Table 3 The results of binary classification using features selected by the MCP algorithm.

From: An IoT intrusion detection framework based on feature selection and large language models fine-tuning

Method

NF-CSE-CIC-IDS2018-v2

NF-ToN-IoT-v2

NF-UNSW-NB15-v2

NF-BoT-IoT-v2

CIC-ToN-IoT

num

F1

Acc

num

F1

Acc

num

F1

Acc

num

F1

Acc

num

F1

Acc

Fast-mRMR

33

0.995

0.995

35

0.991

0.991

36

0.997

0.997

23

0.998

0.998

43

0.993

0.993

CMA-ES

21

0.995

0.995

26

0.991

0.991

22

0.997

0.997

17

0.998

0.998

36

0.993

0.993

GA

23

0.995

0.995

26

0.991

0.991

25

0.997

0.997

22

1.0

1.0

41

0.993

0.993

PSO

20

0.995

0.995

25

0.991

0.991

19

0.997

0.997

24

0.928

0.872

39

0.993

0.993

Mohy et al.25

–

–

–

–

–

–

24

0.992

0.993

–

–

–

–

–

–

Leevy et al.24

9

0.990

0.990

9

0.992

0.992

9

0.983

0.983

9

0.989

0.987

–

–

–

Sarhan et al.9

8

0.840

0.955

8

1.0

0.994

8

0.850

0.985

–

–

–

–

–

–

MCP

9

0.995

0.995

7

0.990

0.990

9

0.997

0.997

9

0.997

0.997

13

0.993

0.993