Table 10 Comparative experimental results of FSLLM gramework.

From: An IoT intrusion detection framework based on feature selection and large language models fine-tuning

Method

Dataset

Features

Binary cassification

Multi-classification

F1-weighted

Accuracy

F1-weighted

Accuracy

Nguyen et al.22

NF-CSE-CIC- IDS2018-v2

All

0.995

0.995

0.992

-

NF-UNSW-NB15-v2

All

0.997

0.997

0.990

-

Li et al.32

NF-ToN-IoT-v2

All

-

-

0.988

0.988

NF-UNSW-NB15-v2

All

-

-

0.890

0.874

Sarhan et al.8

NF-CSE-CIC- IDS2018-v2

All

0.889

0.891

-

-

NF-UNSW-NB15-v2

All

0.983

0.982

-

-

Wang et al.23

NF-ToN-IoT-v2

All

0.979

0.966

0.914

-

NF-BoT-IoT-v2

All

0.987

0.979

0.926

-

Termos et al.7

CIC-ToN-IoT

All

0.986

0.989

0.806

0.857

FSLLM

NF-CSE-CIC- IDS2018-v2

9

0.995

0.995

0.988

0.988

NF-ToN-IoT-v2

7

0.990

0.990

0.958

0.958

NF-UNSW-NB15-v2

9

0.997

0.997

0.992

0.992

NF-BoT-IoT-v2

9

0.997

0.997

0.988

0.988

CIC-ToN-IoT

13

0.993

0.993

0.825

0.873