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Accurate estimation of plant disease severity is pivotal for effective management and decision-
making. Field experiments were conducted to understand the correlation and predict the yellow 
mosaic disease severity in yard-long beans using visible image indices. A total of 45 visible / Red Green 
Blue (RGB) indices were derived from the RGB images and correlated with disease severity, and also 
used as inputs for predicting disease severity using nine machine learning (ML) models. Out of 143 
genotypes screened based on final disease severity 3, 18, 18, 17, 34 and 53 genotypes were grouped in 
immune, resistant, moderately resistant, moderately susceptible, susceptible and highly susceptible 
categories, respectively. Model performances was evaluated using R2, d-index, mean bias error, and 
normalized Root Mean Square Error (n-RMSE) metrics. Results revealed that 34 indices exhibited 
significant correlations (p < 0.01) with YMD severity, with 23 positively and 12 negatively correlated. 
Among these, Red Color Composite (RCC) and Excessive red (ExR) demonstrated the highest and equal 
positive correlations (0.87), while Green red difference (GRD) exhibited the largest negative correlation 
(-0.88) with disease severity. The ML models achieved commendable performance, attaining R2 and 
d-index values exceeding 0.92 and 0.98, respectively, in calibration, and 0.88 and 0.96 in validation, 
underscoring their effectiveness in predicting YMD severity using RGB images only. Random Forest 
(RF), Cubist, XGBoost (XGB), K-Nearest Neighbors (KNN), and Gradient Boosting Machine (GBM) 
emerged as the five top-performing models for predicting YMD severity using visible indices in yard-
long beans. These findings hold practical implications for timely disease management strategies, 
expediting breeding programs, and aiding policy planners and farmers in making well-informed 
decisions.
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The world’s food supply is greatly dependent on plants. Plant diseases caused by a various biotic and abiotic 
factor leads to significant yield losses. According United Nations, Department of Economic and Social Affairs, 
Population Division, there will be nine billion people on the planet by the year 2050 (United Nations, Department 
of Economic and Social Affairs, Population Division, 2017)1. which will increase demand for agricultural 
products by fifty percent as compared to 20132. Climate change leading to rising temperatures and shift in 
weather patterns often lower the crop yields due heat waves, drought and other adverse conditions3. The cowpea, 
Vigna unguiculata (L.) Walp., is well-known for its ability to withstand high temperatures and dry conditions4. 
There are roughly 150 species in the genus Vigna, and it has been proposed that the wild cowpea originated 
in southern Africa4. According to FAOSTAT5, cowpeas are cultivated worldwide, covering an estimated 15.1 
million hectares of land with a total annual production of 9.7 million metric tons. It stands out as the sole arid 
legume widely distributed across continents, thriving particularly well in arid and semi-arid regions due to its 
extensive adaptability6. It is a vital legume crop crucial for ensuring food and nutritional security in tropical 
and subtropical regions across the globe7,8. The short cowpea [V. unguiculata subsp. cylindrica (L.) Estt.], the 
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common cowpea [V. unguiculata subsp. unguiculata (L.) Walp.], and the yardlong bean [Vigna unguiculata subsp. 
sesquipedalis (L.) Verdc.] are the three cultivated subspecies of cowpea. In India, this crop has a remarkable 
regenerative capability and can be cultivated during the kharif (rainy season), summer, and winter seasons. 
Despite its versatility, the average grain yield of this crop remains comparatively low, currently averaging around 
only 350 kg/ha9. The production of this crop is often challenged by several biotic stressors, among which viral 
infections are major limitations causing yield losses ranging from 10-100%10. Disease symptoms first appear 
as small chlorotic spots or yellow flecks in young leaves. Late it progresses from initial chlorotic spots to a 
characteristic mosaic pattern on leaves leading to complete yellowing in susceptible genotypes. As the infection 
progresses, the symptoms become more pronounced. Size of leave is generally not considerably affected. A few, 
smaller and malformed pods are produced by the affected plants11. Plants affected by Yellow Mosaic Disease 
(YMD) exhibit reduced flower and pod production, with malformed pods and the yield loss can potentially 
reach 100%12.

