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To evaluate the effectiveness of deep learning radiomics nomogram in distinguishing early intracranial 
hypertension (IH) following primary decompressive craniectomy (DC) in patients with severe traumatic 
brain injury (TBI) and to demonstrate its potential clinical value as a noninvasive tool for guiding 
timely intervention and improving patient outcomes. This study included 238 patients with severe 
TBI (training cohort: n = 166; testing cohort: n = 72). Postoperative ultrasound images of the optic 
nerve sheath (ONS) and Spectral doppler imaging of middle cerebral artery (MCASDI) were obtained 
at 6 and 18 h after DC. Patients were grouped according to threshold values of 15 mmHg and 20 
mmHg based on invasive intracranial pressure (ICPi) measurements. Clinical-semantic features were 
collected, and radiomics features were extracted from ONS images, and Additionally, deep transfer 
learning (DTL) features were generated using RseNet101. Predictive models were developed using 
the Light Gradient Boosting Machine (light GBM) machine learning algorithm. Clinical-ultrasound 
variables were incorporated into the model through univariate and multivariate logistic regression. 
A combined nomogram was developed by integrating DLR (deep learning radiomics) features with 
clinical-ultrasound variables, and its diagnostic performance over different thresholds was evaluated 
using Receiver Operating Characteristic (ROC) curve analysis and decision curve analysis (DCA). The 
nomogram model demonstrated superior performance over the clinical model at both 15 mmHg and 
20 mmHg thresholds. For 15 mmHg, the AUC was 0.974 (95% confidence interval [CI]: 0.953–0.995) 
in the training cohort and 0.919 (95% CI: 0.845–0.993) in the testing cohort. For 20 mmHg, the AUC 
was 0.968 (95% CI: 0.944–0.993) in the training cohort and 0.889 (95% CI: 0.806–0.972) in the testing 
cohort. DCA curves showed net clinical benefit across all models. Among DLR models based on 
ONS,  MCASDI, or their pre-fusion, the ONS-based model performed best in the testing cohorts. The 
nomogram model, incorporating clinical-semantic features, radiomics, and DTL features, exhibited 
promising performance in predicting early IH in post-DC patients. It shows promise for enhancing non-
invasive ICP monitoring and supporting individualized therapeutic strategies.
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BMI	� Body mass index
CI	� Confidence interval
CNN	� Convolutional neural networks
CPP	� Cerebral perfusion pressure
DC	� Decompressive craniectomy
DCA	� Decision curve analysis
DICOM	� Digital imaging and communications in medicine
DTL	� Deep transfer learning
DLR	� Deep learning radiomics
EDV	� End-diastolic velocity (MCA)
EF	� Ejection fraction
GCS	� Glasgow coma scale
GLCM	� Gray-level co-occurrence matrix
GLRLM	� Gray-level run-length matrix
GLSZM	� Gray-level size zone matrix
GLDM	� Gray-level dependence matrix
ICC	� Intraclass correlation coefficient
ICP	� Intracranial pressure
IH	� Intracranial hypertension
KNN	� KNEAREST neighbors
ICPi	� Invasive ICP
LASSO	� Least absolute shrinkage and selection operator
Light GBM	� Light Gradient Boosting Machine
MCASDI	� Spectral doppler imaging of middle cerebral artery
MAP	� Mean arterial pressure
MCA	� Middle cerebral artery
MCA_mean	� Mean velocity (MCA)
MCAED	� End-dystolic velocity of MCA MCA: middle cerebral artery
MCAPS	� Peak systolic velocity of MCA
MCAPI	� Pulse index (middle cerebral artery)
NPV	� Negative predictive value
ONS	� Optic nerve sheath
ONSD	� Optic nerve sheath diameter
ORs	� Odds ratios
PaO2	� Oxygen partial pressure (Artery)
PaCO2	� Carbon dioxide partial pressure (Artery)
PACS	� Picture archiving and communication systems
PI	� Pulse index
PPV	� Positive predictive value
RF	� Random forest
ROC	� Receiver operating characteristic
ROI	� Region of interest
TBI	� Traumatic brain injury
TCD	� Transcranial Doppler
TCCD	� Transcranial color doppler
SNR	� Signal-to-noise ratio
CNR	� Contrast-to-noise ratio
PRF	� Pulse repetition frequency
FPS	� Frames per second

Accurate early prediction of intracranial hypertension (IH) is critical in the management of brain injury patients, 
as it can lead to brain herniation and pose a significant risk of irreversible brain damage and death1,2. Currently, a 
variety of invasive and non-invasive methods and devices are used for intracranial pressure (ICP) measurement3. 
Invasive monitoring is achieved by placing devices into the ventricles, brain parenchyma, epidural, subdural, and 
subarachnoid spaces1,2. Although invasive ICP monitoring (ICPi) has several disadvantages, such as the risk 
of infections, bleeding, catheter blockage, and brain parenchymal damage3,4, it remains the gold standard for 
ICP detection due to its high accuracy. However, its high cost and technical demands mean that not all medical 
institutions can perform such monitoring routinely. Non-invasive techniques, such as optic nerve sheath diameter 
(ONSD) assessment, pupil measurement, transcranial Doppler (TCD), HeadSense technology, and flash visual 
evoked potential (FVEP), are also used to assess ICP. While ONSD and TCD have demonstrated moderate to 
good accuracy in related studies5–7, they are not yet able to completely replace invasive ICP monitoring in the 
short term.

