Table 4 The results of multi-classification using features selected by the MCP algorithm.

From: An IoT intrusion detection framework based on feature selection and large language models fine-tuning

Method

NF-CSE-CIC-IDS2018-v2

NF-ToN-IoT-v2

NF-UNSW-NB15-v2

NF-BoT-IoT-v2

CIC-ToN-IoT

num

F1

Acc

num

F1

Acc

num

F1

Acc

num

F1

Acc

num

F1

Acc

Fast-mRMR

33

0.968

0.972

35

0.943

0.935

36

0.983

0.984

23

0.925

0.917

43

0.829

0.861

CMA-ES

21

0.753

0.630

26

0.947

0.945

22

0.975

0.976

17

0.976

0.976

36

0.831

0.853

GA

23

0.918

0.922

26

0.945

0.944

25

0.971

0.971

22

0.978

0.978

41

0.823

0.856

PSO

20

0.811

0.851

25

0.946

0.947

19

0.971

0.973

24

0.974

0.974

39

0.818

0.850

Leevy et al.24

9

0.960

0.975

9

0.620

0.705

9

0.960

0.972

9

0.830

0.837

9

0.820

0.870

MCP

9

0.975

0.977

7

0.949

0.949

9

0.978

0.977

9

0.967

0.968

13

0.830

0.849

MCP(FL)

9

0.984

0.984

7

0.956

0.956

9

0.992

0.992

9

0.988

0.988

13

0.825

0.873