑
x∈X

∑
y∈Y

p(x, y)log
p(x, y)

p(x)p(y) .� (1)

We assume the IoT intrusion detection dataset’ s feature set is S and the target variable is c. To achieve the 
objectives above, the mRMR algorithm conducts feature selection through the following two steps:

	1.	 Maximize the mutual information between features and the target variable: Select features that have a high 
correlation with the target variable, i.e., maxfi∈S I(fi; c).

	2.	 Reduce redundancy among features to ensure that the mutual information between features is minimized, 
i.e., minfi,fj ∈S

1
|S|2

∑
fi,fj ∈S

I(fi; fj).

Combining the two objectives mentioned above, the selection process of the mRMR algorithm can be defined 
as equation (2), where I(fi; c) signifies the mutual information between the feature fi and the target variable c, 
and the term 1

|S|

∑
fj ∈S

I(fi; fj) calculates the average mutual information between fi and all features within 
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the already selected feature set S. The goal of this formula is to select features that are most relevant to the target 
variable while being least similar to other features. For example, if the feature set includes “source IP address” 
and “device ID”, these two may be highly correlated (as a device typically retains the same IP address). In this 
case, the mRMR algorithm may remove one of them.

	

maxfi∈S


I(fi; c) − 1

|S|
∑
fj ∈S

I(fi; fj)


 .� (2)

Feature search optimization (CMA-ES + PCC)
The mRMR algorithm primarily employs linear mutual information measures, which limits its ability to capture 
complex non-linear relationships and does not address the feature redundancy problem caused by feature 
collinearity. Therefore, we use the feature subset obtained from the mRMR algorithm as the initial solution for 
the second phase and introduce an improved version of the CMA-ES algorithm to continue feature selection. 
Specific improvements include:

	1.	 Pearson Correlation Coefficient: During the CMA-ES iterative search process, we introduce PCC to remove 
collinear features and provide new initial solutions for subsequent searches.

	2.	 Iterative Search Strategy: We dynamically adjust the PCC threshold for removing collinear features during 
the iterative search process.

	3.	 Continuous Relaxation-based Feature Encoding: In the feature selection problem, we usually represent feature 
selection as a binary vector27. Each candidate solution is represented by a binary vector z = (z1, z2, . . . , zd) 
of length d, where zi ∈ {0, 1}. Specifically, zi = 1 indicates that the corresponding feature is selected. How-
ever, binary encoding cannot express continuous information and cannot be directly applied in the CMA-ES 
algorithm. Therefore, We employ a sigmoid function for feature encoding to transform the continuous opti-
mization problem into a binary feature selection problem.

During the algorithm’ s execution, the mean vector m0, covariance matrix C0, and step size σ0 is first initialized. 
Specifically, m0 is a vector of length d, typically initialized with small random values uniformly distributed in 
the range [-1, 1]. This can be represented as: m0 = uniform(−1, 1, d). This initialization approach provides a 
good starting point for the CMA-ES algorithm to explore the search space effectively. The covariance matrix C0 
is usually initialized as an identity matrix Id of size d × d. The step size σ0 controls the size of the search range 
and is commonly initialized to 1.

Subsequently, for each generation t, λ candidate solutions xi are generated, where i = 1, 2, . . . , λ. Assuming 
the current mean vector is mt and the step size is σt, each candidate solution xi can be calculated using equation 
(3).

	 xi = mt + σt · Bt · Di.� (3)

Bt is a transformation matrix computed based on the current covariance matrix Ct, which regulates the 
distribution direction and scope of the candidate solutions xi. In the computation process, the covariance 
matrix Ct is first subjected to eigendecomposition to yield its eigenvalues λi and corresponding eigenvectors 
vi, indexed by i from 1 to d. Subsequently, guided by the effective selection count µeff (µeff ≈ λ/2), the initial 
µeff  eigenvectors of the covariance matrix are selected, and Bt is subsequently computed utilizing equation (4).

	
Bt =

µeff∑
i=1

√
λi · vi · vT

i .� (4)

Di is a d-dimensional standard average random vector introduced to incorporate randomness. It is computed 
as Di∼ N (0, Id), meaning that Di is a multivariate average random vector with a mean of zero and a covariance 
matrix equal to the identity matrix Id.

Subsequently, for each generated candidate solution xi, we first transform the feature selection problem from 
a continuous space to a discrete space. This is achieved using the following formula: zi = 1/(1 + e−xi ), where 
zi ∈ [0, 1] indicates the probability of selecting feature i. Discretization is achieved by applying a threshold 
value (e.g., zi ≥ 0.5 indicates that the feature is selected). This continuous relaxation-based feature encoding 
approach not only captures the continuous information during the feature selection process but also leverages 
the strengths of the CMA-ES algorithm in handling continuous optimization problems more effectively. 
Subsequently, the fitness value f(xi) is calculated using a fitness function for each candidate solution. Based on 
the fitness values, the mean vector mt+1, the covariance matrix Ct+1, and the step size σt+1 are updated. In this 
paper, the fitness value is the F1 score (refer to equation (15)) of the LightGBM model.

For the mean vector mt+1, we typically employ equation (5) for the solution. This formula represents the 
center point (mean) of the next-generation population, which is obtained by updating the previous generation’s 
center point mt with an adjustment term based on the best-performing individuals. Here, µ represents 
the number of elites selected, ωi is the weight assigned when the fitness value is f(xi), often calculated as 
log((λ + 1)/2) − log(i), and di = xi − mt represents the centralized candidate solution.
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mt+1 = mt + 1

µ

µ∑
i=1

wi · di.� (5)

The covariance matrix Ct+1 can be calculated using equation (6). In this equation, c1 and cµ are two control 
parameters, c1 is typically used to control the update of the step size, while cµ is used to control the update of 
the covariance matrix. (1 − c1 − cµ) · Ct retains a portion of the current covariance matrix to maintain search 
stability. c1 ·

∑µ

i=1 hi · did
T
i  updates the covariance matrix using the outer product of samples, contributing to 

step size adjustment. cµ · Ct further adjusts the covariance matrix to adapt to the new search direction. (typically 
c1 = 0.1, cµ=0.2).

	
Ct+1 = (1 − c1 − cµ) · Ct + c1 ·

µ∑
i=1

hi · did
T
i + cµ · Ct.� (6)

The step size σt+1 can be calculated using equation (7). In this equation, cσ  is the step size update parameter, 
typically a small positive number. E [∥ N(0, I) ∥] is the expected value of the standard normal distribution. 
dstep is a scaling factor employed to regulate the magnitude of the evolution path length ∥ pσ ∥, during the 
process of updating the step size. This formula controls the search step size σt, ensuring that the search is 
neither too large (which would introduce excessive randomness) nor too small (which could lead to premature 
convergence to a local optimum).