The American Brain Injury Foundation recommends ICP monitoring for all traumatic brain injury (TBI) 
cases with a Glasgow Coma Scale (GCS) score between 3 and 8, and abnormal CT findings (such as hematoma, 
contusion, severe swelling, brain herniation, or basal cistern collapse)8. However, for patients after initial 
craniotomy, there is controversy regarding whether to implement invasive ICP monitoring, even if they meet the 
criteria for ICP monitoring. Proponents argue that invasive monitoring is necessary for maintaining adequate 
cerebral perfusion pressure (CPP). Without ICP monitoring, it would be difficult to develop and implement 
CPP-guided treatment protocols. Studies have shown that a significant proportion of TBI patients still have 
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elevated ICP after undergoing decompressive craniectomy (DC), potentially causing CPP to drop to dangerously 
low levels (< 60 mmHg). Therefore, ICP monitoring is considered essential for these patients, as it provides 
crucial data for CPP-based therapeutic decisions9,10. Conversely, opponents argue that routine ICP monitoring 
is unnecessary. They believe that experienced clinicians can use pressure measurements from the decompression 
window, combined with CT or MRI scans, to identify recurrent hematomas, fluid accumulation, and changes 
in the size and shape of the ventricles, thereby estimating ICP levels and conducting a comprehensive 
ICP assessment. Furthermore, they point out that there is no consensus on the threshold for ICP after DC. 
Additionally, for severely injured TBI patients, maintaining ICP below 20 mmHg does not offer a significant 
advantage over treatment protocols based on imaging and clinical examination alone11,12. Despite the differences 
in opinion, the importance of maintaining normal ICP in post-DC patients is undeniable, and mature, reliable 
non-invasive monitoring techniques may hold the key to resolving this debate in the future. In our previous 
research13, our team demonstrated that the combined use of ONSD by ultrasound and transcranial color 
doppler (TCCD) has good clinical application value, outperforming single indicators in discriminating early IH. 
However, for patients with mild IH (ICP ≥ 15 mmHg), the predictive sensitivity was only 0.484, (95% confidence 
interval [CI]:0.358–0.613) through this combined clinical method [Area Under the Curve (AUC):0.732, 95% 
CI: (0.651–0.822)], which warrants further investigation into optimizing predictive models to improve the 
monitoring of early mild IH.

Radiomics is a quantitative analytical approach that allows for the extraction and evaluation of radiological 
features from the entire lesion, enhancing the accuracy and objectivity of disease diagnosis and treatment 
outcome prediction14. Deep learning can quantify high-dimensional radiological phenotypes beyond human 
perception and develop specialized predictive models for diverse clinical applications, making it a valuable non-
invasive tool for prognostic assessment15, disease diagnosis16, and treatment decision-making17. Nevertheless, 
research evidence remains insufficient to establish the feasibility of using deep learning techniques to predict 
early IH in post-DC patients with TBI. This study aims to develop a deep learning model based on ultrasound 
images to enhance the accuracy of IH prediction in these patients. Additionally, the study evaluates the predictive 
value of individual ONS images, individual middle cerebral artery spectral Doppler imaging (MCASDI) images, 
and their pre-fused images within the comprehensive model.

Materials and methods
Patient population
This retrospective observational study was conducted at the Neuro-Intensive Care Unit (NICU) of the Second 
Affiliated Hospital of Shandong First Medical University (SFMU) between May 2018 and December 2024 and at 
the NICU of the Affiliated Hospital of Qilu Medical University between August 2019 and December 2024. Due 
to the retrospective nature of the study, the Ethics Committee of the Second affiliated Hospital of SFMU waived 
the need of obtaining informed consent.

A total of 238 patients with TBI who underwent primary DC were included based on predefined inclusion and 
exclusion criteria (Fig. 1: Flowchart for Selecting the Study Population). The study enrolled adult patients (≥ 18 
years old) with TBI who had undergone primary DC and required ICP monitoring within 24 h postoperatively.

Exclusion criteria included patients with poor TCCD window quality that impaired 2D imaging—specifically, 
cases where the temporal bone window could not be penetrated by ultrasound to detect the MCA, or where 
vascular boundaries appeared blurred and the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) 
were reduced, compromising diagnostic reliability. Patients with significant cardiovascular or cerebrovascular 
conditions, such as severe arrhythmias, critical valvular stenosis, moderate to severe cerebral vasospasm, or 
ICPi fluctuations exceeding 10 mmHg within 24 h, were also excluded. Eligible patients—176 from the Second 
Affiliated Hospital of SFMU and 62 from the Affiliated Hospital of Qilu Medical University—were randomly 
allocated to the training and testing cohorts at a 7:3 ratio.

Treatment methods
In patients with TBI, the decision to perform primary DC is influenced by factors such as the injury mechanism, 
clinical symptoms, GCS score, and findings on CT imaging. Unilateral DC is typically performed when 
hematomas are limited to a single hemisphere, whereas bilateral or frontotemporal decompression is preferred 
in cases involving bilateral hematomas or frontal lobe damage. Surgically, a bone flap approximately 9 × 9 cm 
is created and extended in an arc to adequately expose the dura mater. Hemostasis is achieved by evacuating 
hematomas, necrotic brain tissue, and clots. The dura is then either loosely sutured or covered with a synthetic 
substitute. ICP is continuously monitored via an intraparenchymal sensor or a ventricular catheter linked to 
an external transducer. The probe placement depends on the lesion location—on the same side for unilateral 
lesions, or on the right hemisphere in cases of diffuse injury.

