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Advancing renewable energy solutions requires efficient and durable solar Photovoltaic (PV) modules. 
A novel mechanism based on Deep Learning (DL) and Residual Network (ResNet) for accurate cracking 
detection using Electroluminescence (EL) images of PV panels is proposed in this paper. Different kinds 
of ResNet architectures, where ResNet34, ResNet50, and ResNet152 were tested, came out with 
an F1-Score of 86.63%, 87.37%, and 88.89%, respectively. Although the accuracy for ResNet152 is 
slightly higher, ResNet34 was chosen as the best model since it gives us a trade-off between detection 
performance and computational performance. The main contribution in this research is the design 
of an efficient crack detection system trained on a large PV power dataset composed of 2000 EL 
images collected from different polycrystalline and monocrystalline cells. Although the dataset has 
some imperfections, to guarantee the presence of many cell states in each subset, it was split into 
training (70%), validating (20%), and testing (10%). This research demonstrates the application of 
advanced DL frameworks for early defect diagnosis from raw data to enhance PV panel maintenance, 
thereby bolstering the sustainability of solar systems. This research also has a significant impact on 
the academic industry, offering practical solutions for the renewable energy sector during periods 
of sustainable energy instability, particularly when new materials supplement PV panel usage. The 
technology preserves the efficiency of solar modules and encourages clean energy solutions by 
accurately identifying PV panel faults. The study lays a foundation for the further development of 
image-based defect detection methods in PV systems.
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ST	� Synchronized Thermography
SVM	� Support Vector Machine
UAVs	� Unmanned Aerial Vehicles
UV	� Ultraviolet

The history of Photovoltaic (PV) technology goes back to 1839, when French physicist Edmond Becquerel 
discovered the PV effect. Since that time, PV technology has been used in applications from outer space 
exploration to powering the average residence1. PV technology is necessary for sustainable energy progress 
because it converts sunlight into clean and renewable energy as electricity, which decreases dependence on 
fossil fuels and reduces environmental impacts2–4. Although PV power is increasingly appealing, its intermittent 
nature and environmental dependency impose serious operational challenges. For example, dirt buildups on 
solar panels can lower power generation by a large percentage. With the growing integration of PV systems into 
classics, from iconic structures down to historical buildings, it will help with sustainability and going green5.

The upkeep of PV panels is crucial for multiple reasons. Firstly, it encompasses crucial tasks, such as cleaning 
and ensuring safety measures, which are necessary for preventing any decrease in the performance of the 
panels. Performing routine maintenance guarantees the seamless and effective functioning of the PV systems6. 
Consistent surveillance and upkeep are important to guarantee dependable energy generation from PV panels. 
This reduces the influence of environmental factors on energy production and preserves the durability of the 
solar panels.

The presence of cracks in PV panels can have a substantial effect on their overall performance and efficiency. 
Cracks in the panel cause a decline in the electricity output of the solar PV system, resulting in diminished 
overall efficiency. Cracks in Building-Integrated Photovoltaic (BIPV) modules can lead to a significant decrease 
of up to 43% in power output7.

The detection of cracks in PV panels is a difficult task, as PV panels are brittle and need careful inspection. 
Although these cracks are often detected using methods such as Electroluminescence (EL) imaging, advanced 
image processing techniques are needed for proper classification and quantification of the defects identified. 
Moreover, the diversity of possible types of cracks and their different influences on panel behavior renders exact 
identification difficult.

Figure 1 illustrates a comparative overview of different solar cell defect imaging techniques. Each technique 
is useful for finding a specific type of defect. One of the most commonly used techniques is EL, which works 
while a current pass through a panel to make it emit light8. The emission of that light serves to highlight damage 
and defects, with cracks or other defects showing up as dark spots or lines on the image. In the same way, 
Photoluminescence (PL) imaging also uses light emission to sense cracks and defects, but with a different 
panel excitation and observation approach, it offers another powerful defect detection technique9. Another 
vital technique is thermal imaging, mainly employed to localize hotspots on the panel10. These hotspots are 
often due to cracks or partial delamination that affect the performance of the panel, and localized heating is a 
sign that it is not functioning well. Unlike the imaging methods based on the light emission. Using a focused 
electron beam, Scanning Electron Microscopy (SEM) provides high-resolution images of the panel surface that 
enable very fine fractures to be detected which may go unnoticed but over time could affect the efficiency of the 
panel. Ultrasonic imaging is used to identify various interior flaws, such as delamination, fractures, and other 
structural anomalies11. This approach detects subsurface faults by transmitting ultrasonic waves through the 
panel and measuring the returned signals. The integration of these modern imaging methods guarantees the 
accurate detection of flaws in solar panels, ranging from micro-cracks to significant structural issues, hence 
facilitating maintenance and enhancing efficiency in the renewable energy industry.

This section presents an outline of a procedure for the image processing-based detection of cracks that 
is both as accurate and efficient as possible. This broad framework is detailed in Fig. 2, starting from image 
collection for PV panels. In this phase, specialized imaging equipment is used to acquire high-resolution images 
of the PV panels that need inspection, guaranteeing accurate and reliable data acquisition. Subsequently, the 
pre-processing of collected images phase employs critical image enhancement techniques, including noise 

Fig. 1.  Overview of imaging approaches for identifying defects in solar cells.
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reduction, contrast correction, and segmentation, to prepare the images for an in-depth analysis. Subsequently, 
sophisticated image processing algorithms are implemented during the PV panel image analysis. Edge detection 
and pattern recognition techniques that are used on pre-processed images are a means of detecting and analyzing 
patterns that would indicate the presence of fractures. For the subsequent stage, the identification of cracks 
within PV panels, the system meticulously scrutinizes these images to accurately identify fractures by leveraging 
the enriched data acquired from earlier phases. While the next step in the procedure is detecting the cracks, and 
extracting those cracks, features such as length, breadth, depth, and propagation direction are extracted and 
studied. This data is critical for determining the severity of the cracks found. After features are extracted, the 
next step is classifying PV panel cracks according to their potential impact on the performance of the panel, thus 
helping in maintenance decision-making. Once the reporting and documentation phase is complete, a complete 
set of reports is created to give a detailed description of the characteristics and kinds of the captured fractures. 
Such results help maintenance teams assess the condition of panels and schedule any repairs. The final step is 
maintenance decision-making, which directs master maintenance decisions of whether the impacted panels 
need repair, maintenance, or replacement. Such decisions are backed by several extensive reports and analysis 
reports, ensuring operational efficiency of solar power installations over a long period of time.