	
σt+1 = σt · exp

(
cσ

dstep

(
∥ pσ ∥

E[∥ N(0, I) ∥] − 1
))

.� (7)

The evolution path pσ  is a vector used to record the changes in the mean vector mt over the past generations. It 
can be calculated using equation (8). In this equation, cpath is a parameter used to control the update speed of 
the evolution path.

	
pσ = (1 − cpath) · pσ +

√
1 − (1 − cpath)2 · Bt · (mt+1 − mt)

σt
.� (8)

In the CMA-ES algorithm, the mean vector m and covariance matrix C  are adaptively updated to explore the 
search space and identify optimal feature subsets. Imagine CMA-ES searching for the optimal feature subset 
in a two-dimensional space. The search range in each generation is determined by the covariance matrix Ct. If 
certain directions correspond to more valuable features, the next generation of the search will be more inclined 
to explore those directions. However, CMA-ES does not account for feature collinearity, which may result in the 
inclusion of redundant features. To address this limitation, we propose an iterative search strategy that integrates 
PCC to assess and mitigate feature collinearity.

Algorithm 2.  Remove collinear features.
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The specific implementation for removing feature collinearity is presented in Algorithm 2. Let 
X = [x1, x2, . . . , xn] denote the feature matrix, where each xi represents a feature vector. We first compute 
the correlation matrix R for the features using PCC. Features with a correlation coefficient |Rij | exceeding 
a predefined threshold τ  are evaluated. In this process, features exhibiting high collinearity with others are 
removed, while retaining features that show a stronger correlation with the target variable y. Specifically, if 
|corr(xi, y)| > |corr(xj , y)|, feature xi is preserved.

The resulting subset of features, which has been pruned to reduce collinearity, forms the initial population 
for the CMA-ES algorithm. During optimization, the threshold τ  is dynamically adjusted in each iteration t as 
follows:

	
τt = τ0 ×

(
τmin

τ0

) t
T

.� (9)

where τ0 is the initial threshold, τmin is the minimum threshold, and T  represents the total number of iterations. 
As iterations proceed, the threshold τt is reduced to refine feature selection, ensuring that the final feature subset 
balances relevance and redundancy effectively.

Improved lightGBM based on FL function
LightGBM36 typically uses logarithmic and cross-entropy loss functions for binary and multi-class classification 
tasks, respectively. Although these original loss functions perform well in many cases, they are less effective 
on imbalanced datasets. To address this limitation, we incorporate FL37 into the LightGBM framework. In IoT 
intrusion detection datasets, the binary classification scenario often has relatively balanced positive and negative 
samples. Therefore, this paper focuses primarily on multi-class classification.

For binary classification, FL is defined as F L(pt) = −αt(1 − pt)γ log(pt). where pt is the probability of 
predicting the true class, αt is the class weight used to balance the imbalance between positive and negative 
samples, and γ is a tuning parameter that controls the rate at which the weight assigned to well-classified 
examples decreases. And LightGBM builds decision trees using information based on the gradient and Hessian. 
FL reduces the weight of easily classified samples, thereby emphasizing hard-to-classify samples. When pt is 
close to 1 (indicating an easily classified sample), (1 − pt)γ  approaches 0, reducing its contribution to the loss. 
Conversely, when pt is close to 0 (indicating a hard-to-classify sample), (1 − pt)γ  approaches 1, increasing its 
contribution to the loss.

As shown in equation (10), to optimize model performance, we determine the initialization score by 
minimizing the overall FL. In this equation, σ(·) represents the sigmoid function, b denotes the initialization 
score, and yi is the true label.

	
b∗ = arg min

b

∑
i

F L(σ(b), yi)� (10)

To extend binary FL to multi-class problems, we use the One-vs-Rest (OvR) strategy38. For a problem with K  
classes, we train K  binary classifiers, with each classifier fi having the decision function fi(x) = σ(gi(x) + bi), 
where gi(x) is the output of the LightGBM model, and bi is the initial score for the respective class.

In multi-class tasks, accurate probability distribution requires calibrating the outputs of multiple binary 
classifiers. Calibration is applied during the prediction phase to ensure the probability distribution is reasonable. 
This is achieved through softmax normalization, converting each classifier’ s scores into relative probabilities:

	
P (y = i|x) = exp(fi(x))∑

j
exp(fj(x)) � (11)

This calibration ensures that the sum of the probabilities is 1, allowing the model to better assess the likelihood 
of a sample belonging to each class, even with imbalanced distributions. After probability calibration, the final 
multi-class prediction is based on the argmax principle, where ypred = arg maxi P (y = i|x), thus ensuring 
that the class with the highest probability is chosen as the prediction.

During LightGBM’ s optimization process, we use the derived first and second derivatives to guide the 
tree growth36. In each iteration, the model adjusts the tree structure based on the current gradient and second 
derivative information to minimize FL.

Traffic data augmentation algorithm based on LLMs
LLMs are deep learning-based AI systems capable of understanding and generating natural language. Their 
applications span various domains, including natural language processing, dialogue systems, content creation, and 
information retrieval39. In recent years, LLMs have shown particular promise in the field of data augmentation40. 
Unlike traditional methods, LLMs offer exceptional flexibility and precision in generating complex synthetic 
data. This paper proposes an IoT intrusion detection traffic augmentation method based on fine-tuned LLMs. 
By fine-tuning on limited attack traffic samples, LLMs can capture and replicate unique features and patterns, 
generating additional synthetic attack data. This augmented dataset potentially enhances model accuracy 
and reliability in identifying rare attack types. However, given the complexity and redundancy of IoT traffic 
data features, directly fine-tuning on all features may lead to inefficient model processing, excessive memory 
consumption, and increased overfitting risk. This is because the model might focus on irrelevant features while 
overlooking truly important ones. Therefore, in this study, we employ the MCP feature selection algorithm to 
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identify the most relevant features and construct the fine-tuning dataset. This approach enables the model to 
better capture key patterns in IoT traffic, thereby improving the efficiency of the fine-tuning process. Moreover, 
utilizing more representative features facilitates the generation of high-quality samples.

Our approach consists of four stages: (1) Text encoding (Fig. 2a). (2) Fine-tuning the model using the encoded 
text (Fig. 2b). (3) Generating text based on the fine-tuned model (Fig. 2c). (4) Converting the generated text into 
IoT intrusion detection traffic data (Fig. 2d). The features used for text encoding in the first phase are selected 
from the original feature set using the MCP feature selection algorithm.

This ensures efficient and effective text encoding by selecting the optimal feature subset. The subset includes 
continuous variables (e.g., received traffic value is 59000) and categorical variables (e.g., port number is 80). We 
represent original features with descriptive phrases such as ’ port is 80 ’ or ’ protocol is 234’, maintaining data 
integrity and clarity throughout the encoding process.

For a feature set z = (z1, z2, . . . , zd) in an IoT intrusion detection dataset with n rows of samples, each 
feature zi in z can be encoded into text using the rule ztext = [zi, “is′′, valuei,j , “,′′ ], where valuei,j  denotes 
the value of the i-th feature in the j-th row. This encoding concatenates each feature description with ’,’ to 
form coherent statements across the dataset. To enhance the semantic clarity, a comprehensive description is 
added to each sentence: ’ The malicious traffic features and Attack type are described as follows, MAX_TTL is 
225, ICMP_TYPE is 56833, L4_DST_PORT is 80, TCP_FLAGS is 10, ..., Attack is 1’ This semantic description 
provides additional context to the encoded features, enhancing the interpretability of the generated text.

During the fine-tuning stage, IoT traffic data is transformed into text enriched with semantic information, 
thereby converting the IoT intrusion detection traffic data augmentation task into a text generation task. For this 
purpose, the encoded content ztext is tokenized into a sequence (w1, w2, w3, ..., wn) using a T okenizer(t) 
function, where w ∈ W , a predefined vocabulary41.