ICP management in this study followed the Chinese Expert Consensus on the Monitoring and Management of 
Elevated ICP. Sedation was maintained using agents such as propofol, titrated based on electroencephalography to 
achieve burst suppression. When partial neurological evaluation was required, midazolam or dexmedetomidine 
were administered with individualized dosing. Sedation depth and ICP were continuously monitored, with 
sedation typically maintained for 24–72 h postoperatively. CPP was kept between 60 and 70 mmHg, adjusted 
based on optimal CPP, and supported by vasopressors like norepinephrine to maintain MAP. For hyperosmolar 
therapy, 3% hypertonic saline (2–5 mL/kg over 15–30 min) and mannitol (0.25–1 g/kg over 20–30 min) were 
used, with serum osmolality (< 320 mOsm/L) and renal function continuously monitored. Hypertonic Saline 
was preferred during acute ICP elevation (ICP > 20 mmHg), with repeat doses at 4–6 h intervals if necessary. 
Therapeutic hypothermia (33–35  °C for 24–72  h) was induced gradually (0.25–0.5  °C/h), with rewarming 
performed slowly (0.1–0.25 °C/h) to avoid rebound ICP elevation. Core temperature, ICP, CPP, and electrolytes 
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were continuously monitored. All interventions were adjusted dynamically based on multimodal monitoring, 
balancing clinical benefit with risks such as infection or coagulopathy.

In the absence of universally accepted guidelines for IH post-DC, thresholds of 15 mmHg (indicating mild 
elevation) and 20 mmHg (indicating moderate to severe elevation) were adopted to assess the model’s predictive 
capability at these levels.

US acquisition, semantic features, and segmentation
ONS imaging was performed twice within 24 h in post-DC patients using the Mindray M9 ultrasound system 
equipped with an L12-4s linear probe (5–10 MHz; Shenzhen, Guangzhou, China). Patients were positioned in a 
supine posture, and the probe was gently placed on the closed upper eyelid with standard coupling gel, angled to 
visualize the ONS in the transverse plane. ONSD measurements were obtained 3 mm posterior to the optic disc, 
with three measurements taken in the transverse plane for each eye to reduce variability.

To ensure both image quality and safety, the probe frequency was set to 10 MHz, providing an optimal balance 
between resolution and tissue penetration. The power output was maintained at 20–25%, in accordance with 
the “As Low As Reasonably Achievable” (ALARA) principle and within recommended safety limits (MI ≤ 0.23, 
TI ≤ 1 °C, and ISPTA.3 ≤ 50 mW/cm²). The depth was adjusted to 40–45 mm to center the eyeball within the field 
of view, and the focus was set at 25–30 mm, aligning with the typical position of the optic nerve. To enhance 
image clarity, the gain was set to 55–60%, ensuring adequate brightness without introducing excessive contrast. 
For Doppler imaging, a pulse repetition frequency (PRF) of 1.0 kHz was used. A frame rate of 25 frames per 
second (FPS) was maintained to ensure resolution. All measurements were performed using the same type of 
probe across patients to maintain consistency and comparability.

Additionally, MCASDI captured by bedside TCCD and assessments were conducted using the same Mindary 
M9 ultrasound system, equipped with an SP5-1s probe (1–5  MHz). Bilateral MCA evaluation included the 
measurement of pulse index (PI), peak systolic velocity (PSV), end-diastolic velocity (EDV), and mean velocity 
(MV). The definitive PI value was determined by averaging the measurements from both sides or selecting the 
higher value in cases of significant discrepancy.

For TCCD assessments, a phased-array probe with a frequency of 1.6 MHz was used to ensure adequate 
acoustic penetration through the temporal bone window. The imaging depth was set between 12 and 16 cm to 
visualize the basal cerebral arteries, and the focal zone was positioned at 5–7 cm, corresponding to the depth 
of the circle of Willis. The gain was adjusted to 60–70% to achieve optimal image brightness while minimizing 
background noise. Additionally, a frame rate of 25 FPS was maintained to ensure resolution. The PRF was set to 
3 kHz to allow for accurate detection of cerebral blood flow velocities without aliasing.

Two ultrasound specialists (ZJJ and WCQ), who were blinded to the ICPi values and clinical information, 
independently assessed the ONS and TCCD images. One specialist had 4 years of experience, while the other had 

Fig. 1.  Flowchart of study population selection. SFMU, Shandong First Medical University; MCA, middle 
cerebral artery; ONS, optic nerve sheath; TCCD, transcranial color Doppler; IH, intracranial hypertension; 
TBI, traumatic brain injury; ICA, internal carotid artery; post-DC, postoperative decompressive craniectomy; 
ICP, intracranial pressure.
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15 years of expertise in ultrasound imaging. Both specialists underwent standardized training for measurements 
and reached a consensus on their evaluations of the images.

Ultrasound images were preprocessed by converting them from digital imaging and communications in 
medicine (DICOM) format to a compatible format, resizing them to a uniform 512 × 512 pixel resolution, and 
applying z-score normalization to standardize pixel intensities. These steps ensured consistent image quality and 
facilitated accurate feature extraction and model training.

The regions of interest (ROIs) were manually delineated by ultrasound imaging experts using ITK-SNAP 
(version 3.8.0, http://www.itksnap.org/). The experts were blinded to the ICPi values, and any discrepancies 
were resolved through consensus discussion. Intra- and inter-observer reproducibility were assessed using 
the intraclass correlation coefficient (ICC), with values ≥ 0.75 considered to indicate strong reliability. Figure 2 
illustrates the flowchart depicting the overall research design.

Radiomics and DTL feature extraction
Radiomic features were extracted from the segmented ROIs using PyRadiomics (version 3.0.1, ​h​t​t​p​:​/​/​p​y​r​a​d​i​
o​m​i​c​s​.​r​e​a​d​t​h​e​d​o​c​s​.​i​o​​​​​)​. The extracted features were categorized into three primary groups: (I) geometry, (II) 
intensity, and (III) texture. Geometric features describe the two-dimensional shape of the ONS, while intensity 
features reflect the statistical distribution of voxel intensities within the ONS. These intensity features capture the 
first-order statistical distribution of voxel intensities, providing insights into the overall brightness and contrast 
of the ONS. Texture features, on the other hand, characterize the patterns and spatial distribution of intensities 
at higher orders, offering further details on the internal structure of the ONS. A comprehensive list and detailed 
explanation of the extracted radiomic features can be found in Supplementary S1.