PV cell defects: impacts and research
In this section, the role of PV cell failure modes and solar PV module performance issues are explored together 
with the respective research. Initially, the study investigates intrinsic and extrinsic defects in PV cells and their 
signs. The following investigation details how a wide variety of faults, including fractures and other failures, can 
significantly reduce power generation—even when the damage seems minor. This cements the critical importance 
of accurate defect detection to maintaining efficiency. A detailed review of the relevant literature on the topic 
shows considerable advances in understanding and addressing these challenges. These advancements have been 
critical for developing better detection technology and mitigation techniques. Given the extensive nature of 
solar PV systems, this holistic approach adheres to the proposed framework and will highlight methodologies to 
amplify the efficiency, reliability, and durability of solar PV systems, alongside addressing prominent challenges 
and opportunities for advancement in the sector.

Overview of PV cell defects
This study proposes a Residual Network (ResNet) based image processing method for the accurate identification 
of fractures in PV panels, essential for enhancing their performance and durability. Figure  3 depicts many 
categories of defects that may arise in PV panels, including “No faults detected,” “Finger interruptions,” “Micro-
crack,” “Material defects,” “Electrically insulated sections,” and “Interconnection degradation”.

PV cells are the basic units for converting sunlight into electrical energy. However, numerous defects can 
affect their function and life. The study imagined the ideal situation that there would be no fault in Fig. 3(a). EL 
imaging, a common practice in the inspection of solar modules, confirms that PV cells are performing at their 
design limit without sustained performance loss when in this state. It guarantees the PV system works at its 
optimum level12.

Finger interruptions seen in Fig. 3(b) arise when the conductive grid lines (fingers) inside the PV cell sustain 
damage or become detached. These interruptions result in heightened series resistance, which directly impacts 

Fig. 2.  Architectural framework diagram for crack detection via image processing.
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current flow, diminishing the cell’s capacity to produce electricity. The deterioration of finger connections 
is mostly attributed to thermal fatigue, mechanical stress, or corrosion over time, as examined in research 
investigating metallization failures in crystalline silicon PV modules13. If untreated, this deficiency may lead to a 
substantial reduction in energy production due to the deterioration of electrical connections between individual 
cells14.

Micro-cracks, depicted in Fig. 3(c), are another common issue in PV cells. These little cracks in the silicon 
substrate often arise from mechanical strains during transit, installation, or environmental influences such as 

Fig. 3.  Comprehensive visualization of intrinsic and extrinsic defects.
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high temperature variations. Micro-cracks diminish the cell’s active area, resulting in localized power losses 
and hotspot development, which may expedite deterioration over time15. Studies indicate that these fissures 
may diminish the power production of PV modules by up to 0.5% more than intact modules after 21 months of 
operation16. Moreover, micro-cracks may progress into more significant fractures with time, particularly under 
environmental stress, resulting in increased power losses17.

Material defects as presented in Fig.  3(d) —these are inherent defects within the silicon wafer or other 
materials used to fabricate the PV cell. Manufacturing introduces defects such as impurities or structural 
dislocations, the presence of which can result in these above-mentioned defects. As time passes, the material 
deficiencies will aggravate other deficiencies, like cracking or corrosion, leading to a drop in the efficiency of the 
cell. Combined with environmental factors such as temperature and Ultraviolet (UV) exposure, recent literature 
has documented that these defects can contribute to faster degeneration of PV systems18. If the material defects 
are not found and addressed during inspections in the early stage, it will result in permanent performance losses.

Figure 3(e) illustrates electrically insulated sections that arise when parts of the cell get detached from the 
remainder of the module owing to significant cracking or delamination. This results in large portions of the PV 
module being nonfunctional, significantly reducing the total power production. Electrically insulated sections 
often result from Potential Induced Degradation (PID), whereby environmental conditions such as high voltage, 
humidity, and temperature differentials compromise the insulation of module components18. PID may markedly 
diminish the efficiency of solar panels and, if unaddressed, can incapacitate substantial areas of the module.

Finally, connector degradation is shown in Fig. 3(f), indicating the deterioration of the soldered connections 
among individual PV cells. This kind of deterioration often arises from mechanical fatigue caused by temperature 
fluctuations or inadequate soldering during production. As time progresses, the disconnection between 
cells escalates electrical resistance, resulting in considerable power loss. Research indicates that interconnect 
deterioration may lead to a loss of up to 40% in power output owing to failures in the connections between 
the fingers and the busbars14. Moreover, studies demonstrate that external environmental conditions, such as 
humidity and temperature fluctuations, might expedite this kind of degeneration19.

Analysis of PV cell defects and their impact
Table 1 provides a comprehensive overview of the anomalies of the solar panels, like electrical performance 
failure, and system aging, extreme weather conditions. It provides details about particular disorders like PID, 
encapsulate discoloration, and hail impacts and their consequences in efficiency, structural stability, and long-
term performance. Table 1 summarizes the challenges and their more general impacts on maintenance, thus 
identifying the urgent requirements for state-of-the-art diagnostics and predictive maintenance to ensure the 
reliability and sustainability of PV systems.

Dataset imbalance strategies
Figure 4 delineates many ways for mitigating dataset imbalance in image categorization. The approaches 
include synthetic data generation techniques, such as data augmentation, Generative Adversarial Networks 
(GANs), and synthetic simulation, as well as advanced sampling techniques including oversampling, Synthetic 
Minority Oversampling Technique (SMOTE), and undersampling, each providing distinct advantages for 
improving data diversity and balance. Furthermore, loss function adjustment aims to promote minority class 
recognition by assigning weights to misclassifications, whereas ensemble learning uses balanced subsets to 
improve model resilience and accuracy. Ultimately, Integrated approaches amalgamate many strategies such as 
GANs, augmentation, and SMOTE to deliver a thorough and efficient remedy for dataset imbalance. This figure 
functions as a reference for enhancing model performance in situations with underrepresented groups.