In language modeling, the primary objective is to estimate the probability of a given sequence, as 
shown in equation (12). This probability is often decomposed in an autoregressive manner, represented as 
p(wk|w1, w2, . . . , wk−1), indicating the likelihood of predicting word w1, w2, . . . , wk−1 given all preceding 
words. The product 

∏j

k=1  signifies that the overall probability of the sequence t is the product of these 
conditional probabilities for each word. By accurately estimating these probabilities, the model can effectively 
generate coherent and contextually related sequences of words.

	
p(t) = p(w1, w2, . . . , wn) =

j∏
k=1

p(wk|w1, w2, . . . , wk−1)� (12)

During the training stage, the model optimizes its parameters to maximize the joint probability of all sequences 
in ztext, which is represented as 

∏
t∈ztext

p(t). This objective is commonly achieved using the negative log-
likelihood loss, as depicted in equation (13). By taking the negative logarithm of the joint probability, the 

Fig. 2.  Augmenting IoT intrusion detection traffic data using LLMs. (a) Convert statistical features extracted 
from raw traffic into long texts with semantic information. (b) Fine-tune the LLMs model using the dataset of 
these long texts. (c) Generate similar semantic long texts with the fine-tuned LLMs. (d) Decode the generated 
long texts back into their original statistical features.
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product is transformed into a sum, and the negative sign ensures that minimizing the loss function is equivalent 
to maximizing the joint probability. This approach effectively guides the model to achieve the best fit for the data.

	
Loss(t) = −logp(t) = −

n∑
k=1

logp(wk|w1, w2, . . . , wk−1)� (13)

During the sampling stage, given a context (historical sequence) w1, w2, . . . , wk−1, a trained model outputs 
a probability distribution p (wk|w1, w2, . . . , wk−1) representing the likelihood of the next token wk . As 
illustrated in Fig. 3, different inputs can lead to varied output distributions. For instance, given the input “PORT”, 
the model might predict “is” with 60% probability, “are” with 10%, and “has” with 5%. Similarly, for the input 
“PORT is”, the model might predict “80” with 60% probability, “8080” with 10%, and “0” with 5%. In this paper, 
we initialize the sequence with ’ The malicious traffic features and Attack type are described as follows’.

Various sampling strategies are employed to select the next token from this distribution, including random 
sampling, greedy search, temperature sampling, top-k sampling, and top-p sampling42.

In this study, we employ temperature sampling, which adjusts the probability distribution by introducing a 
temperature parameter T  to control the randomness of sampling. Specifically:

	1.	 Adjust the original probability distribution to p(wk|w1, . . . , wk−1)1/T .
	2.	 Normalize the adjusted probabilities.
	3.	 Perform random sampling based on the normalized distribution.

The temperature T  influences the smoothness of the distribution, with higher values increasing randomness and 
lower values favoring more deterministic selections.

Results and discussion
In this chapter, we first conduct experiments on five separate datasets, using the MCP feature selection algorithm 
and the data augmentation algorithm based on fine-tuning LLMs to validate the effectiveness of our proposed 
methods. Subsequently, we compare the final experimental results of the FSLLM framework with state-of-the-
art IoT intrusion detection algorithms to demonstrate the framework’s efficacy. Finally, we analyze the efficiency 
of the FSLLM framework to verify its high performance.

Datasets
This study employs five recent IoT intrusion detection datasets43,44: NF-CSE-CIC-IDS2018-v2, NF-ToN-IoT-v2, 
NF-UNSW-NB15-v2, NF-BoT-IoT-v2, and CIC-ToN-IoT. The first four datasets utilize NetFlow for feature 
extraction, each com-prising 43 features. The last dataset, CIC-ToN-IoT, uses CICFlowMeter for feature selection, 
containing 83 features. The distribution of attack types across the five datasets is presented in Table 1. These 
datasets reflect the latest trends in IoT intrusion detection, and thus were selected to evaluate the generalization 
capability and performance of the FSLLM framework. During the experimental phase, each dataset was initially 
partitioned into training and testing sets at a 7:3 ratio. The training set was further divided into training and 
validation sets at an 8:2 ratio. The testing set was used to evaluate the final performance of our model.

Evaluation metrics
In the experiments, we selected the number of features, F1-Macro, accuracy, model prediction speed, F1-
Weighted, and AUC as evaluation metrics. The number of features is used to measure whether the feature 
selection algorithm can extract more representative features, reduce redundancy, and enhance the model’s 
generalization ability. It also provides a basis for constructing datasets for fine-tuning large language models in 
subsequent tasks. F1-Macro is used to evaluate the overall performance of the model after data augmentation, 
especially in cases where the class distribution is imbalanced. This metric can more comprehensively reflect 
the model’s performance. Accuracy is used to measure the model’s prediction capability and to assess the 
model’s performance when using only the selected features. Additionally, accuracy can reflect the quality of 
data augmentation; if the accuracy decreases after data augmentation, it indicates that the generated data may 
contain noise and is of lower quality. Given the complexity and large volume of network traffic in the field of IoT 

Fig. 3.  The sampling process of LLMs.
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intrusion detection, the detection speed of the model is crucial. We selected model prediction speed as a metric 
to measure the model’s inference efficiency on the test set, thereby ensuring its applicability in real IoT scenarios.

F1-Weighted is a weighted average of the F1 scores for each class, where the weights are based on the number 
of samples in each class. This metric is particularly useful for evaluating overall performance on imbalanced 
datasets. In the formula below, T Pi, F Pi, and F Ni represent the true positives, false positives, and false 
negatives for class i, respectively, and Si is the number of instances of class i:

	
F1-Weighted =

∑n

i=1
2·T Pi

2·T Pi+F Pi+F Ni
· Si∑n

i=1 Si

� (14)

F1-Macro calculates the F1 score for each class separately and then takes the arithmetic mean of these scores. 
This metric is well-suited for evaluating the effectiveness of data augmentation algorithms. In the formula below, 
N  is the total number of classes:

	
F1-Macro = 1

N

N∑
i=1

2 · Pi · Ri

Pi + Ri
� (15)

The Area Under the Curve (AUC) provides a comprehensive method for evaluating model performance, 
particularly suitable for imbalanced datasets and situations requiring a balance between different types of errors. 
Consequently, we have presented the AUC metric performance for five datasets in this study. As AUC is typically 
applied to binary classification, we employed the OvR strategy to convert multi-class classification into multiple 
binary classification tasks for calculation. Therefore, the AUC metric for each class can be calculated using 
Equation 16, where TPRi = T Pi

T Pi+F Ni
 and FPRi = F Pi

F Pi+T Ni
.

	
AUCi =

∫ 1

0
TPRi(FPRi)d(FPRi)� (16)

Implementation and experimental environment

	1.	  For the MCP feature selection algorithm, the experimental setup includes the following: Python 3.10, AMD 
Ryzen 5 7600 CPU, RTX 3090 8GB GPU, 32 GB RAM, Fast-mRMR 1.0, cmaes 0.10, scikit-learn 1.3.2, and 
LightGBM 4.3. For the experiments, we set the number of iterations for the feature selection algorithm to 
3, the population size and maximum iterations for CMA-ES to 20, and we use the default parameters for 
LightGBM. To ensure reproducibility, we set the random seed to 42. The experimental process employs 
F1-Macro as the fitness metric for the CMA-ES algorithm, aiming to minimize both the number of features 
and the performance loss.