The ResNet101 architecture was adapted to develop a convolutional neural network (CNN) for extracting 
deep transfer learning (DTL) features. To achieve this, separate CNN models were pretrained using ONS images, 
MCASDI images, and a combined dataset containing both ONS and MCASDI images. After feature extraction, 
the DTL features from ONS and MCASDI images were fused using feature concatenation, where the extracted 
feature vectors from each modality were directly combined to form a comprehensive representation. Specifically, 
the output from the penultimate layer of each pretrained CNN model was concatenated to generate the final 
DTL feature set, ensuring an integrated representation of both imaging modalities.

To fine-tune ResNet101 and reduce overfitting, we applied a dropout rate of 0.5 and L2 regularization 
with a coefficient of 0.001. The initial learning rate was set to 0.0001 and adjusted using a cosine annealing 
strategy. Additionally, we used data augmentation techniques during training, including random horizontal and 
vertical flipping, slight rotations (± 5°), and brightness adjustments (± 10%), to improve model robustness and 
generalizability.

Radiomics and DTL feature selection
The z-score normalization technique was applied to standardize all features. A statistical analysis was then 
performed using the Mann–Whitney U test, with features selected based on their p-values. Only features with 
a p-value < 0.05 were retained. Spearman’s rank correlation coefficient was calculated to assess the correlation of 
features with high repeatability. If two features had a correlation coefficient greater than 0.9, one was excluded. The 
signature construction from the discovery dataset employed Least Absolute Shrinkage and Selection Operator 
(LASSO) regression. LASSO regression uses a regularization weight, λ, to shrink regression coefficients towards 
zero, assigning zero to irrelevant features. The optimal value of λ was determined via 5-fold cross-validation, 
selecting the value that minimized the cross-validation error. The scikit-learn package (version 1.0.2) in Python 
was utilized for LASSO regression modeling. Subsequently, all selected features were used to train a Light 
Gradient Boosting Machine (LightGBM), with hyperparameters set as follows: learning rate = 0.1, maximum 

Fig. 2.  Workflow of radiomic analysis in this study.
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depth = 6, and number of leaves = 31. To avoid data leakage and ensure the integrity of model evaluation, all 
feature selection procedures were performed exclusively on the training dataset. The independent testing cohort 
was strictly reserved for external validation and was not involved in any stage of feature selection or model 
training.

Statistical analyses
Statistical analyses were performed using MedCalc (version 20.015.0), Python (version 3.7.11; ​h​t​t​p​:​/​/​w​w​w​.​p​y​t​h​o​
n​.​o​r​g​​​​​)​. Student’s t-test and ANOVA were applied to compare continuous variables, expressed as mean ± standard 
deviation (χ ± s). The chi-square test or Fisher’s exact test was used to analyze categorical variables, presented as 
ratios. A p-value of less than 0.05 was considered statistically significant.

Results
Patients’ population and clinical-ultrasonic characteristics
A total of 238 patients, including 159 males and 79 females, participated in the study. At an ICP threshold of 15 
mmHg, the incidence of intracranial hypertension (IH) was 33.19%, while at 20 mmHg, it was 26.89%. Among 
these patients, 166 were randomly assigned to the training set, and 72 to the test set.

No significant differences were observed between the cohorts in terms of age, weight, height, BMI, gender, 
ejection fraction (EF), MAP, partial pressure of oxygen (PaO₂), partial pressure of carbon dioxide (PaCO₂), heart 
rate, or respiratory rate, as outlined in Table 1 (ICP threshold of 15 mmHg) and Supplementary Table 1S (ICP 
threshold of 20 mmHg). Significant differences were observed in PI and ONSD between the normal and elevated 
ICP groups in both the training and validation sets. Univariate and multivariable logistic regression analyses 
further identified MCAPI and ONSD as significant predictors (see Table 2 and Supplementary Table 2S). These 
variables were subsequently incorporated into the clinical predictive model.

Patients with elevated ICP (≥ 15 mmHg) exhibited a higher likelihood of increased PI (odds ratio [OR]: 4.911; 
95% CI: 1.777–13.578) and elevated ONSD (OR: 7.320; 95% CI: 3.386–15.841). A similar trend was observed 
at the 20 mmHg ICP threshold, with increased PI (OR: 4.976; 95% CI: 1.840–13.454) and elevated ONSD (OR: 
4.302; 95% CI: 2.204–8.410).

Feature selection and deep learning radiomics model construction
Radiomic features were extracted from the segmented ROIs using the PyRadiomics software (version 3.0.1), 
yielding a total of 1,561 commonly used features. To ensure reliability, a reproducibility assessment was 
conducted using intraclass correlation coefficients (ICCs), which confirmed 1,291 and 1,059 features as reliable 
at thresholds of 15 mmHg and 20 mmHg, respectively. Subsequently, the Mann–Whitney U test identified 

Variables

Training cohort (n = 166)

P value

Testing cohort (n = 72)

P 
valueAll Normal (n = 116)

Elevated ICPi 
(≥ 15mmHg) (n = 50) All Normal (n = 43)

Elevated ICPi 
(≥ 15mmHg) 
(n = 29)

Age (years) 61.24 ± 10.66 60.91 ± 10.68 62.02 ± 10.68 0.66 61.79 ± 10.04 61.91 ± 9.89 61.62 ± 10.43 0.90

Weight (kg) 75.09 ± 10.68 74.57 ± 11.32 76.30 ± 9.03 0.59 75.60 ± 12.23 76.30 ± 12.49 74.55 ± 11.99 0.47