Effects of cracks on PV module efficiency
The study ‎20 conducts a current inquiry to analyze the effects of different fracture sizes on solar cells. Cracks were 
divided into four categories. Mode number one cells has no cracks. Mode number two has micro-cracks, whereas 
mode number three has shaded cracks. The fourth stage entails cellular disintegration. Figure 5 illustrates that 
increased cracks in solar cells result in around 60% of power loss. Elevated temperatures diminish PV module 
efficiency and may decrease power output. The SolarQRNN model ‎5 utilizes Deep Learning (DL) methods, using 
a distinctive quintile loss function and backbone networks comprised of residual convolution units. The model 

Category Description Examples/Manifestations Implications

 Electrical performance failures Inefficiencies caused by internal mismatches or wear.
- PID 
- Hotspots 
- Partial shading

- Efficiency losses 
- Overheating leading to module damage

 System aging Gradual wear of components reducing power output.
- Encapsulant discoloration 
- Delamination 
- Corrosion 
- Solder fatigue

- Reduced energy efficiency 
- Compromised structural integrity

 Extreme weather conditions Environmental stress accelerating damage.
- Hail impacts 
- UV degradation 
- Snow accumulation

- Misalignment or damage 
- Decreased lifespan and reliability

 Broader maintenance implications Need for advanced diagnostics and proactive strategies. - Thermal imaging for hotspots 
- EL imaging - Improved reliability and sustained performance

Table 1.  Overview of PV cell defects, their manifestations, and implications.
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exemplifies a novel methodology for using tracking camera images to assess the likelihood of solar power loss 
due to soiling.

Related studies
Table 2 presents a systematic overview of significant research in the domain of PV panel failure detection. It 
offers a comprehensive summary of the accomplishments and methodologies in this field, including details on 
the references, year, used methods, study descriptions, and significant findings.

Fig. 4.  Methods for addressing dataset imbalance in Image-Based classification.

 

Scientific Reports |        (2025) 15:24356 6| https://doi.org/10.1038/s41598-025-09101-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Reference Year Technique Used Study Description Major Findings

21 2024 Knowledge distillation with YOLOX 
and CSPHN networks.

Employs a bi-branch collaborative training method with 
knowledge distillation for PV hot-spot identification, 
emphasizing improvements in detection precision and 
computational efficiency.

Attained an AP50 metric of 82.2%, indicating 
rapid and precise hot-spot defect identification 
over diverse adverse situations.

22 2024 DL using surveillance camera 
images.

Created SoilingEdge, a DL methodology for estimating power 
loss from the soiling of PV panels from images obtained from 
edge devices such as security cameras.

Accomplished precise power loss assessment from 
soiling by advanced image processing techniques 
on edge platforms, enabling reliable inference for 
outdoor PV monitoring.

23 2023
Ghost Convolution Including 
YOLOv5 with BottleneckCSP and 
Tiny Target Prediction Head (GBH-
YOLOv5)

The study introduces GBH-YOLOv5, a new method for detecting 
tiny defects on PV panels using advanced image processing.

Achieving at least a 27.8% increase in accuracy 
compared to state-of-the-art methods.

24 2022

End-to-end approach using Red 
Green Blue (RGB) imagery from 
Unmanned Aerial Vehicles (UAVs) 
and YOLOv4 architecture for DL-
based defect detection.

The study develops a method using UAV-acquired RGB imagery 
and YOLOv4 to detect, identify, and locate defects in solar PV 
modules.

The defect detection achieved 83% accuracy on 
the validation set and 73% on the test set in large-
scale PV installations.

25 2022 DL using ResNet152-Xception and a 
coordinate attention mechanism.

Deep-learning model using ResNet152-Xception and attention 
for PV cell defect detection, addressing data scarcity and 
imbalance.

The model achieves 96.17% accuracy in binary 
classification and 92.13% in multiclassification of 
PV cell defects, outperforming several common 
models.

26 2021 U-net semantic segmentation for EL 
image analysis of PV modules.

The study utilizes U-net architecture to detect and quantify 
defects in solar PV modules through EL imaging, spanning 
various module designs and image qualities.

Defects in silicon wafer-based solar cells that 
are mono- or multi-crystalline are efficiently 
identified and measured by the U-net model.

27 2021 Synchronized Thermography (ST) 
using a portable IR-camera.

The research investigates PV fault identification by Infrared 
Radiation (IR) thermography, emphasizing the adaptation of 
observations to varying outside situations.

IR thermography is effective in detecting PV panel 
defects in various harsh conditions, providing 
consistent information with common conditions.

28 2021 Optical Stepped Thermography with 
post-data processing algorithms.

The study utilizes optical stepped thermography, halogen lamps, 
and IR camera monitoring to enhance defect signatures in PV 
panels.

This method effectively identifies defects in 
PV panels, with processed images being more 
evaluative than raw thermal images.

29 2020
Support Vector Machine (SVM) and 
Back Propagation Neural Network 
(BPNN)

identification of solar cell microcracks by EL image analysis.
Achieved 92.67% accuracy with SVM and 93.67% 
with BPNN in classifying solar cells as cracked 
or not.

30 2019
Steerable evidence filtering, local 
thresholding, and a minimum 
spanning tree for crack detection.

Identifying fissures in multicrystalline solar cells with improved 
contrast crack saliency maps and segmentation techniques for 
comprehensive crack extraction.

94.4% average detection rate for various types of 
cracks.

31 2019
Machine learning (ML) - SVM, 
Random Forest (RF) with Hough 
transform for pattern detection.

Automatic splitting of EL images into cells, defect detection, 
and feature computation for precise defect categorization in PV 
panels.

Achieved high accuracy (0.997) but lower recall 
(0.274) using SVM in defect type identification.

Table 2.  Overview of related studies in PV panel defect detection research.

 

Fig. 5.  Measured power vs. irradiance of the examined solar cells ‎20.
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Recent years have seen the evolution of Computer Vision (CV) and its successful application across various 
domains. Medical informatics has employed CV-based DL models, particularly for monocular depth estimation 
from fundus photographs, resulting in impressively accurate early diagnosis and monitoring of ophthalmic 
diseases32. For instance, the construction industry has utilized 3D vision technology to construct brick-and-
mortar structural crack damage recognition robots, automating the accurate and efficient detection of external 
cracks in buildings, thereby enhancing safety and lowering construction and maintenance costs33. Such 
applications demonstrate the capacity of CV to analyze intricate visual data, derive valuable information, and 
assist in crucial decision-making processes. A recent research examined superficial problem detection in solar 
panels, addressing concerns like dust and bird droppings, employing a Convolutional Neural Network (CNN) 
based VGG16 model in conjunction with a PyQt5 interface for intuitive categorization. The model attained 
an F1 score of 91.67%, specificity of 98.29%, and accuracy of 91.46% using a dataset of six fault classes with 
enhanced images34. Based on these results, our study shows that CV methods, specifically ResNet-based DL 
architectures, could be used to solve the important problem of finding faults in PV panels. The ultimate goal is 
to make it easier to maintain clean energy.

