Table 5 The performance of LLMs based-data augmentation on the NF-CSE-CIC-IDS2018-v2 dataset.

From: An IoT intrusion detection framework based on feature selection and large language models fine-tuning

 

Our

CTGAN

SMOTE

ADASYN

Oversample

Undersample

Original

DDOS attack-HOIC

0.998

0.998

0.705

–

0.625

0.543

0.998

DoS attacks-Hulk

1.0

1.0

1.0

–

1.0

0.996

0.995

DDoS attacks-LOIC-HTTP

1.0

1.0

1.0

–

1.0

0.979

1.0

Infilteration

0.471

0.467

0.03

–

0.03

0.031

0.476

SSH-Bruteforce

1.0

1.0

1.0

–

1.0

0.877

1.0

Bot

1.0

1.0

1.0

–

1.0

0.991

1.0

DoS attacks-GoldenEye

1.0

1.0

1.0

–

1.0

0.963

0.994

FTP-BruteForce

1.0

1.0

1.0

–

1.0

0.919

1.0

DoS attacks-SlowHTTPTest

1.0

1.0

1.0

–

1.0

0.930

1.0

DoS attacks-Slowloris

1.0

1.0

1.0

–

1.0

0.759

0.667

Brute Force -Web

0.205

0.247

0.01

–

0.009

0.007

0.028

DDOS attack-LOIC-UDP

0.993

0.987

0.982

–

0.992

0.536

0.0

Brute Force -XSS

0.163

0.0

0.003

–

0.003

0.002

0.0

SQL Injection

0.079

0.0

0.002

–

0.002

0.001

0.028

Benign

0.997

0.996

0.725

–

0.708

0.802

0.991

F1-Macro

0.794

0.780

0.697

–

0.691

0.622

0.678

Accuracy

0.995

0.992

0.591

–

0.568

0.668

0.984