Table 7 The performance of LLMs based-data augmentation on the NF-ToN-IoT-v2 dataset.
 | Our | CTGAN | SMOTE | ADASYN | Oversample | Undersample | Original |
---|---|---|---|---|---|---|---|
Benign | 0.983 | 0.975 | 0.982 | 0.975 | 0.984 | 0.968 | 0.982 |
Scanning | 0.987 | 0.986 | 0.990 | 0.982 | 0.989 | 0.976 | 0.986 |
XSS | 0.944 | 0.945 | 0.946 | 0.878 | 0.946 | 0.938 | 0.944 |
DDoS | 0.970 | 0.969 | 0.972 | 0.941 | 0.972 | 0.960 | 0.967 |
Password | 0.915 | 0.914 | 0.921 | 0.878 | 0.922 | 0.907 | 0.915 |
DoS | 0.903 | 0.903 | 0.904 | 0.482 | 0.903 | 0.901 | 0.902 |
Injection | 0.822 | 0.820 | 0.830 | 0.775 | 0.835 | 0.785 | 0.822 |
Backdoor | 0.995 | 0.386 | 0.986 | 0.977 | 0.984 | 0.972 | 0.992 |
MITM | 0.117 | 0.035 | 0.088 | 0.032 | 0.102 | 0.073 | 0.064 |
Ransomware | 0.903 | 0.932 | 0.881 | 0.870 | 0.682 | 0.565 | 0.033 |
F1-Macro | 0.854 | 0.786 | 0.850 | 0.779 | 0.832 | 0.804 | 0.761 |
Accuracy | 0.958 | 0.953 | 0.957 | 0.902 | 0.957 | 0.945 | 0.956 |