Height(cm) 168.46 ± 7.02 168.09 ± 6.86 169.32 ± 7.39 0.30 170.00 ± 8.49 170.95 ± 8.70 168.59 ± 8.10 0.24

BMI (kg/m2 ) 26.43 ± 2.86 26.35 ± 3.11 26.61 ± 2.19 0.79 26.05 ± 3.07 26.00 ± 3.13 26.13 ± 3.04 0.86

EF (%) 0.63 ± 0.05 0.63 ± 0.06 0.64 ± 0.05 0.39 0.62 ± 0.05 0.63 ± 0.05 0.61 ± 0.06 0.37

MCAPI 1.16 ± 0.55 1.04 ± 0.33 1.45 ± 0.81 < 0.001 1.20 ± 0.46 1.09 ± 0.41 1.35 ± 0.49 0.0029

MAP (mm Hg) 87.17 ± 7.80 87.35 ± 7.68 86.74 ± 8.15 0.59 86.85 ± 8.11 85.47 ± 6.57 88.90 ± 9.73 0.300

ONSD (mm) 4.76 ± 0.52 4.62 ± 0.39 5.09 ± 0.64 < 0.001 4.76 ± 0.44 4.59 ± 0.30 5.03 ± 0.49 < 0.001

PaO2 (mm Hg) 119.44 ± 24.72 121.81 ± 25.90 113.94 ± 20.95 0.059 121.74 ± 24.40 124.00 ± 24.10 118.38 ± 24.88 0.34

PaCO2 (mm Hg) 35.06 ± 2.75 34.97 ± 2.70 35.26 ± 2.87 0.78 35.06 ± 2.23 34.98 ± 2.21 35.17 ± 2.28 0.64

Breath (bpm) 20.36 ± 2.87 20.29 ± 2.83 20.50 ± 3.00 0.62 20.43 ± 3.14 19.74 ± 2.78 21.45 ± 3.42 0.06

Beats (bpm) 84.37 ± 8.19 84.40 ± 7.64 84.30 ± 9.42 0.94 83.75 ± 8.67 82.72 ± 7.81 85.28 ± 9.74 0.22

MCA_mean (cm/s) 62.53 ± 22.64 64.88 ± 21.30 57.09 ± 24.84 0.043 61.41 ± 20.30 62.64 ± 19.66 59.59 ± 21.42 0.44

MCAPS (cm/s) 105.16 ± 28.59 104.89 ± 25.70 105.78 ± 34.66 0.88 108.00 ± 27.68 105.79 ± 26.73 111.28 ± 29.20 0.41

MCAED (cm/s) 38.20 ± 14.66 40.80 ± 13.54 32.16 ± 15.49 < 0.001 38.80 ± 13.64 40.78 ± 14.16 35.86 ± 12.48 0.134

Sex 0.19 0.73

Male 109(65.66) 72(62.07) 37(74.00) 50(69.44) 31(72.09) 19(65.52)

Female 57(34.34) 44(37.93) 13(26.00) 22(30.56) 12(27.91) 10(34.48)

Table 1.  Baseline characteristics of patients in cohorts. *Indicates p < 0.05. Numerical data are presented as 
mean ± standard deviation; categorical data are shown as number (percentage). bpm, breaths per minute or 
beats per minute; MCAED, end-diastolic velocity of the middle cerebral artery; EF, ejection fraction; MAP, 
mean arterial pressure; MCA, middle cerebral artery; MCA_mean, mean velocity of the MCA; PaCO₂, arterial 
partial pressure of carbon dioxide; PI, pulsatility index of the MCA; PaO₂, arterial partial pressure of oxygen; 
MCAPS, peak systolic velocity of the MCA; ONSD, optic nerve sheath diameter.
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1,023 and 906 statistically significant features. Further refinement was performed using the Spearman rank 
correlation test, narrowing the selection to 280 and 237 features. The Rad score was then computed using a 
LASSO regression model, which identified 20 and 26 features with nonzero coefficients. The coefficients and 
mean standard errors (MSE) from 5-fold cross-validation are shown in Figs. 3A and B. Figure 3C presents the 

Fig. 3.  Radiomics feature selection and model performance evaluation using the LASSO algorithm 
(15mmHg). (A) Coefficient profiles of radiomics features generated by the LASSO algorithm, with each 
colored line representing an individual feature. (B) Selection of the optimal regularization parameter (λ) via 
cross-validation in the LASSO model. (C) Weight coefficients of the features retained after LASSO selection. 
(D) Receiver operating characteristic (ROC) curves illustrating the predictive performance of the radiomics 
signature in both training and testing sets. (E) DCA assessing the clinical utility of the radiomics signature 
model. Abbreviations: LASSO, least absolute shrinkage and selection operator; ROC, receiver operating 
characteristic; DCA, decision curve analysis.

 