The traditional method of manual monitoring of plant diseases in field is time-consuming and has a 
limitation of investigator’s subjectivity, resulting in excessive use of resources. Remote sensing provides an 
efficient, non-destructive, and real-time alternative which is cost-effective and practical. Visible (RGB) imaging 
has shown strong potential for detecting plant stress. This is because the changes in plant pigments and their 
spectral responses due to stresses can be effectively captured using visible sensors. Moreover, visible imaging 
is particularly important because it is low-cost and is widely available, even in farmers’ smartphones, making 
it a more accessible solution for monitoring plant disease. In the new Artificial Intelligence (AI) era, use of 
visible images, with or without Machine Learning (ML) models is becoming well-known for agricultural disease 
detection, severity assessment, high throughput phenotyping and disease forecasting/prediction13–17. Precisely 
estimating crop disease severity using imaging and AI techniques is a potentially useful approach for tracking 
and effectively managing crop health. This helps to reduce the overabundance of harmful chemicals in agriculture 
ecosystems, speeds up preventive tactics and can save nearly 30% of crop yield18. The ML based approaches are 
reported to be more effective at detecting plant disease in the early phases of growth stages19. Several works have 
been conducted by researchers for detection and prediction of plant diseases using combination of imaging 
techniques and ML. Schor et al.20 developed a robotic disease detection system with a sensory apparatus (a 
visible camera and a laser sensor) to identify powdery mildew and tomato spotted wilt virus of bell pepper in 
greenhouses using PCA-based methods with accuracy levels of above 80%. Es-saady et al.21 utilized 284 photos 
shot against a black backdrop with Support Vector Machine (SVM) classifiers to identify three pests (leaf miners, 
Thrips, and Tuta absoluta) and three crop diseases (early blight, late blight, and powdery mildew) of tomato with 
recognitions accuracies above of 87.8%. Similarly, Sabrol and Satish22 categorized tomato late blight, bacterial 
spot, Septoria spot, bacterial canker, and tomato leaf curl using the decision tree method with an accuracy of 
97.3%. Several researchers attempted to classify and predict plant diseases using imaging and ML approaches 
in different crops like cucumber23, potato24, tomato25, soybean26, and several other plant diseases27. However, 
only few similar studies have been conducted on any vegetable disease15,23,28,29. While these studies primarily 
concentrate on classification problems, determining the extent of disease severity becomes the subsequent 
crucial step, which is pivotal for effectively managing the disease while minimizing resource utilization and 
environmental impact. Also, most of the previous studies where carried out under controlled or greenhouse 
conditions, which do not capture the complex and variable interactions present in natural field settings. Unlike 
the controlled environments, field experiments captures real-world variability in weather, soil, and pathogen 
interactions and enhances the practical relevance and robustness of the predictions. Recently, few studies were 
conducted for yellow rust of wheat30 and chickpea wilt31 to estimate the disease severity under field conditions 
using combination of thermal and visible imaging with ML models. Feng et al. (2022) quantified powdery mildew 
severity in wheat using hyperspectral data and ML models achieving an R2 value of 0.85. Similarly, Mandal et 
al.32 utilized hyperspectral data to predict disease blast disease severity in rice using ML models achieving an 
R2 value of 0.99. However, to best of our knowledge, none of the studies were conducted to assess the disease 
severity of the yellow mosaic of yard-long under field conditions been using image analysis and ML. Also, most 
of the studies on disease severity assessment are conducted under controlled environments conditions which do 
not fully capture the complexity and variability of real field conditions. To address these gaps, the present study 
was conducted with the objective to quantify yellow mosaic disease (YMD) severity in yard long bean vegetable 
using visible imaging coupled with ML models under field conditions making the outcomes more robust and 
applicable to practical crop management.