Advancing PV inspection: method comparison for EL defect detection
Table 3 summarizes the proposed ResNet34-based method, which achieves robust generalization and fine-grained 
fracture classification (micro/macro) and addresses critical limitations of traditional ML and conventional DL 
approaches. It optimizes for peripheral deployment through Open Neural Network Exchange (ONNX), utilizing 
residual learning and class-balancing strategies to achieve competitive performance. Even in the presence of 
variable image quality, this framework surpasses previous methods in terms of adaptability and scalability in 
real-world photovoltaic inspection systems.

Novel contributions and practical impact
The study’s novelty, as shown in Fig.  6, lies in its balanced approach, optimizing ResNet34 for efficient and 
accurate PV defect detection. A robust dataset ensures generalizability, while the systematic pipeline supports 
predictive maintenance. The scalable solution bridges the gap between academic research and industrial 
applications, enabling deployment on edge devices.

Methodology
In the methodology section, the study carefully examines the key aspects of the approach to detecting cracks in 
PV panels. Section 3.1 specifically examines the use of ResNet in the detection algorithm. Section 3.2 delineates 
the systematic procedural methodology the study utilized. Section 3.3 explores the training, assessment, and 
prediction procedures of the DL model. The dataset that is crucial to the investigation is analyzed in Sect. 3.4, 
while Sect. 3.5 is specifically focused on the mathematical techniques employed. Every component is crucial in 
showcasing the thorough methodology for identifying and evaluating faults in PV panels.

ResNet in PV crack detection
The research uses  the ResNet architecture among several backbone networks. Its layers include skip/shortcut 
connections, which marked a significant breakthrough in the training of deep networks.

DL networks, particularly those employed in CV applications, require a substantial number of layers to attain 
sufficient capacity. Nevertheless, the inclusion of more layers might provide greater difficulty in training as a 
result of the vanishing gradient problem. The issue is emphasized in Fig. 7, illustrating a section of the network 
H (x) with layer 1 and layer 2. When the partial derivative of H (x) with respect to x is noticeably smaller than 
1, the vanishing gradient issue arises, which is a typical issue when using activation functions like Sigmoid. This 
produces a significant drop in the gradient of x, as (1) explains35. Deep network training is seriously challenged 

Aspect Traditional ML Conventional DL Proposed Method

 Input type Handcrafted features Raw EL/IR/RGB images Raw EL images (high resolution)

 Feature extraction Manual engineering Automatic (convolutional layers) Automatic via residual blocks with deep feature 
representation

 Model complexity Low to moderate Moderate to high Moderate (ResNet34 strikes balance)

 Accuracy Low to moderate High High

 Training data requirements Small to medium datasets Large datasets Optimized for medium-sized dataset with class balancing

 Generalization Limited (noise-sensitive) High (but overfits on imbalance) High; robust across defect types due to residual learning 
and augmentation

 Computation efficiency Very efficient Varies; heavier models (e.g., YOLOv5, 
ResNet152) require high compute

Efficient; suitable for edge deployment with ONNX 
export

 Detection types Binary Binary or multiclass (limited microcrack 
sensitivity) Fine-grained (micro/macro, dormant)

 Deployment readiness Offline tools Resource-intensive Edge devices (low power)

 Robustness to image quality Low (needs clean input) Moderate High due to preprocessing + skip connections in ResNet

 Scalability to real-world PV systems Low Moderate to high High (modular, portable)

Table 3.  Comparative analysis of ML approaches for photovoltaic defect detection in EL imagery: traditional 
methods, conventional DL, and ResNet34-Based optimization.
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by the well-known phenomena of the gradient vanishing issue. ResNet effectively addresses this problem by 
using a creative design, therefore optimizing the training process.

Nevertheless, adding a shortcut or skip link from x to H (x), as seen in Fig. 8, streamlines the learning 
process. In this setup, it is the network’s responsibility to learn about the residue, F (x) = H (x) − x which 
is shown to be a more feasible and controllable method. This expression is called (2), and by feeding this skip 
connection The gradient of x propagates in a more direct manner, directly from the gradient of H (x). In short, 
this adjustment minimizes the effect of vanishing gradient problem. Such that, the task for which the study needs 
to learn H (x) is even more difficult as per (3). The use of a skip connection allows you to carry information 
about x from the network, making learning even faster35.

	

∣∣∣∣
∂ H (x)

∂ x

∣∣∣∣ ≪ 1� (1)

	 F (x) = H (x) − x� (2)

	

∣∣∣∣
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∂ x

∣∣∣∣ =
∣∣∣∣
∂ F (x) + ∂ x

∂ x

∣∣∣∣ =
∣∣∣∣
∂ F (x)

∂ x

∣∣∣∣ + 1� (3)

In Fig. 9 the contrast in the residual block designs may be observed between ResNet-18 and ResNet-34, as well as 
between ResNet-50, ResNet-101, and ResNet-152. The ResNet-50 architecture utilizes a bottleneck design, which 
has a combination of 1 × 1 and 3 × 3 convolutional layers in an alternating pattern35. This strategy significantly 
reduces the number of parameters in the model, dropping them from 294,912 (as in a configuration with two 
3 × 3 convolutions of 64 and 3 × 3, 256) to 69,632. Adding this bottleneck framework also increases the number 

Fig. 7.  Illustration of gradient vanishing in DL architectures35.

 

Fig. 6.  Key novel contributions of the proposed PV defect detection approach.

 

Scientific Reports |        (2025) 15:24356 9| https://doi.org/10.1038/s41598-025-09101-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


of activations because it has more convolutional layers. This makes the model more nonlinear and increases its 
overall capacity.

As Table  4 shows, the ResNet family—which comprises ResNet 18, ResNet-34, ResNet-50, ResNet-101, 
and ResNet-152—is distinguished by its unique arrangement of residual blocks and their numbers. Five major 
convolutional layers (conv1 through conv5_x) make up the ResNet model; then it has an average pooling layer, 
a fully connected layer, and a softmax layer. For the ImageNet dataset, this mix essentially serves as the classifier 
for 1000 different object types. Often referred to as the “backbone” of the ResNet models, the convolutional layers 
initially learn on ImageNet to gather information at varying degrees of detail. Features maps following conv2_x, 
conv3_x, conv4_x, and conv5_x clearly show this. Using exact neck and head configurations to complete such 
like item recognition and semantic segmentation alters these features even more. The essential component of 

Fig. 9.  Comparison of ResNet residual blocks: (a) ResNet 18 and 34 standard residual blocks vs. (b) Advanced 
residual blocks in ResNet 50, 101, and 15235.

