Table 7 The performance of LLMs based-data augmentation on the NF-ToN-IoT-v2 dataset.

From: An IoT intrusion detection framework based on feature selection and large language models fine-tuning

 

Our

CTGAN

SMOTE

ADASYN

Oversample

Undersample

Original

Benign

0.983

0.975

0.982

0.975

0.984

0.968

0.982

Scanning

0.987

0.986

0.990

0.982

0.989

0.976

0.986

XSS

0.944

0.945

0.946

0.878

0.946

0.938

0.944

DDoS

0.970

0.969

0.972

0.941

0.972

0.960

0.967

Password

0.915

0.914

0.921

0.878

0.922

0.907

0.915

DoS

0.903

0.903

0.904

0.482

0.903

0.901

0.902

Injection

0.822

0.820

0.830

0.775

0.835

0.785

0.822

Backdoor

0.995

0.386

0.986

0.977

0.984

0.972

0.992

MITM

0.117

0.035

0.088

0.032

0.102

0.073

0.064

Ransomware

0.903

0.932

0.881

0.870

0.682

0.565

0.033

F1-Macro

0.854

0.786

0.850

0.779

0.832

0.804

0.761

Accuracy

0.958

0.953

0.957

0.902

0.957

0.945

0.956