	Figure 4 illustrates the feature selection process of the MCP algorithm across five datasets. For NF-CSE-CIC-
IDS2018-v2, the validation set scores for the first and last iterations were 0.98862 and 0.988544, respectively. 
NF-UNSW-NB15-v2 yielded scores of 0.997151 and 0.997144 for the first and last iterations. NF-ToN-IoT-v2 

NF-CSE-CIC-IDS2018-v2 NF-ToN-IoT-v2 CIC-ToN-IoT NF-UNSW-NB15-v2 NF-BoT-IoT-v2

Class Count Class Count Class Count Class Count Class Count

DDOS attack-HOIC 1,080,858 Benign 6,099,469 Benign 2,515,236 Analysis 2299 Benign 135,037

DoS attacks-Hulk 432,648 Scanning 3,781,419 Backdoor 27,145 Backdoor 2169 DDoS 18,331,847

DDoS attacks-LOIC-HTTP 307,300 xss 2,455,020 dos 145 Benign 2,295,222 DoS 16,673,183

Infilteration 116,361 ddos 2,026,234 ddos 202 DoS 5,794 Theft 2,431

SSH-Bruteforce 94,979 Password 1,153,323 Injection 277,696 Exploits 31,551 Reconnaissance 2,620,999

Bot 143,097 dos 712,609 mitm 517 Fuzzers 22,310

DoS attacks-GoldenEye 27,723 Injection 684,465 Password 340,208 Generic 16,560

FTP-BruteForce 25,933 Backdoor 16,809 Ransomware 5098 Reconnaissance 12,779

DoS attacks-SlowHTTPTest 14,116 mitm 7723 Scanning 36,205 Worms 164

DoS attacks-Slowloris 9512 Ransomware 3425 xss 2,149,308 Shellcode 1427

Brute Force -Web 2143

DDOS attack-LOIC-UDP 2112

Brute Force -XSS 927

SQL Injection 432

Benign 16,635,567

Total 18,893,708 Total 16,940,496 Total 5,351,760 Total 2,390,275 Total 37,763,497

Table 1.  Distribution of attack types in five datasets.
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showed scores of 0.991761 and 0.990622, while NF-BoT-IoT-v2 produced scores of 0.993850 and 0.993607. 
For these four datasets, the performance difference between the first and last iterations after three iterations 
of adaptive threshold-based collinear feature removal was less than 0.001. The CIC-ToN-IoT dataset elimi-
nated all collinear features above the threshold after two iterations, with scores of 0.958294 and 0.935535, 
resulting in a performance difference of 0.02. This demonstrates that the iterative search strategy for adap-
tively adjusting the PCC threshold can better remove redundant features while causing minimal performance 
loss. The approach effectively balances feature reduction and model performance across different datasets. 
Table 2 demonstrates that the MCP algorithm identified 9 features in NF-CSE-CIC-IDS2018-v2, NF-UN-
SW-NB15-v2, and NF-BoT-IoT-v2 datasets, 7 features in NF-ToN-IoT-v2, and 13 features in CIC-ToN-IoT. 
Compared to the original feature sets, our algorithm reduced the number of features by over 80%.

	2.	  For the LLMs based-data augmentation algorithm, we fine-tune our datasets using the GPT-2 large language 
model45, employing the features detailed in Table 2. The fine-tuning environment utilizes Python 3.10, be-
great 0.0.746, Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz, V100-32GB GPU, and scikit-learn 1.3.2. During 
sampling, a temperature parameter T  of 0.7 is applied, with a batch size of 64. We employ AdamW as the 
default optimizer with an initial learning rate of 5e-5.

	Based on the number of samples in minority attack classes within each dataset, we set different fine-tuning 
epochs. For NF-CSE-IDS2018-v2, NF-UNSW-NB15-v2, and CIC-ToN-IoT datasets, fine-tuning continues 
for 300 epochs, while NF-BoT-IoT-v2 and NF-ToN-IoT-v2 are fine-tuned for 20 epochs. We generate 10,000 
samples for each minority class within the dataset, and then remove duplicate samples from the generated 
samples. During the testing process, we utilize the same hardware environment as in (1) while employing the 
FL improved-LightGBM classifier.

Dataset Features

NF-CSE-CIC-IDS2018-v2 CLIENT_TCP_FLAGS, DNS_TTL_ANSWER, MAX_TTL, L4_DST_PORT, SHORTEST_FLOW_PKT, SRC_TO_DST_AVG_
THROUGHPUT, IN_PKTS, SERVER_TCP_FLAGS, TCP_WIN_MAX_IN, DST_TO_SRC_AVG_THROUGHPUT

NF-ToN-IoT-v2 TCP_WIN_MAX_IN, TCP_WIN_MAX_OUT, FLOW_DURATION_MILLISECONDS, L4_DST_PORT, DST_TO_SRC_AVG_
THROUGHPUT, L7_PROTO, IN_BYTES

NF-UNSW-NB15-v2 MAX_TTL, ICMP_TYPE, L4_DST_PORT, TCP_FLAGS, MAX_IP_PKT_LEN, L7_PROTO, PROTOCOL, SRC_TO_DST_AVG_
THROUGHPUT, OUT_BYTES

NF-BoT-IoT-v2 L4_SRC_PORT, DURATION_OUT, RETRANSMITTED_OUT_PKTS, CLIENT_TCP_FLAGS, NUM_PKTS_256_TO_512_BYTES, 
TCP_FLAGS, NUM_PKTS_UP_TO_128_BYTES, NUM_PKTS_1024_TO_1514_BYTES, SRC_TO_DST_SECOND_BYTES

CIC-ToN-IoT Src Port, Dst Port, Init Fwd Win Byts, Init Bwd Win Byts, Idle Min, Bwd Pkt Len Mean, Pkt Len Min, Flow IAT Mean, Idle Max, 
Active Max, Bwd IAT Std, Active Std, Fwd Act Data Pkts

Table 2.  Feature subsets selected by MCP algorithm in five datasets.

 

Fig. 4.  The MCP algorithm was applied to five datasets. The search process terminates early when no collinear 
features are detected during these iterations. For example, in the case of the NF-BoT-IoT-v2 dataset, the 
iteration process stopped after two iterations due to the absence of collinear features.
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	3.	 For the FL improved-LightGBM classifier, the parameter αt in the FL function is set to 0.75, and γ is set to 
2.0.

	4.	 The environment used in the comparative experiments is identical to the one employed in (1) and (3).

Experimental analysis of MCP algorithm
In this section, we evaluate the performance of the MCP feature selection algorithm across five datasets. We 
compare it with recently published algorithms and classical methods, as summarized in Table 3 and Table 4. 
The GA10 and PSO11 algorithm are implemented using MEALPY47, representing heuristic algorithms. Sarhan et 
al.9 uses the chi-square test, information gain, and PCC for feature selection. Leevy et al.24 employs information 
gain, while Mohy et al.25 combines Isolation Forest with the PCC for feature selection.