 

Fig. 8.  Illustration of skip connections within ResNet architecture35.
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these ResNet designs is the residual block, which is employed in different quantities across the convolutional 
layers, ranging from conv2_x to conv5_x. Whereas ResNet-50 uses a unique mix of 3, 4, 6, and 3 blocks in these 
layers, respectively, ResNet-18 uses 2 residual blocks in each layer from conv2_x to conv5_x.

Procedural workflow of PV panel crack detection
The study proposes an advanced DL system that actuated  accurately the fracture detection and analysis of 
the PV container Designed in Python and built on “PyTorch”, one of the most popular DL tools, this system 
approach is primarily sustained on the “PVPanelCrackDetector” class, liable for managing the whole training 
and model verification process. The study  adopts a modified ResNet architecture which is already recognized 
for its performance in image related tasks. This framework can be initialized with a pre-existing state or trained 
from  scratch.

The model may be trained with the help of parameters such as the number of epochs, learning rate, batch 
size, and validation split ratio. Thus allowing for highly specific customization based on dataset characteristics 
and flexibility. Data loading and effective management of training and validation data sets are handled by the 
“DataLoader” from PyTorch. A significant property of the approach is the ability to resume training from a 
checkpoint, thus improving the usability of active research studies.

The evaluation and deployment procedure is based on the “main_test”. It loads acquired models and forecasts 
cracks on fresh PV panel images. This feature also allows one to export the trained model to the ONNX format, a 
portable model file crucial for use in many production environments. Furthermore, the study efficiently manages 
experimental setups using a utility function known as “experiment_deleter,” which helps us to readily eliminate 
tests and iterate rapidly throughout the development period.

A full range of the major configurations and parameters used in the image processing system  is given in 
Table 5. The approach results show a promising performance in locating the cracks in  PV panels. It not only 
improves the quality of service within the sustainable energy sector by ensuring solar panel functionality but also 
sets a foundation where advanced image  processing techniques are applied within renewable energy solutions, 

Parameter Quantity

Optimizer Adam

Loss function BCEWithLogitsLoss

Learning rate 7e-5

Batch size 32

Validation split ratio 0.2

Resume training Configurable (True/False)

Model architecture ResNet

Data loader workers 4

Training data handling DataLoader (PyTorch)

Stopping patience 10

Table 5.  Configuring ResNet for PV panel crack detection.

 

layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer

conv1 112 × 112 7 × 7,64 stride 2

conv2_x 56 × 56

3 × 3 max pool, stride 2[
3 × 3, 64
3 × 3, 64

]
× 2

[
3 × 3, 64
3 × 3, 64

]
× 3

[
1 × 1, 64
3 × 3, 64

1 × 1, 256

]
× 3

[
1 × 1, 64
3 × 3, 64

1 × 1, 256

]
× 3

[
1 × 1, 64
3 × 3, 64

1 × 1, 256

]
× 3

conv3_x
28 × 28

[
3 × 3, 128
3 × 3, 128

]
× 2

[
3 × 3, 128
3 × 3, 128

]
× 4

[
1 × 1, 128
3 × 3, 128
1 × 1, 512

]
× 4

[
1 × 1, 128
3 × 3, 128
1 × 1, 512

]
× 4

[
1 × 1, 128
3 × 3, 128
1 × 1, 512

]
× 8

conv4_x
14 × 14

[
3 × 3, 256
3 × 3, 256

]
× 2

[
3 × 3, 256
3 × 3, 256

]
× 6

[
1 × 1, 256
3 × 3, 256

1 × 1, 1024

]
× 6

[
1 × 1, 256
3 × 3, 256

1 × 1, 1024

]
× 23

[
1 × 1, 256
3 × 3, 256

1 × 1, 1024

]
× 36

conv5_x
7 × 7

[
3 × 3, 512
3 × 3, 512

]
× 2

[
3 × 3, 512
3 × 3, 512

]
× 3

[
1 × 1, 512
3 × 3, 512

1 × 1, 2048

]
× 3

[
1 × 1, 512
3 × 3, 512

1 × 1, 2048

]
× 3

[
1 × 1, 512
3 × 3, 512

1 × 1, 2048

]
× 3

1 × 1 Average pool, 1000-d fc, softmax (classification head)

FLOPs
(Floating Point Operations 
per Second)

1.8 × 109 3.6 × 109 3.8 × 109 7.6 × 109 11.3 × 109

Table 4.  ResNet architectures: Layer-By-Layer specifications35.
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further improving operational metrics. Its modular structure and holistic perspective pave the way for further 
research in the area of image-based anomaly  detection in solar systems.

Figure 10 offers a methodical and orderly graphical depiction of the same approach used in the research. The 
“PVPanelCrackDetector” class’s initial setup starts the flowchart and is the basis for the ResNet-based study. It 
then veers into three distinct operational directions: training, testing, and experiment cancellation. The model 
completes many fundamental tasks throughout the training process, including data preparation, trainer setup, 
and execution. Accurately spotting problems in solar panels depends on these processes. Showing the useful 
use of the trained model, the testing path comprises the setup for forecasting and the subsequent assessment of 
prediction accuracy. At last, the deletion route consists of the maintenance element of the process, allowing the 
deliberate removal of experiments based on certain criteria. The flowchart not only improves understanding 
of the approach but also emphasizes the flexibility and completeness of the system in addressing the problems 
related to spotting solar panel fractures.