Variable
Univariate analysis
OR (95% CI) P value

Multivariate analysis
OR((95% CI) P value

Beats (bpm) 0.985 (0.978–1.044) 0.532

BMI (kg/m2 ) 0.977 (0.931–1.121) 0.650

Breath (bpm) 1.017 (0.989–1.186) 0.084

EF (%) 0.224 (0.001–33.850) 0.558

Height (cm) 0.988 (0.968 to 1.040) 0.854

Weight (kg) 0.991 (0.981–1.029) 0.685

MAP (mm Hg) 0.993 (0.977–1.045) 0.525

MCA_mean (cm/s) 0.983 (0.973–0.999) 0.039* 1.011 (0.991–1.032) 0.2832

MCAED(cm/s) 0.966 (0.941–0.982) 0.000* 0.975 (0.942–1.009) 0.156

MCAPI 8.296( 3.008–14.980) < 0.0001* 4.911 (1.777–13.578) 0.000*

MCAPS (cm/s) 1.001 (0.993–1.013) 0.493

ONSD(mm) 7.856 (4.294–19.876) 0.000* 7.320 (3.386–15.841) 0.000*

PaCO2 (mmHg) 0.979 (0.935–1.152) 0.478

PaO2 (mmHg) 0.984 (0.977–0.999) 0.045* 0.993 ( 0.980–1.006) 0.2946

Sex 0.855 (0.421–1.355) 0.347

Age 0.999 (0.980–1.033) 0.628

Table 2.  Univariate and multivariable logistic regression analyses for selecting clinical features of model 
development (15 mmHg). *Indicates p < 0.05. bpm, breaths per minute or beats per minute; MCAED, end-
diastolic velocity of the middle cerebral artery; EF, ejection fraction; MAP, mean arterial pressure; MCA, 
middle cerebral artery; MCA_mean, mean velocity of the MCA; PaCO₂, arterial partial pressure of carbon 
dioxide; MCAPI, pulsatility index of the MCA; PaO₂, arterial partial pressure of oxygen; MCAPS, peak systolic 
velocity of the MCA; ONSD, optic nerve sheath diameter.
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coefficient values of the selected nonzero features at the 15 mmHg threshold, while Supplementary Fig. 3S(A–C) 
displays the corresponding results for 20 mmHg. The radiomics signature model demonstrated robust predictive 
performance, achieving AUC values of 0.974 (95% CI: 0.952–0.995) and 0.912 (95% CI: 0.832–0.991) in the 
training and testing cohorts at 15 mmHg, and 0.943 (95% CI: 0.902–0.983) and 0.887 (95% CI: 0.801–0.973) at 
20 mmHg, as shown in Figs. 3D and Supplementary 3SD.

To enhance predictive accuracy for early IH in post-DC patients, radiomic features were combined with DTL 
features. This fusion strategy incorporated DLR features for further analysis. Using the LASSO regression model, 
14 and 26 features with nonzero coefficients were selected at thresholds of 15 mmHg and 20 mmHg, respectively. 
The coefficients and mean standard errors from 5-fold cross-validation are presented in Figs. 4A and B for 15 
mmHg and Supplementary Figs. 4SA and SB for 20 mmHg. Figures 4C and Supplementary 4 SC illustrate the 
coefficient values of the final selected features for 15 mmHg and 20 mmHg, respectively. The DLR-radiomics 
signature model achieved AUC values of 0.927 (95% CI: 0.896–0.958) and 0.885 (95% CI: 0.779–0.992) in the 
training and testing cohorts at 15 mmHg, and 0.949 (95% CI: 0.915–0.983) and 0.893 (95% CI: 0.801–0.985) at 
20 mmHg, as demonstrated in Fig. 4D and Supplementary 4SD. Decision curve analysis (DCA) for the radiomics 
and DLR-radiomics signature models is presented in Figs. 3E and 4E for 15 mmHg and Supplementary Figs. 3SE 
and 4 SE for 20 mmHg.

Clinical model and nomogram model construction
The clinical model demonstrated strong predictive performance, achieving AUC values of 0.868 (95% CI: 0.812–
0.923) and 0.807 (95% CI: 0.705–0.909) in the training and testing cohorts at 15 mmHg, and 0.891 (95% CI: 
0.842–0.940) and 0.814 (95% CI: 0.691–0.937) at 20 mmHg, respectively, as shown in Fig. 5A and Supplementary 
Fig. 5SA. DCA confirmed the model’s net benefit in predicting IH, as depicted in Figs. 5B and Supplementary 
5SB for 15 and 20 mmHg. Additionally, Fig. 6 and Supplementary 6S present nomograms designed for clinical 
application, where the total score corresponds to the probability of IH in post-DC patients within 24  h at 
different thresholds.

Comparison of the clinical model, DTL-radiomics model, and nomogram model
The performance of the clinical, radiomics, DTL, DLR-radiomics, and nomogram models is summarized in 
Table  3  (15 mmHg)  and Supplementary Table 3S  (20  mmHg). At the 15 mmHg threshold, AUC values in 
the training cohort (Fig. 7A) were as follows: 0.860 (95% CI:0.796–0.925) for the clinical model, 0.974 (95% 
CI:0.952–0.995) for the radiomics model, 0.946 (95% CI:0.908–0.984) for the DTL model, 0.973 (95% CI:0.951–
0.994) for the DLR model, and 0.974 (95% CI:0.953–0.995) for the nomogram model. In the testing cohort 
(Fig. 7D), the AUC values were 0.801 (95% CI:0.689–0.913) for the clinical model, 0.912 (95% CI: 0.832–0.991) 
for the radiomics model, 0.850 (95% CI:0.747–0.956) for the DTL model, 0.914 (95% CI:0.835–0.994) for the 

Fig. 4.  DLR features selection using the LASSO algorithm and performance assessment of the DLR signature 
model (15mmHg). (A) LASSO-derived coefficient profiles for radiomics features, with each colored line 
representing an individual feature. (B) Optimal value of the regularization parameter (λ) determined via 
cross-validation. (C) Weight coefficients of features selected by the LASSO algorithm. (D) ROC curves 
demonstrating the classification performance of the DTL-radiomics signature in both training and testing 
datasets. (E) Decision curve analysis (DCA) evaluating the clinical benefit of the DTL-radiomics model. 
LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristic; DCA, decision 
curve analysis.

 

Scientific Reports |        (2025) 15:23595 8| https://doi.org/10.1038/s41598-025-09115-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


DLR model, and 0.919 (95% CI:0.846–0.993) for the nomogram model. Decision curve analysis (DCA) results 
for these models are presented in Figs. 7B and E, with similar patterns observed at the 20 mmHg threshold in 
Supplementary Fig. 7S (A, B, D, E).