	1.	 For binary classification (Table 3), the features selected by the MCP algorithm demonstrate exceptional per-
formance, achieving F1-weighted scores and accuracy rates exceeding 0.990 across all datasets. The features 
selected by the GA algorithm on the NF-BoT-IoT-v2 dataset yield accuracy and F1-weighted scores 0.3% 
higher than those selected by our algorithm; however, our algorithm selects 13 fewer features. The algorithm 
used in Sarhan et al.9 selects features that achieve 1% higher accuracy and 0.4% higher F1-weighted score on 
NF-ToN-IoT-v2 compared to our algorithm. Nevertheless, Sarhan et al.9 selects one more feature than our 
algorithm and shows clear disadvantages on the remaining datasets. The MCP algorithm demonstrates sig-
nificant advantages over the algorithms used in Leevy et al.24 and Mohy et al.25, both in terms of the number 
and quality of selected features. The features selected by Fast-mRMR and CMA-ES algorithms also achieve 
high F1-weighted scores and accuracy rates, indicating their strong performance in binary classification 
tasks. However, they select considerably more features than the MCP algorithm. In summary, for binary clas-
sification tasks, the features selected by our algorithm exhibit more stable performance and generalization 
capability compared to other algorithms.

	2.	 For multi-class classification (Table 4), the MCP algorithm demonstrates excellent performance, maintain-
ing high F1-Weighted scores and accuracy while selecting fewer features (7-13) across all datasets. On the 
NF-CSE-CIC-IDS2018-v2 dataset, the MCP algorithm achieves an F1-Weighted score of 0.975 and accuracy 
of 0.977 using 9 features, outperforming Fast-mRMR (33 features, F1-Weighted 0.968, accuracy 0.972) and 
other algorithms. For NF-ToN-IoT-v2 dataset, the MCP algorithm attains an F1-Weighted score and accu-
racy of 0.949 with only 7 features, comparable to other algorithms selecting 25-26 features (F1-Weighted 
and accuracy between 0.945-0.947), and significantly superior to the algorithm in Leevy et al.24 (9 features, 
F1-Weighted 0.620, accuracy 0.705). On NF-UNSW-NB15-v2 dataset, the MCP algorithm obtains the high-
est F1-Weighted score of 0.978 and a near-highest accuracy of 0.977 with 9 features, while other algorithms 
achieve similar performance (F1-Weighted 0.971-0.983, accuracy 0.971-0.984) with 19-36 features. For the 
NF-BoT-IoT-v2 dataset, the MCP algorithm yields an F1-Weighted score of 0.967 and accuracy of 0.968 

Method

NF-CSE-CIC-
IDS2018-v2 NF-ToN-IoT-v2

NF-UNSW-
NB15-v2 NF-BoT-IoT-v2 CIC-ToN-IoT

num F1 Acc num F1 Acc num F1 Acc num F1 Acc num F1 Acc

Fast-mRMR 33 0.968 0.972 35 0.943 0.935 36 0.983 0.984 23 0.925 0.917 43 0.829 0.861

CMA-ES 21 0.753 0.630 26 0.947 0.945 22 0.975 0.976 17 0.976 0.976 36 0.831 0.853

GA 23 0.918 0.922 26 0.945 0.944 25 0.971 0.971 22 0.978 0.978 41 0.823 0.856

PSO 20 0.811 0.851 25 0.946 0.947 19 0.971 0.973 24 0.974 0.974 39 0.818 0.850

Leevy et al.24 9 0.960 0.975 9 0.620 0.705 9 0.960 0.972 9 0.830 0.837 9 0.820 0.870

MCP 9 0.975 0.977 7 0.949 0.949 9 0.978 0.977 9 0.967 0.968 13 0.830 0.849

MCP(FL) 9 0.984 0.984 7 0.956 0.956 9 0.992 0.992 9 0.988 0.988 13 0.825 0.873

Table 4.  The results of multi-classification using features selected by the MCP algorithm.

 

Method

NF-CSE-CIC-
IDS2018-v2 NF-ToN-IoT-v2

NF-UNSW-
NB15-v2 NF-BoT-IoT-v2 CIC-ToN-IoT

num F1 Acc num F1 Acc num F1 Acc num F1 Acc num F1 Acc

Fast-mRMR 33 0.995 0.995 35 0.991 0.991 36 0.997 0.997 23 0.998 0.998 43 0.993 0.993

CMA-ES 21 0.995 0.995 26 0.991 0.991 22 0.997 0.997 17 0.998 0.998 36 0.993 0.993

GA 23 0.995 0.995 26 0.991 0.991 25 0.997 0.997 22 1.0 1.0 41 0.993 0.993

PSO 20 0.995 0.995 25 0.991 0.991 19 0.997 0.997 24 0.928 0.872 39 0.993 0.993

Mohy et al.25 – – – – – – 24 0.992 0.993 – – – – – –

Leevy et al.24 9 0.990 0.990 9 0.992 0.992 9 0.983 0.983 9 0.989 0.987 – – –

Sarhan et al.9 8 0.840 0.955 8 1.0 0.994 8 0.850 0.985 – – – – – –

MCP 9 0.995 0.995 7 0.990 0.990 9 0.997 0.997 9 0.997 0.997 13 0.993 0.993

Table 3.  The results of binary classification using features selected by the MCP algorithm.
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using 9 features, slightly lower than CMA-ES (17 features, F1-Weighted and accuracy both 0.976) and GA 
(22 features, F1-Weighted and accuracy both 0.978), but with fewer features. It outperforms Fast-mRMR (23 
features, F1-Weighted 0.925, accuracy 0.917). On CIC-ToN-IoT dataset, the MCP algorithm selects 13 fea-
tures, achieving an F1-Weighted score of 0.830 and accuracy of 0.849, comparable to other algorithms using 
36-43 features (F1-Weighted 0.818-0.831, accuracy 0.850-0.861). With the FL function, the MCP algorithm’ 
s performance further improves on most datasets, surpassing other algorithms except for a marginally lower 
F1-Weighted score (0.5% difference) compared to GA algorithm on CIC-ToN-IoT dataset. In summary, the 
MCP algorithm exhibits robust feature selection capabilities, achieving or exceeding the performance of 
other algorithms with fewer features.

As shown in Fig. 5, to further analyze the performance of the MCP feature selection algorithm, we compared 
model performance when using all features versus selected features obtained through the feature selection 
algorithm (the experimental process uniformly employed an FL-function-improved LightGBM as the classifier). 
Experimental results demonstrate that feature selection effectively reduces computational complexity while 
maintaining classification performance. Across all datasets, the accuracy after feature selection remains nearly 
identical to results without feature selection. For instance, both the NF-UNSW-NB15-v2 and NF-CSE-CIC-
IDS2018-v2 datasets achieved accuracies of 0.992 and 0.984, respectively, indicating that feature selection does 
not compromise overall classification capability. Meanwhile, the F1-Weighted metric shows minimal variation 
across different datasets, further verifying that feature selection preserves critical information, enabling 
classification models to maintain stable decision-making. Notably, the F1-Macro metric demonstrates significant 
improvement on certain datasets. For example, the NF-ToN-IoT-v2 dataset shows an F1-Macro increase to 0.761 
after feature selection, compared to only 0.732 without feature selection. This suggests that the feature selection 
method enhances classification performance for minority classes, thereby improving model generalization. 
These findings reveal that in network intrusion detection and IoT security scenarios, feature selection not only 
reduces computational overhead but can also enhance recognition capability for minority classes under certain 
conditions, enabling more stable model performance in imbalanced data scenarios (leveraging the FL-function-
enhanced LightGBM classifier).