DL model development and assessment
The study had resulted in a comprehensive Python framework that integrates multiple computational frameworks 
with specific modules. This architecture is critical for the application of DL algorithms to identify defects in 
solar panels. The opening part of the screenplay is the importing of the needed libraries that are used in the 
script, for example, the “time” library used for keeping track of the time and the “os” library used for interacting 

Fig. 10.  Flowchart for ResNet-Driven PV panel crack detection.
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with the operating system. Crucially important for the DL component of the study is “PyTorch”, often referred 
to as “torch.” The study also makes use of “torchvision,” a tool with CV features and datasets. Furthermore, 
included in the script are user-defined modules from the “configs” and “utils” folders: “serde” for the serialized 
format of configuring and vice versa, and “stopping” for early halting callbacks. This highlights the modular 
and flexible nature of the script. The “Training” class, which manages the whole training process—including 
validation stages—is the center of the script. The class is started with given settings, including the location of the 
configuration file, the stopping patience, and the epoch count. This emphasizes the capacity for personalizing 
the learning experience. Establishing the Compute Unified Device Architecture (CUDA) environment to use 
the Graphics Processing Unit’s (GPU’s) capabilities, building up the neural network model with its optimizer 
and loss function, and managing checkpoint loading to enable continuous training from a saved state define the 
major characteristics of this class. The ‘train_epoch’ and ‘valid_epoch’ approaches respectively exactly indicate 
the training and validation procedures for each epoch, therefore assuring a methodical and iterative process of 
learning and evaluation. The ‘Prediction’ class is explicitly intended for the post-training phase, where it manages 
the prediction or testing process by using the acquired model. This course highlights the model’s deployment 
capabilities, including the configuration of the CUDA environment for prediction tasks and the capacity to save 
the model in the ONNX format, facilitating deployment across multiple environments.

The script includes utility functions and constants such as the ‘load_pretrained_model’ function, which 
demonstrates the use of a pre-trained ResNet model that has been adapted for the specific goal of detecting 
cracks in solar panels. This function demonstrates the script’s capacity to adapt to several neural network designs 
that are relevant to image processing jobs.

The training procedure is quite advanced, encompassing the initial configuration of the model and optimizer, 
loading of data using “DataLoaders”, and executing training across numerous epochs. Every epoch consists of a 
training phase to teach the model and a validation phase to assess its performance on a different dataset.

In order to improve the effectiveness of training and prevent overfitting, the script includes early stopping 
mechanisms and the ability to store and load model checkpoints. This not only enhances the efficiency of the 
training process but also guarantees the dependability and resilience of the taught model. In addition, the use 
of “TensorBoardX” enables a user-friendly and graphical depiction of the training procedure, facilitating the 
observation and examination of crucial metrics such as loss and accuracy.

The Python script the study has built is a crucial part of the study. It offers a strong and adaptable framework 
for applying DL methods to identify faults in solar panels. The script’s architecture, which includes state-of-the-
art computational libraries and customized modules, demonstrates its ability to effectively handle and analyze 
intricate image data. This eventually makes a substantial contribution to the progress of solar panel inspection 
procedures.

Figure 11 offers a thorough and unambiguous graphic depiction of the sequential processes used in training 
the DL model to detect solar panel cracks. Initializing the training class initiates the process, where this study 
develops the model’s configuration and prepare the CUDA environment for effective computation. This study 
has carefully developed the model to incorporate the optimizer, neural network architecture, and loss function 
configuration tailored to the specific requirements. The training phase, in which the model goes through 
rigorous training cycles with optional validation steps to ensure robustness and accuracy, is the main emphasis 
of the flowchart. This process depends critically on continuous monitoring and recording of training metrics in 
“TensorBoard”, which provides important information about the performance of the model and helps to enable 
exact changes. Storing the model and its checkpoints marks the end of the training period and the process. The 
flowchart not only helps us understand the training strategies of the model but also highlights the meticulous 
and thorough approach the study has used in developing a reliable tool for spotting solar panel flaws.

The proposed comprehensive methodology to predict and analyze fractures in PV panel fault analysis using 
advanced DL model is depicted in flowchart shown in Fig. 12. The first stage of the workflow is the instantiation of 
the prediction class itself, during which a system configuration is read and setup, ensuring that all parameters  are 
set correctly with respect to the model. Afterwards, the flowchart illustrates the essential process of establishing 
the CUDA environment, which guarantees the highest level of computing performance for the prediction jobs. 
Subsequently, the workflow illustrates the process of loading the pre-trained model, which has been customized 
expressly for the purpose of detecting cracks in solar panels. While the flowchart does not clearly specify this 
phase, it is assumed that it is followed by the real prediction process on fresh data, which is a crucial aspect of the 
model’s implementation. The last phase of the workflow is preserving the model in the ONNX format, which not 
only signifies the completion of the prediction process but also streamlines the model’s deployment and future 
use. This flowchart provides a concise and organized visual depiction of the prediction process, emphasizing the 
methodical approach used to use DL for the efficient and precise identification of cracks in solar panels.

Dataset presentation
The cross-domain study  is based on a large dataset from the PV power-generating, specifically focusing on 
EL images of PV cells. The datasets used in this study are publicly available36–38, but were reduced to 2000 of 
the  2624 images, as shown in Table  6. The dataset presented a diverse variety of PV modules, including 44 
modules in total, of  which 18 were monocrystalline and 26 were polycrystalline. Each image in the dataset 
shows a PV cell with varying  types of faults. To ensure consistency and simplify review,  all images were resized 
to 8-bit grayscale images of 300 × 300 pixels while normalizing for size and view angle.

A crucial aspect of the research involves using pre-categorized PV cell images, as described in Table 7; Fig. 13. 
The specialists carefully categorized the images into four unique groups, each reflecting a different level of chance 
of defects: 0% (1037 occurrences), 33% (213 occurrences), 67% (96 occurrences), and 100% (654 occurrences). 
The categorization offered a detailed comprehension of the range of defects present in the PV cells.
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In addition, the study deliberately partitioned the dataset into three subsets, as illustrated in Table 8, for the 
specific objectives of training, validation, and testing. The training set, which makes up 70% of the entire dataset, 
consisted of 725 undamaged images (36.25%) and 675 damaged images (33.75%). The validation set consisted 
of 20% of the dataset, which was divided into 207 intact images (10.35%) and 193 defective images (9.65%). 
The testing set comprised the remaining 10% of the data, consisting of 103 undamaged images (5.15%) and 97 
defective images (4.85%). The division was crucial for the strength of the investigation, guaranteeing a thorough 

Fig. 11.  Training process flowchart for DL-based PV panel crack detection.
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Fig. 12.  Prediction flowchart for DL-based crack detection in PV panels.
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Category Intact Defected

 Training
 (70%)

725
(36.25%)

675
(33.75%)

 Validation
 (20%)

207
(10.35%)

193
(9.65%)

 Testing
 (10%)

103
(5.15%)

97
(4.85%)

Table 8.  Distribution of dataset into training, validation, and testing sets.

 

Fig. 13.  Distribution of defect probabilities in PV cell images.

 

Value Occurrences

0.000000 1037

0.333333 213

0.666667 96

1.000000 654

Table 7.  Distribution of defect probabilities in PV cell images.

