Table 6 The performance of LLMs based-data augmentation on the NF-BoT-IoT-v2 dataset.
 | Our | CTGAN | SMOTE | ADASYN | Oversample | Undersample | Original |
---|---|---|---|---|---|---|---|
Benign | 0.955 | 0.956 | 0.934 | 0.885 | 0.934 | 0.836 | 0.952 |
DDoS | 0.993 | 0.993 | 0.992 | 0.992 | 0.992 | 0.990 | 0.993 |
DoS | 0.987 | 0.987 | 0.987 | 0.828 | 0.987 | 0.976 | 0.987 |
Theft | 0.966 | 0.966 | 0.965 | 0.550 | 0.965 | 0.918 | 0.965 |
Reconnaissance | 0.729 | 0.749 | 0.696 | 0.624 | 0.696 | 0.349 | 0.0 |
F1-Macro | 0.926 | 0.930 | 0.915 | 0.776 | 0.915 | 0.814 | 0.779 |
Accuracy | 0.988 | 0.988 | 0.988 | 0.866 | 0.988 | 0.977 | 0.988 |