The results indicate that, in the training cohort, the nomogram, DLR, and radiomics models provided 
greater net clinical benefit in predicting IH compared to the clinical model. The calibration curves (Fig. 7C 
and F; Supplementary Fig. 7SC and SF) demonstrate good concordance between predicted and observed IH in 
both the training and testing cohorts. The Hosmer–Lemeshow test results were not statistically significant in 
either cohort (training: p = 0.386; testing: p = 0.131), supporting the models’ calibration accuracy. Furthermore, 
the DeLong test showed that the nomogram significantly outperformed the clinical model at the 15 mmHg 

Fig. 6.  Clinical application of the nomogram for predicting early intracranial hypertension (IH) in post-
decompressive craniectomy (post-DC) patients (15 mmHg threshold). (1) Variable names on the left (‘ONSD, 
MCAPI, and DLR’) correspond to scales on horizontal lines, indicating the range of values each variable can 
take. The length of each line reflects its relative contribution to the risk of IH (defined as ICP ≥ 15 mmHg). (2) 
‘Points’ refers to the score assigned to each variable based on its value; ‘Total Points’ is the sum of all individual 
scores. (3) Predicted Probability (labeled as ‘Risk’) shows the estimated probability of IH based on the total 
score. ONSD, optic nerve sheath diameter; MCAPI, pulsatility index of the middle cerebral artery; DLR, deep 
learning radiomics; IH, intracranial hypertension; DC, decompressive craniectomy.

 

Fig. 5.  The establishment and performance of the clinical model (15mmHg). (A) Displays the ROC curves of 
the clinical model within both the training and testing cohorts. (B) Presents the DCA results for the clinical 
model. ROC, receiver operating characteristic; DCA, decision curve analysis.
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threshold in both the training (p = 0.000) and testing (p = 0.004) cohorts. At the 20 mmHg threshold, however, 
the nomogram demonstrated superior performance only in the training cohort (p = 0.003), with no significant 
improvement observed in the testing cohort (p = 0.525). This difference may be due to the limited additional 
information contributed by the DLR model when combined with clinical features for predicting moderate to 
severe IH in the testing cohort.

This study also assessed the performance of DLR models constructed using ONS images, MCASDI images, 
and their concatenation-based feature fusion. At the 15 mmHg threshold, the DLR(ONS) model [AUC: 0.914 
(95% CI:0.835–0.994) ] exhibited comparable predictive performance to the DLR (feature-fused) model ( 0.913, 
95% CI:0.832–0.994) and the DLR (MCASDI) model (0.873, 95% CI:0.757–0.989) in the testing cohort. Similarly, 
at the 20 mmHg threshold, the AUC values in the testing cohort were 0.893 (95% CI:0.801–0.985), 0.889 (95% 
CI:0.810–0.965) and 0.870 (95% CI:0.751–0.988), respectively. These findings indicate that concatenation-
based feature pre-fusion of ONS and MCASDI images did not provide a substantial improvement in predictive 

Fig. 7.  AUC, DCA and Calibration curves of clinical, DTL, DLR and nomogram models at the 15 mmHg 
threshold in the training cohort (A, B, C) and the testing cohort (D, E, F).

 

Signature Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Cohort

Clinic

0.775 0.868 0.796–0.925 0.756 0.784 0.62 0.873 Train

0.750 0.801 0.689–0.913 0.640 0.821 0.696 0.780 Test

Rad

0.915 0.974 0.952–0.995 0.951 0.898 0.812 0.975 Train

0.891 0.912 0.832–0.991 0.800 0.949 0.909 0.881 Test

DTL

0.881 0.946 0.908–0.984 0.878 0.841 0.719 0.936 Train

0.783 0.850 0.747–0.956 0.759 0.897 0.826 0.854 Test

DLR

0.884 0.973 0.951–0.994 0.951 0.852 0.75 0.974 Train

0.906 0.914 0.835–0.994 0.840 0.949 0.913 0.902 Test

Nomogram

0.907 0.974 0.953–0.995 0.951 0.886 0.796 0.975 Train

0.891 0.919 0.846–0.993 0.84 0.923 0.875 0.9 Test

Table 3.  The performance of five models in the training and testing cohort (15 mmHg). DTL, deep transfer 
learning; AUC, area under curve; CI, confidence interval. DLR, Deep Learning Radiomics.
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performance over the DLR(ONS) model alone. Therefore, all images and tables presented in this study are based 
on features extracted from ONS images.

Discussion
This study utilized deep learning-based radiomic features to develop a nomogram model for accurately predicting 
the risk of early IH in post-DC patients. By integrating radiomic and DTL features with clinical parameters, the 
nomogram model demonstrated stronger performance compared to the clinical model at both 15 mmHg and 
20 mmHg thresholds. For 15 mmHg, the AUC was 0.974 (95% CI: 0.953–0.995) in the training cohort and 0.919 
(95% CI: 0.845–0.993) in the testing cohort. For 20 mmHg, the AUC was 0.968 (95% CI: 0.944–0.993) in the 
training cohort and 0.889 (95% CI: 0.806–0.972) in the testing cohort. Furthermore, its capability to assess IH 
using postoperative ultrasound scans provides valuable support for early intervention and treatment planning.