 

Type of Cells Polycrystalline Monocrystalline Total

 Non-defected 538 499 1037

 Defected 502 461 963

 Total 1040 960 2000

Table 6.  Dataset composition.

 

Scientific Reports |        (2025) 15:24356 16| https://doi.org/10.1038/s41598-025-09101-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


assessment of the model’s performance in various circumstances and the possibility of defects inside the PV cells, 
also the dataset preprocessing and annotation details are summarized in Table 9.

Calculation
The research utilized a confusion matrix technique to assess the effectiveness of several ResNet models in 
identifying fractures in solar panels, as seen in Fig. 14. This method is crucial for comprehending the efficacy 
of the algorithms in categorizing faulty and standard panels. The performance indicators were calculated using 
precise formulas for precision, recall (sensitivity), and F1-score, offering a full evaluation of the correctness of 
the models, with these equations derived from the study39.

a) Precision:
This parameter (4) measures the accuracy of the model in correctly recognizing panels that are truly faulty. 

The calculation involves dividing the number of correctly predicted faulty instances (True Positives) by the total 
number of cases predicted as defective (the sum of True Positives and False Positives). Mathematically, precision 
is quantified or represented as follows:

	
P recision = TP

TP + FP
� (4)

b) Recall:
Recall, sometimes referred to as sensitivity (5), quantifies the model’s capacity to accurately detect all true 

defective cases. The term ‘True Positive Rate’ refers to the proportion of correctly predicted faulty instances 
(True Positives) to the total number of defective cases, which is the sum of True Positives and False Negatives. 
The recall formula is:

	
Recall = TP

TP + FN
� (5)

c) F-Score:
While accuracy and recall yield important information, their evaluation in isolation may not furnish a whole 

assessment of the model’s performance. The F-score, often known as the F1 score (6), resolves this issue by 
amalgamating precision and recall into a unified statistic. The harmonic mean of precision and recall is used to 
balance the two measures and provide a comprehensive evaluation. The F1 score is computed using the following 
equation:

	
F1 = 2 × Recall × Precision

Precision + Recall
� (6)

Code availability
The custom code for the ResNet-based crack detection framework is included as supplemental material to 
this research paper. This extensive codebase comprises modules for data preparation (histogram equalization, 
normalization), dataset partitioning (70%/20%/10% train/validation/test), and PyTorch implementations of 
customized ResNet34/50/152 architectures tailored for grayscale EL image processing. The training pipeline 
includes class-weighted loss functions, real-time augmentation (random flips, rotations, cropping), TensorBoard 
logging, and early termination based on F1-score optimization. The code facilitates deployment flexibility by 
enabling the export of trained models to ONNX format. All experiments detailed in Tables 5 and 10 may be 
replicated utilizing the setup settings integrated inside the script. The autonomous implementation guarantees 
complete repeatability of our methods without external dependencies.

Results
This study primarily investigates two primary forms of defects in solar cells: (1) Microfractures and macrofractures 
(Cracks): These fractures can significantly differ in size, from minuscule, nearly undetectable microfractures 
to extensive macrofractures that encompass the whole cell. Fractures within a cell do not invariably affect its 
operation, as the electrical connection frequently persists even in regions exhibiting breaks. (2) Dormant areas: 
Usually resulting from cellular fractures are these ones. A part of the cell may become electrically separated 
due to fracture-induced disconnection, therefore reducing its total power output. This phenomenon directly 

Aspect Description

 Data collection 2,000 EL images (monocrystalline & polycrystalline).

 Labeling method Images labeled into 0%, 33%, 67%, 100% defect probability.

 Image preprocessing Converted to 8-bit grayscale, and normalized for lighting.

 Contrast adjustment Histogram equalization applied to standardize brightness and visibility.

 Data augmentation Random flips, rotation, cropping, zoom, and Gaussian noise (via PyTorch).

 Standardization Pixel intensity scaled to [0, 1]; orientation and framing standardized.

 Class imbalance Balanced using oversampling and class-weighted “BCEWithLogitsLoss”.

Table 9.  Summary of dataset collection, preprocessing, and annotation.
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affects the efficiency of cells. Although fractures can cause inactive areas sometimes, the method handles both 
defect types as separate entities. Regardless of its activity level, a cell is categorized as “cracked” just based on its 
outward display of fractures.

The findings of the investigation, presented in Table 10, indicate little difference among ResNet34, ResNet50, 
and ResNet152 in detecting fractures in solar panels. This assessment is performed by analyzing a dataset that 
comprises 10% of the total dataset. The collection comprises 103 complete images and 97 faulty images. The 
F1-Scores obtained were 86.63% for ResNet34, 87.37% for ResNet50, and 88.89% for ResNet152. The findings 

ResNet Type Recall Precision F1-Score

 ResNet34 90.00% 83.51% 86.63%

 ResNet50 89.25% 85.57% 87.37%

 ResNet152 91.30% 86.60% 88.89%

Table 10.  Performance comparison of ResNet architectures on PV panel crack detection.

 

Fig. 14.  Confusion matrix diagrams for PV panel crack detection: (a) ResNet-34, (b) ResNet-50, (c) 
ResNet-152 architectures.
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underscore that the incremental improvements in precision achieved with advanced ResNet models are not 
significantly justified by the additional computational resources and time required. Consequently, when 
evaluating the trade-off between computational efficiency and accuracy, the ResNet34 architecture stands out as 
the optimal choice. The confusion matrix diagrams are illustrated in Fig. 14. Exhibit the efficacy of ResNet-34, 
ResNet-50, and ResNet-152 in balancing processing speed, resource efficiency, and accuracy. This is especially 
apparent when evaluating the marginal accuracy improvements of higher-tier models relative to their augmented 
computing requirements. This comparative visualization reinforces the rationale for employing ResNet-34 in 
practical applications where efficiency and accuracy have equal significance.

ResNet34 offers a practical solution for real-world PV inspection due to its balance of accuracy and 
computational efficiency. Its moderate size enables deployment on edge devices like NVIDIA Jetson or Raspberry 
Pi with accelerators. The model delivers fast inference, supporting near real-time performance. When integrated 
with UAV platforms, it enables automated, large-scale PV monitoring, significantly reducing inspection time and 
cost. Overall, ResNet34’s efficiency makes it ideal for edge-based solar panel fault detection, Table 11 presents a 
general comparison between ResNet34, ResNet50, and ResNet152 models.