Experimental analysis of LLMs based-data augmentation algorithms
This section evaluates the data augmentation algorithm based on LLMs within our framework, focusing on data 
augmentation requirements for multi-class classification. We compare our approach with baseline methods, 
including CTGAN30, SMOTE15, ADASYN28,29, Random Oversampling14, and Random Undersampling.

As shown in Table 5, on the NF-CSE-CIC-IDS2018-v2 dataset, our method achieved an F1-Macro of 0.794 
and an accuracy of 0.995, both being the highest values, significantly surpassing SMOTE (F1-Macro 0.697) and 
the original data without augmentation (F1-Macro 0.678). CTGAN performed relatively well on this dataset 
(F1-Macro 0.780) but was still slightly lower than our method, indicating that our approach has stronger 
adaptability in data generation and feature learning. For DDoS and DoS attacks (such as DoS attacks-Hulk, 
DDoS attacks-LOIC-HTTP, and DoS attacks-GoldenEye), our algorithm achieved a classification performance 
of 1.0, comparable to CTGAN and SMOTE, but significantly higher than the original data without augmentation 
(e.g., the detection value for DoS attacks-GoldenEye using the original data was only 0.994). However, for 
more challenging attack types such as SQL injection and cross-site scripting (XSS), our algorithm showed an 
improvement over the original data (SQL injection increased from 0.028 to 0.079) but still performed lower than 
SMOTE (0.002). This suggests that under extremely imbalanced data conditions, our method still has room for 
improvement.

Fig. 5.  Comparison of feature selection vs no feature selection.
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As shown in Table 6, on the NF-BoT-IoT-v2 dataset, our method outperformed the original data without 
augmentation across all categories and surpassed CTGAN, SMOTE, and ADASYN in multiple categories, 
ultimately achieving an F1-Macro of 0.926 and an accuracy of 0.988. In the detection of DDoS and DoS attacks, 
our method, CTGAN, and SMOTE performed very similarly (with F1 scores close to 0.99), indicating that 
these methods can achieve good results for high-frequency attack categories. However, in the detection of 
Reconnaissance attacks, our method (0.729) outperformed the original data and Undersampling (0.349) but was 
slightly lower than CTGAN (0.749). This may be related to CTGAN’s better balance when synthesizing minority 

Our CTGAN SMOTE ADASYN Oversample Undersample Original

Benign 0.983 0.975 0.982 0.975 0.984 0.968 0.982

Scanning 0.987 0.986 0.990 0.982 0.989 0.976 0.986

XSS 0.944 0.945 0.946 0.878 0.946 0.938 0.944

DDoS 0.970 0.969 0.972 0.941 0.972 0.960 0.967

Password 0.915 0.914 0.921 0.878 0.922 0.907 0.915

DoS 0.903 0.903 0.904 0.482 0.903 0.901 0.902

Injection 0.822 0.820 0.830 0.775 0.835 0.785 0.822

Backdoor 0.995 0.386 0.986 0.977 0.984 0.972 0.992

MITM 0.117 0.035 0.088 0.032 0.102 0.073 0.064

Ransomware 0.903 0.932 0.881 0.870 0.682 0.565 0.033

F1-Macro 0.854 0.786 0.850 0.779 0.832 0.804 0.761

Accuracy 0.958 0.953 0.957 0.902 0.957 0.945 0.956

Table 7.  The performance of LLMs based-data augmentation on the NF-ToN-IoT-v2 dataset.

 

Our CTGAN SMOTE ADASYN Oversample Undersample Original

Benign 0.955 0.956 0.934 0.885 0.934 0.836 0.952

DDoS 0.993 0.993 0.992 0.992 0.992 0.990 0.993

DoS 0.987 0.987 0.987 0.828 0.987 0.976 0.987

Theft 0.966 0.966 0.965 0.550 0.965 0.918 0.965

Reconnaissance 0.729 0.749 0.696 0.624 0.696 0.349 0.0

F1-Macro 0.926 0.930 0.915 0.776 0.915 0.814 0.779

Accuracy 0.988 0.988 0.988 0.866 0.988 0.977 0.988

Table 6.  The performance of LLMs based-data augmentation on the NF-BoT-IoT-v2 dataset.

 

Our CTGAN SMOTE ADASYN Oversample Undersample Original

DDOS attack-HOIC 0.998 0.998 0.705 – 0.625 0.543 0.998

DoS attacks-Hulk 1.0 1.0 1.0 – 1.0 0.996 0.995

DDoS attacks-LOIC-HTTP 1.0 1.0 1.0 – 1.0 0.979 1.0

Infilteration 0.471 0.467 0.03 – 0.03 0.031 0.476

SSH-Bruteforce 1.0 1.0 1.0 – 1.0 0.877 1.0

Bot 1.0 1.0 1.0 – 1.0 0.991 1.0

DoS attacks-GoldenEye 1.0 1.0 1.0 – 1.0 0.963 0.994

FTP-BruteForce 1.0 1.0 1.0 – 1.0 0.919 1.0

DoS attacks-SlowHTTPTest 1.0 1.0 1.0 – 1.0 0.930 1.0

DoS attacks-Slowloris 1.0 1.0 1.0 – 1.0 0.759 0.667

Brute Force -Web 0.205 0.247 0.01 – 0.009 0.007 0.028

DDOS attack-LOIC-UDP 0.993 0.987 0.982 – 0.992 0.536 0.0

Brute Force -XSS 0.163 0.0 0.003 – 0.003 0.002 0.0

SQL Injection 0.079 0.0 0.002 – 0.002 0.001 0.028

Benign 0.997 0.996 0.725 – 0.708 0.802 0.991

F1-Macro 0.794 0.780 0.697 – 0.691 0.622 0.678

Accuracy 0.995 0.992 0.591 – 0.568 0.668 0.984

Table 5.  The performance of LLMs based-data augmentation on the NF-CSE-CIC-IDS2018-v2 dataset.
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class data. However, CTGAN’s performance is inconsistent across multiple datasets, whereas our algorithm still 
demonstrates superior overall generalization capability compared to other methods.

As shown in Table 7, on the NF-ToN-IoT-v2 dataset, our method demonstrated significantly better detection 
performance in multiple key attack categories (such as DDoS, XSS, and password attacks) compared to CTGAN 
and SMOTE, ultimately achieving an F1-Macro of 0.854 and an accuracy of 0.958. CTGAN achieved an F1-
Macro of only 0.786 on this dataset, while SMOTE reached 0.850, both lower than our algorithm. In Backdoor 
attack detection, our method achieved 0.995, significantly outperforming CTGAN (0.386), indicating that our 
method can still learn valuable feature information under extreme data imbalance conditions. Additionally, for 
DoS and Injection attack detection, our method achieved F1 scores of 0.903 and 0.822, respectively, surpassing 
all other comparison methods, demonstrating its high detection capability across different attack patterns. 
However, there is still room for optimization in detecting MITM and Ransomware attacks. For instance, in 
MITM attack detection, our method achieved an F1 score of only 0.117, slightly higher than CTGAN (0.035) 
and SMOTE (0.088), but still relatively low. This suggests that the characteristics of such attacks are more difficult 
to capture, and future work should focus on optimizing data augmentation strategies.

