Table 10 Comparative experimental results of FSLLM gramework.
Method | Dataset | Features | Binary cassification | Multi-classification | ||
---|---|---|---|---|---|---|
F1-weighted | Accuracy | F1-weighted | Accuracy | |||
Nguyen et al.22 | NF-CSE-CIC- IDS2018-v2 | All | 0.995 | 0.995 | 0.992 | - |
NF-UNSW-NB15-v2 | All | 0.997 | 0.997 | 0.990 | - | |
Li et al.32 | NF-ToN-IoT-v2 | All | - | - | 0.988 | 0.988 |
NF-UNSW-NB15-v2 | All | - | - | 0.890 | 0.874 | |
Sarhan et al.8 | NF-CSE-CIC- IDS2018-v2 | All | 0.889 | 0.891 | - | - |
NF-UNSW-NB15-v2 | All | 0.983 | 0.982 | - | - | |
Wang et al.23 | NF-ToN-IoT-v2 | All | 0.979 | 0.966 | 0.914 | - |
NF-BoT-IoT-v2 | All | 0.987 | 0.979 | 0.926 | - | |
Termos et al.7 | CIC-ToN-IoT | All | 0.986 | 0.989 | 0.806 | 0.857 |
FSLLM | NF-CSE-CIC- IDS2018-v2 | 9 | 0.995 | 0.995 | 0.988 | 0.988 |
NF-ToN-IoT-v2 | 7 | 0.990 | 0.990 | 0.958 | 0.958 | |
NF-UNSW-NB15-v2 | 9 | 0.997 | 0.997 | 0.992 | 0.992 | |
NF-BoT-IoT-v2 | 9 | 0.997 | 0.997 | 0.988 | 0.988 | |
CIC-ToN-IoT | 13 | 0.993 | 0.993 | 0.825 | 0.873 |