Table 3 The performance of five models in the training and testing cohort (15 mmHg).

From: Multimodal nomogram integrating deep learning radiomics and hemodynamic parameters for early prediction of post-craniotomy intracranial hypertension

Signature

Accuracy

AUC

95% CI

Sensitivity

Specificity

PPV

NPV

Cohort

Clinic

        
 

0.775

0.868

0.796–0.925

0.756

0.784

0.62

0.873

Train

 

0.750

0.801

0.689–0.913

0.640

0.821

0.696

0.780

Test

Rad

        
 

0.915

0.974

0.952–0.995

0.951

0.898

0.812

0.975

Train

 

0.891

0.912

0.832–0.991

0.800

0.949

0.909

0.881

Test

DTL

        
 

0.881

0.946

0.908–0.984

0.878

0.841

0.719

0.936

Train

 

0.783

0.850

0.747–0.956

0.759

0.897

0.826

0.854

Test

DLR

        
 

0.884

0.973

0.951–0.994

0.951

0.852

0.75

0.974

Train

 

0.906

0.914

0.835–0.994

0.840

0.949

0.913

0.902

Test

Nomogram

        
 

0.907

0.974

0.953–0.995

0.951

0.886

0.796

0.975

Train

 

0.891

0.919

0.846–0.993

0.84

0.923

0.875

0.9

Test

  1. DTL, deep transfer learning; AUC, area under curve; CI, confidence interval. DLR, Deep Learning Radiomics.