Although all three models examined—ResNet34, ResNet50, and ResNet152—obtained exceptional F1-
scores, ResNet34 demonstrated the most advantageous equilibrium between computational efficiency and 
performance in the comparative assessment of ResNet architectures. ResNet34 was able to maintain a competitive 
F1-score of 86.63% and a high recall of 90% despite its comparatively simpler design. This ensured the efficient 
identification of defective panels and reduced the likelihood of unnoticed errors. This performance is attributed 
to its ability to effectively manage the precision-recall trade-off; it maintains sensitivity while delivering sufficient 
precision (83.51%). However, the computational burden of deeper models, such as ResNet50 and ResNet152, 
was significantly increased, rendering them unsuitable for real-time or edge deployment, because they need 
more time than ResNet34, despite the minor accuracy improvements they provided. Error analysis revealed that 
most misclassifications were related to minute microfractures and cell edge flaws, usually under low contrast or 
noisy settings.

Despite the high accuracy and computational efficiency of the proposed ResNet-based crack 
detection  technique, some limitations still exist. Of course, the data dictionary  is limited to the available 
images and may not cover all real world scenarios due to rare or complex defect patterns despite best attempts 
at augmentation and balancing. Finally, environmental and operational conditions like different illumination 
and noise within  the EL images still influence the detecting accuracy. As such, overcoming these limitations is 
important with respect to the research targets, as it not only encourages progression towards next-generation 
datasets to make reliable approaches that will work in much broader conditions, a key aspect necessary for 
transferring the approach to an industrial framework and thus expects to see a trend of  target predominance in 
future endeavors, focusing on diversity and robustness when working with multiple items.

Identifying defects in PV systems is essential for preserving their efficiency, guaranteeing stable energy 
output, and prolonging their operational longevity. Timely identification of faults mitigates energy losses, lowers 
maintenance expenses, and averts more damage to solar modules. PV systems are essential for harnessing 
clean, renewable solar energy, propelling worldwide initiatives to diminish emissions and attain a sustainable 
future40–42. Advancing research in PV technology will further augment its contribution to climate change 
mitigation and energy security enhancement.

Conclusion
This study focuses on the domain of PV panel health monitoring, with a special emphasis on the identification 
of fractures through the utilization of modern image processing techniques. The study utilized an extensive 
dataset that included a wide variety of PV modules, consisting of a total of 44 modules. In both cases, the dataset 
was balanced between an 18-monocrystalline and a 26-polycrystalline module. This enables a comprehensive 
analysis of the classification capability on all kinds of solar panels with different types of cracks. A core part 
of the methodology is the use of ResNet architectures to detect cracks. The study, which looked at how well 
ResNet-34, ResNet-50, and ResNet-152 models worked, showed that as the models got more complicated, 
their accuracy kept going up. The F1 scores for ResNet-34, ResNet-50, and ResNet-152 were 86.63%, 87.37%, 
and 88.89%, respectively. Nevertheless, the enhancements in precision achieved through the use of more 
sophisticated ResNet models were not significant enough to warrant the allocation of extra computing resources 
and effort. Therefore, the ResNet34 architecture is considered the most preferable option because of its ability 
to achieve an ideal equilibrium between computing efficiency and detection accuracy. The data in the study 
technique was divided into three distinct categories: training (70%), validation (20%), and testing (10%). In the 

Factor ResNet34 ResNet50 ResNet152

 Depth 34 layers 50 layers 152 layers

 Architecture type Standard residual blocks Bottleneck residual blocks
(1 × 1, 3 × 3, 1 × 1) Bottleneck residual blocks

 Parameters ~ 21.8 million ~ 25.6 million ~ 60.2 million

 Speed vs. accuracy Fastest; lower accuracy Balanced speed and accuracy Slowest; highest accuracy

 Overfitting risk Low; suitable for smaller datasets Moderate; may require regularization Higher; benefits from data augmentation

 Hardware demands Low; suitable for CPUs and low-end GPUs Moderate; requires mid-range GPUs High; needs high-end GPUs or TPUs

Table 11.  General architectural comparison of ResNet34, ResNet50, and ResNet152 models.
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future, the investigations will focus on improving and optimizing the precision and effectiveness of PV panel 
fracture detection. The intention is to conduct experiments by training and testing on various network sizes in 
order to further decrease the occurrence of erroneous detections. In addition, the forthcoming research will 
entail a thorough investigation of several network topologies and configurations, such as ResNet, to evaluate 
their influence on detection accuracy and the utilization of computing resources. To summarize, this research 
establishes a solid basis for employing image processing techniques to identify fractures in PV panels. It offers 
vital insights for ensuring the long-term functionality and upkeep of solar PV systems. The proposed strategy 
would priorities the enhancement of these detection techniques to achieve higher levels of precision and 
effectiveness, therefore making a substantial contribution to the dependability and durability of solar energy 
infrastructure.

Future work
PV is essential for enabling the capture of clean renewable energy from the sun to further decarbonize our society 
into a more sustainable future, and increasing the focus on scientific research in the field of solar energy will 
make this field an effective field in the field of renewable energy. The accuracy and efficiency of our ResNet-based 
image processing method for fracture identification on PV panel needs to be further improved in the future 
research from several aspects. One approach is to include more sophisticated DL models, such as transformers 
or hybrid architectures, which might enhance detection accuracy while optimizing computing efficiency. 
Furthermore, augmenting the dataset to incorporate a wider array of intricate fracture patterns and multiple PV 
technologies will enhance the model’s robustness under diverse settings. A further prospective study domain is 
the implementation of real-time crack detection algorithms capable of functioning effectively on edge devices. 
This may provide expedited on-site inspections, eliminating the necessity for centralized data processing, which 
is essential for extensive solar systems. Integrating these models with UAVs for automated inspection and 
monitoring might enhance the efficiency of PV panel maintenance. Furthermore, integrating environmental 
and operational data, like temperature, humidity, and irradiance levels, into the detection algorithms might 
yield a more thorough comprehension of crack advancement and its effect on panel performance. This would 
provide predictive maintenance, thereby decreasing the probability of expensive downtime. Future research 
must prioritize the optimization of models for lower-end hardware, facilitating the implementation of enhanced 
crack detection in areas or facilities with constrained computing capabilities, therefore advancing the worldwide 
initiative for accessible and sustainable solar energy solutions.

Data availability
All data generated or analysed during this study are included in this published paper. The custom code is provid-
ed in the supplementary materials. Additional data supporting the findings of this study are available from the 
corresponding author upon reasonable request.
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