As shown in Table 8, the NF-UNSW-NB15-v2 dataset contains a large number of attack types, leading to 
relatively lower performance for most data augmentation methods. However, our method still achieved an F1-
Macro of 0.701 and an accuracy of 0.992, ranking the highest among all methods. CTGAN (0.639) and SMOTE 
(0.630) had significantly lower F1-Macro scores than our algorithm, indicating their poorer adaptability to this 
dataset. Our method outperformed other approaches in attack categories such as Exploit, Fuzzers, Generic, and 
Reconnaissance. For example, in Exploit detection, our method achieved 0.875, showing a clear improvement 
over CTGAN (0.869) and SMOTE (0.783). Additionally, in Reconnaissance attack detection, our method 
achieved an F1 score of 0.904, significantly surpassing SMOTE (0.885) and CTGAN (0.887). However, there is 
still room for improvement in detecting challenging categories such as Analysis and Backdoor. For instance, in 
Backdoor detection, our method achieved 0.404, which, while better than CTGAN (0.300) and SMOTE (0.258), 
remains relatively low. This suggests that the generalization ability of our method for extremely low-frequency 
attack categories still needs further enhancement.

As shown in Table 9, on the CIC-ToN-IoT dataset, our method achieved an overall F1-Macro of 0.506 and 
an accuracy of 0.873, significantly outperforming the original data without augmentation (0.392). Compared to 

Our CTGAN SMOTE ADASYN Oversample Undersample Original

Benign 0.993 0.993 0.993 0.993 0.993 0.975 0.993

XSS 0.863 0.863 0.740 0.727 0.718 0.672 0.863

Password 0.069 0.081 0.405 0.398 0.404 0.280 0.059

Injection 0.047 0.035 0.407 0.398 0.409 0.216 0.035

Scanning 0.003 0.0 0.222 0.211 0.216 0.126 0.0

Backdoor 0.994 0.995 0.994 0.995 0.996 0.928 0.996

Ransomware 0.961 0.965 0.414 0.916 0.931 0.195 0.969

MITM 0.580 0.555 0.380 0.396 0.463 0.031 0.0

DDoS 0.233 0.051 0.056 0.035 0.054 0.005 0.0

DoS 0.315 0.08 0.059 0.074 0.031 0.065 0.0

F1-Macro 0.506 0.462 0.467 0.514 0.522 0.349 0.392

Accuracy 0.873 0.873 0.789 0.782 0.778 0.716 0.873

Table 9.  The performance of LLMs based-data augmentation on the CIC-ToN-IoT dataset.

 

Our CTGAN SMOTE ADASYN Oversample Undersample Original

Analysis 0.118 0.03 0.149 0.136 0.113 0.145 0.060

Backdoor 0.404 0.30 0.258 0.252 0.237 0.225 0.314

Benign 0.998 0.998 0.998 0.998 0.997 0.995 0.998

DoS 0.367 0.273 0.378 0.365 0.404 0.218 0.358

Exploits 0.875 0.869 0.783 0.770 0.812 0.638 0.871

Fuzzers 0.895 0.893 0.856 0.865 0.876 0.827 0.889

Generic 0.806 0.788 0.729 0.545 0.736 0.552 0.796

Reconnaissance 0.904 0.887 0.885 0.793 0.880 0.876 0.889

Worms 0.928 0.928 0.870 0.876 0.914 0.350 0.927

Shellcode 0.649 0.420 0.398 0.437 0.217 0.229 0.0

F1-Macro 0.701 0.639 0.630 0.603 0.618 0.505 0.610

Accuracy 0.992 0.992 0.989 0.987 0.987 0.979 0.992

Table 8.  The performance of LLMs based-data augmentation on the NF-UNSW-NB15-v2 dataset.
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CTGAN (0.462) and SMOTE (0.467), our method achieved better detection performance across multiple attack 
categories, particularly in XSS (0.863) and Ransomware (0.961) detection, where it achieved the best results. 
However, for low-frequency attack categories such as password attacks and SQL injection, SMOTE (0.405 and 
0.407) performed slightly better than our method (0.069 and 0.047). This may be because SMOTE can synthesize 
minority class samples more effectively in these categories. Nevertheless, in DDoS and DoS attack detection, our 
method continued to surpass other approaches, maintaining high stability.

Overall, our method demonstrates higher accuracy and stability across multiple datasets, particularly excelling 
in common attack categories such as DDoS, DoS, and Backdoor attacks, where it exhibits stronger adaptability 
and, in most cases, outperforms CTGAN, SMOTE, and other data augmentation methods. Furthermore, our 
method achieves the highest overall F1-Macro and accuracy on most datasets, indicating superior generalization 
capability. In contrast, CTGAN performs well in certain specific categories (e.g., SQL injection and low-
frequency attacks), while SMOTE occasionally has advantages in some low-frequency categories but still falls 
short of our algorithm overall. Therefore, our method demonstrates superior comprehensive performance in 
terms of balance, generalization ability, and complex attack detection. Future improvements could incorporate 
feature selection and optimized data augmentation strategies to further enhance detection capability for low-
frequency attack categories.

Comparative experiments of FSLLM
In the preceding sections, we conducted comparative analyses of the feature selection and data augmentation 
modules within the FSLLM framework against other algorithms. To further validate the performance and 
generalization capability of the FSLLM framework, this section presents a comparative analysis with recent state-
of-the-art IoT intrusion detection algorithms. The selection of these methods is based on their representativeness 
and advancements in the field, ensuring a fair and comprehensive comparison. The comparison includes:

Nguyen et al.22: A self-supervised graph neural network algorithm designed for IoT intrusion detection. 
This method is chosen due to its ability to capture complex graph-structured relationships in IoT networks, 
representing an advanced approach in self-supervised learning for cybersecurity.

Li et al.32: An approach integrating BERT and CGAN to enhance intrusion detection. This method is 
included as it represents a cutting-edge combination of pre-trained language models and generative techniques, 
demonstrating high adaptability in learning attack patterns.

Termos et al.7: A graph deep learning approach based on centrality measures. This method is chosen as it 
leverages graph theory principles to enhance anomaly detection, representing a novel perspective in network 
security.

Wang et al.23: A spatio-temporal graph attention network that considers node states for intrusion detection. 
This approach is selected due to its effectiveness in modeling temporal and spatial dependencies, making it a 
strong baseline for IoT security applications.

Sarhan et al.8: A deep learning-based anomaly detection algorithm. This method is widely recognized in the 
field for its ability to detect novel and sophisticated attack patterns using unsupervised learning.

All selected algorithms were published between 2023 and 2024, representing the latest trends in IoT intrusion 
detection research. Additionally, these methods utilize the same experimental datasets as our study, ensuring a 
direct and fair comparison. However, since some of the selected methods did not provide open-source code, 
we report their results based on the performance metrics presented in their original papers. These benchmark 
methods serve as a unified baseline, incorporating both traditional deep learning and advanced graph-based 
approaches, ensuring a comprehensive evaluation of FSLLM’s performance. By comparing FSLLM against 
these representative and state-of-the-art algorithms, we aim to demonstrate its superiority in terms of detection 
accuracy, efficiency, and generalization capability.

