Table 4 The results of multi-classification using features selected by the MCP algorithm.
Method | NF-CSE-CIC-IDS2018-v2 | NF-ToN-IoT-v2 | NF-UNSW-NB15-v2 | NF-BoT-IoT-v2 | CIC-ToN-IoT | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
num | F1 | Acc | num | F1 | Acc | num | F1 | Acc | num | F1 | Acc | num | F1 | Acc | |
Fast-mRMR | 33 | 0.968 | 0.972 | 35 | 0.943 | 0.935 | 36 | 0.983 | 0.984 | 23 | 0.925 | 0.917 | 43 | 0.829 | 0.861 |
CMA-ES | 21 | 0.753 | 0.630 | 26 | 0.947 | 0.945 | 22 | 0.975 | 0.976 | 17 | 0.976 | 0.976 | 36 | 0.831 | 0.853 |
GA | 23 | 0.918 | 0.922 | 26 | 0.945 | 0.944 | 25 | 0.971 | 0.971 | 22 | 0.978 | 0.978 | 41 | 0.823 | 0.856 |
PSO | 20 | 0.811 | 0.851 | 25 | 0.946 | 0.947 | 19 | 0.971 | 0.973 | 24 | 0.974 | 0.974 | 39 | 0.818 | 0.850 |
Leevy et al.24 | 9 | 0.960 | 0.975 | 9 | 0.620 | 0.705 | 9 | 0.960 | 0.972 | 9 | 0.830 | 0.837 | 9 | 0.820 | 0.870 |
MCP | 9 | 0.975 | 0.977 | 7 | 0.949 | 0.949 | 9 | 0.978 | 0.977 | 9 | 0.967 | 0.968 | 13 | 0.830 | 0.849 |
MCP(FL) | 9 | 0.984 | 0.984 | 7 | 0.956 | 0.956 | 9 | 0.992 | 0.992 | 9 | 0.988 | 0.988 | 13 | 0.825 | 0.873 |