Previous studies18 have shown that ultrasound measurement of ONSD is a highly effective method for 
detecting IH following TBI or other causes. The AUC for this technique is 0.940 (95% CI: 0.91–0.96), whereas 
TCD demonstrates relatively poor performance in detecting IH, with AUC values ranging from 0.55 to 0.72 
across different studies. Notably, both ONSD and TCD-derived parameters hold promise due to their ease of 
use, bedside feasibility, and cost-effectiveness6. However, most prior researches have focused on patients who 
did not undergo DC after TBI, with limited studies examining post-DC patients. This gap is partly due to the 
altered intracranial physiology in post-DC patients, which deviates from the classical Monroe–Kellie doctrine 
and complicates the application of conventional ICP assessment methods. Following DC, intracranial contents 
protrude through the decompressed bone window, disrupting the original ICP equilibrium and impairing 
the autoregulatory function of cerebral blood vessels. Consequently, conventional ICP thresholds, such as 20, 
22 or 25 mmHg, are no longer applicable to these patients. Furthermore, the clinical utility of TCD-derived 
parameters, including the PI, EDV of MCA, and non-invasive ICP estimation formulas, has been questioned.

Several studies19,20 have attempted to correlate post-DC ONSD changes with ICP through observational 
methods. However, this approach is highly operator-dependent, as ONSD measurements are influenced by 
factors such as ultrasound probe selection, measurement plane, and patient positioning. These methodological 
inconsistencies limit the scalability of this technique in clinical practice. Our previous research found that the 
AUC for predicting IH (≥ 20 mmHg) using ONSD alone was 0.74, and for an ICP threshold of 15 mmHg, it was 
0.7313. These findings highlight the limitations of relying on a single clinical parameter for non-invasive ICP 
monitoring in post-DC patients. In the current study, we developed a clinical model that integrates ONSD and 
TCCD-derived parameters to predict IH. The AUC for predicting IH at 20 mmHg was 0.85, while at 15 mmHg, 
it was 0.79. Additionally, for the first time, we applied radiomics and deep learning techniques to ultrasound 
images of the ONS and the MCASDI for non-invasive ICP monitoring in post-DC patients. The nomogram 
model achieved strong predictive ability, with consistent results across both training and testing datasets.

During the deep learning modeling process, we performed feature pre-fusion using both ONS and MCASDI 
images. However, the pre-fused model did not outperform the ONS-based DLR model alone. We hypothesize 
two potential reasons for this outcome. First, ONS images were acquired using a high-resolution linear array 
probe, providing superior image quality compared to MCASDI images obtained with a lower-frequency convex 
array probe. The latter is affected by far-field attenuation and poor sound transmission through the temporal 
window. Additionally, studies have shown that the sensitivity of MCASDI in detecting IH is constrained by its 
SNR or CNR21. Second, the predictive value of certain indices, such as the PI for IH, may decrease in cases of 
mild IH5. Cerebral blood flow autoregulation—mediated by factors such as elevated PCO₂, decreased PO2

22 and 
the accumulation of cellular metabolites23—helps maintain MCASDI within normal limits. Consequently, this 
results in an overlap between normal and mild IH in the DTL process.

In clinical practice, we collect patient data on ONSD and TCCD, with image segmentation performed by 
experienced physicians. Radiomic and deep learning features are then extracted using PyRadiomics and deep 
learning models, and these features are integrated into the predictive model. Although the model’s efficiency 
is not yet sufficient for the direct diagnosis of early IH, it serves as a valuable tool for optimizing treatment 
strategies. On one hand, if the model predicts a high probability of early IH, it allows clinicians to promptly 
identify the underlying cause and implement appropriate measures to prevent brain herniation or irreversible 
damage. On the other hand, for patients initially predicted to have a high likelihood of IH, follow-up evaluations 
after treatment can help assess whether the risk has decreased, thereby aiding in the evaluation of treatment 
effectiveness. In summary, our model is expected to provide valuable guidance for personalized decision-making 
in the management of early IH.

This study has several limitations. First, its retrospective design may introduce potential selection bias; 
therefore, future research should validate the model’s feasibility through prospective studies. Second, another 
important limitation of our study is the random allocation of patients between two medical centers without 
implementing center-based stratification. This approach may introduce potential data leakage and limit our 
ability to assess the true generalizability across different institutional settings. Future studies will employ leave-
one-center cross-validation to better evaluate the model’s generalizability. Third, discrepancies arose due to the 
subjective nature of boundary delineation during manual segmentation. Additionally, our DTL model did not 
show a significant advantage over traditional radiomics and clinical models, which may be attributed to the 
manual delineation of ROIs. Future research should explore the optimal size and range of ROIs to enhance the 
DTL model’s predictive capability. Fourth, unlike typical TBI cases, post-DC TBI patients do not strictly adhere 
to the Monro-Kellie doctrine24,, and their ICP thresholds remain undefined. Therefore, additional parameters, 
such as surgical incision size, operation duration, and blood loss, may be necessary for more precise classification 
and evaluation. Fifth, this study lacked completely external validation using datasets from other institutions due 
to the limited availability of post-DC patients with invasive ICP monitoring. We recognize the importance of 
external validation for evaluating model generalizability, and future work will aim to include multicenter data 
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for this purpose. Finally, this study focused exclusively on post-DC TBI patients and did not include other forms 
of IH unrelated to DC. Future studies should aim to extract features from different IH subtypes to develop 
tailored predictive models for each condition. Our findings underscore the potential of integrating DLR features 
into non-invasive ICP monitoring, particularly through high-quality ONS ultrasound images. Future research 
should focus on refining multimodal imaging approaches and expanding datasets to improve model robustness 
and clinical applicability.

Conclusion
Our study introduced and validated an integrated model that combines clinical-ultrasonic features, radiomics, 
and DTL features for the early detection of IH in post-DC TBI patients at different ICP thresholds using post-DC 
ultrasound images. This model presents a novel approach to precision medicine, with the potential to enhance 
clinical decision-making and improve patient outcomes during the critical period. Notably, concatenation-
based feature pre-fusion of ONS and MCASDI images did not yield a substantial improvement in predictive 
performance, suggesting that ONS-derived features alone may be sufficient for early IH prediction.

Data availability
The datasets used and/or analysed during the current study are provided within the supplementary information 
files.
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