Method Dataset Features

Binary cassification Multi-classification

F1-weighted Accuracy F1-weighted Accuracy

Nguyen et al.22
NF-CSE-CIC- IDS2018-v2 All 0.995 0.995 0.992 -

NF-UNSW-NB15-v2 All 0.997 0.997 0.990 -

Li et al.32
NF-ToN-IoT-v2 All - - 0.988 0.988

NF-UNSW-NB15-v2 All - - 0.890 0.874

Sarhan et al.8
NF-CSE-CIC- IDS2018-v2 All 0.889 0.891 - -

NF-UNSW-NB15-v2 All 0.983 0.982 - -

Wang et al.23
NF-ToN-IoT-v2 All 0.979 0.966 0.914 -

NF-BoT-IoT-v2 All 0.987 0.979 0.926 -

Termos et al.7 CIC-ToN-IoT All 0.986 0.989 0.806 0.857

FSLLM

NF-CSE-CIC- IDS2018-v2 9 0.995 0.995 0.988 0.988

NF-ToN-IoT-v2 7 0.990 0.990 0.958 0.958

NF-UNSW-NB15-v2 9 0.997 0.997 0.992 0.992

NF-BoT-IoT-v2 9 0.997 0.997 0.988 0.988

CIC-ToN-IoT 13 0.993 0.993 0.825 0.873

Table 10.  Comparative experimental results of FSLLM gramework.
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Experimental results (Table 10) demonstrate that our proposed method exhibits exceptional performance 
across multiple IoT intrusion detection datasets, surpassing or matching state-of-the-art techniques in most 
cases. For binary classification tasks, our method achieves the highest or equal-to-highest F1-Weighted scores 
and accuracies on the NF-CSE-CIC-IDS2018-v2, NF-ToN-IoT-v2, NF-UNSW-NB15-v2, NF-BoT-IoT-v2, and 
CIC-ToN-IoT datasets, with scores of 0.995, 0.990, 0.997, 0.997, and 0.993 respectively. These results are superior 
to or match the best performances reported in previous studies such as Nguyen et al.22, Wang et al.23, and Sarhan 
et al.8.

In the more challenging multi-class classification tasks, our method also excels. On the NF-UNSW-NB15-v2 
dataset, our method attains an F1-Weighted score and accuracy of 0.992, significantly outperforming the 0.890 
and 0.874 reported in Li et al.32. For the NF-BoT-IoT-v2 and CIC-ToN-IoT datasets, our method achieves F1-
Weighted scores of 0.988 and 0.825, respectively, surpassing the results in Wang et al.23 and Termos et al.7. 
Although our F1-Weighted score of 0.958 on the NF-ToN-IoT-v2 dataset is slightly lower than the 0.988 reported 
in Li et al.32, it still outperforms other comparative methods.

As illustrated in Fig. 6, we present the AUC metric performance across five datasets. The results demonstrate 
that the majority of classes in all five datasets exhibit AUC values exceeding 0.98, with only one class in the 
NF-CSE-CIC-IDS2018-v2 dataset achieving a score of 0.85. Notably, our method utilizes only a small number 
of selected features (7-13), while most comparative methods use all available features. These characteristic high-
lights both the efficiency of our approach and its superior feature selection capability and generalization ability. 
These results strongly support the effectiveness of our pro-posed method and its applicability across various IoT 
security scenarios.

Fig. 7.  Training and prediction times of FL improved-LightGBM across different datasets.

 

Fig. 6.  AUC metric performance across five datasets.
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Efficiency analysis of FSLLM
We test the training and prediction times of LightGBM improved with the FL function on various datasets under 
the environment described in “Implementation and experimental environment” section. The specific results are 
shown in Fig. 7. Our algorithm exhibits an average training time of 97.94 s and an average prediction time of 
19.66 seconds across different datasets, demonstrating its exceptional computational efficiency. Our algorithm 
completes training and prediction within a short period across datasets of varying sizes, effectively adapting to 
the complex environment of IoT intrusion detection.

Conclusions
This study investigates the interplay between feature redundancy and class imbalance in the context of IoT 
intrusion detection. We propose the FSLLM framework, which utilizes feature selection algorithms to mitigate 
feature redundancy and generate fine-tuning datasets for LLMs using exclusively selected representative 
features. These carefully selected non-redundant and highly representative features facilitate the generation 
of high-quality samples while simultaneously reducing computational costs associated with fine-tuning. The 
efficacy of our proposed method is underpinned by several key innovations: (1) The MCP feature selection 
algorithm, which integrates mRMR and PCC-improved CMA-ES algorithm, considers both mutual information 
and collinearity among features, thereby effectively eliminating redundancy. (2) The integration of MCP 
feature selection with LLMs, which results in a reduction of fine-tuning dataset size and an enhancement of 
overall data quality. (3) The utilization of FL-improved LightGBM as a classifier, which significantly enhances 
intrusion detection performance. The FSLLM framework was evaluated using five distinct datasets: NF-CSE-
CIC-IDS2018-v2, NF-ToN-IoT-v2, NF-UNSW-NB15-v2, NF-BoT-IoT-v2, and CIC-ToN-IoT. The experimental 
results demonstrate that FSLLM substantially mitigates feature redundancy, eliminating over 80% of redundant 
features while concurrently maintaining or enhancing detection accuracy in comparison to state-of-the-art 
algorithms. Notwithstanding the promising results, this study acknowledges certain limitations. Primarily, 
although the framework has been validated on multiple datasets, the inherent complexity and diversity of IoT 
intrusion detection necessitate further testing on an expanded range of datasets to comprehensively evaluate 
FSLLM’s generalizability. In addition, this study employs fine-tuning of LLMs to generate high-quality samples, 
which also comes with high computational resource requirements. This means that our data augmentation 
process can only be performed locally, whereas in many application scenarios, data augmentation often needs 
to be conducted online. In contrast, some traditional methods (such as SMOTE and undersampling) generate 
lower-quality data but require significantly fewer computational resources, making them more suitable for online 
updating scenarios. Moreover, these methods typically do not rely on GPUs or high-performance computing 
devices. One of the key purposes of using feature selection algorithms to extract high-quality features is to 
reduce the computational resources required for fine-tuning large language models. However, the training speed 
of large language models still lags behind traditional methods, necessitating a trade-off between computational 
cost and data augmentation quality in practical applications. In light of these limitations, we propose the 
following avenues for future research: (1) Exploration of methodologies to further reduce computational costs 
associated with LLMs fine-tuning, including the optimization of model architectures and training strategies, 
as well as the utilization of distributed computing resources. (2) Integration of the FSLLM framework with 
advanced technologies such as federated learning and edge computing to augment its applicability and reliability 
in complex IoT environments.

Data availability
The datasets used and analyzed during the current study are publicly available as the following: ​h​t​t​p​s​:​/​/​s​t​a​f​f​.​i​t​e​e​
.​u​q​.​e​d​u​.​a​u​/​m​a​r​i​u​s​/​N​I​D​S​_​d​a​t​a​s​e​t​s​/​​​​​.​​
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