Material and method
Study site and screening of germplasm
Field experiments were conducted at ICAR-Research Complex for Eastern Region (ICAR-RCER), Patna 
experimental farm (25.59° N latitude, 85.13° E longitude, and an altitude of 53 m above mean sea level), India. 
The climate of Patna is humid subtropical with hot summer and dry winter. The soil type of the experimental 
location is slightly alkaline and non-calcareous in nature which is classified under Indo-Gangetic alluvium. 
Genetically diverse one hundred forty three genotypes of yardlong bean were collected from ICAR-National 
Bureau of Plant Genetic Resources, New Delhi and different location of Bihar and Odisha. These genotypes were 
grown during April to August at ICAR-RCER, Patna with recommended package of practices on raised beds in 
plot size of 2 × 2 m2 area in augmented block design. Crops were grown with 90 cm row to row spacing and 30 cm 
plant to plant spacing. One hundred forty three genotypes of yardlong bean were grown during April to August 
at ICAR-RCER, Patna with recommended package of practices on raised beds. Plant symptoms, viz., yellowing 
and necrosis, were seen visually in the field at vegetative to post flowering stage and per cent disease severity was 
recorded. The genotypes were then classified using a scale of 0–9 depending on the proportion of infected leaves, 
or impacted foliage area (Table 1)33. Germplasms were categorized as Immune (I), Resistant (R), Moderately 
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Resistant (MR), Moderately Susceptible (MS), Susceptible (S), and Highly Susceptible (HS) based on severity 
of yellow mosaic. Observation for disease severity was taken at early vegetative stage, late vegetative stage and 
flowering stage (reproductive stage). However, as the disease is transmitted by vector (insect), at early vegetative 
stage severity of disease was very less with few genotypes showing yellow mosaic symptoms. As the crop growth 
stage advanced, the disease severity also progressed and at the time of flowering disease severity was maximum. 
So, disease data and images from flowering stage were considered in the present study.

Image acquisition for estimating yellow mosaic severity
Visible images were obtained using iPhone 13 rear camera, which comes with dual 12MP camera setup. (Main 
camera: Sony IMX603,12.2 MP, Aperture f/1.65, focal length 26 mm, pixel size 1.7 µm. Ultra-wide camera: Sony 
IMX 372, 12.2 MP, Aperture f/2.4, focal length 13 mm, pixel size 1.0 µm). Out of a total of 143 genotypes grown, 
images were acquired from 100 genotypes during the post-flowering stage. These genotypes were carefully 
selected to represent the range of phenotypic variability and disease response observed in the field, ensuring 
sufficient coverage of field heterogeneity. At roughly 13.30–14.30 IST, when the crop plants were experiencing the 
maximum day temperature and less windy situations, images were captured from the nadir view angle. Images 
of individual plant were taken from three different locations (where disease severity was maximum) for each 
genotypes from a height of 0.5 m above the canopy using a reference stick marked at 0.5 m. For each genotype, 
the data collected from three locations was averaged to obtain a representative value for further analysis.

Visible indices and their correlation
The RGB tristimulus was extracted using R version 4.1.2 and RStudio (version 2021.9.1.372), and visible indices 
were computed using this data. We also used normalized RGB values (as indicated by r,g,b) to minimize the 
impact of illumination and colour variation sensitivity in some indices34. The whole set comprised of 45 visible 
indices generated using RGB images (Table 2). Pearson’s correlation analysis was conducted to assess the 
relationship between image-derived vegetation indices and Yellow Mosaic Disease (YMD) severity, recorded 
as percentage of affected area. A two-tailed t-test was conducted to determine the statistical significance of the 
results at a 5% significance level35.

Machine learning (ML) models
Dataset generated were used to develop 9 ML models, which include elastic net (ELNET), random forest (RF), 
multivariate adaptive regression spline (MARS), partial least square regression (PLS), L2 Regularized Support 
Vector Regression (dual) with Linear Kernel (SVM), Stochastic Gradient Boosting (GBM), k-nearest neighbours 
(KNN), extreme gradient boosting (XGB), and Cubist. The ELNET stands as a frequently employed penalized 
regression technique, aiming to conduct both variable selection and regularization concurrently. This method 
incorporates both lasso (L1) and ridge (L2) regression to eliminate superfluous coefficients. RF represents a 
machine learning model based on decision trees, where each tree generates a unique prediction, and the 
collective average of these predictions forms the output of the regression. Meanwhile, MARS offers another 
adaptive non-parametric strategy for tackling intricate regression challenges. It leverages ensembles of simple 
linear model to deliver optimal predictions in multivariate non-linear regression scenarios. PLS models the 
correlation between observed values and latent variables. Its significance lies in its capability to concurrently 
conduct dimensionality reduction and model construction. Support Vector Regression (SVM) employs a linear 
kernel function for regression tasks, with a minor variation in the objective function optimized compared to 
its classification counterpart. Its fundamental principle involves identifying the points within the decision 
boundary and establishing a hyperplane that maximizes the number of points, thereby defining the best-fit line. 
KNN operation involves computing the Euclidean distance of K neighboring points from the target value and 
forecasting the output as the mean of these k-nearest neighbors. GBM and XGB are ensemble models based on 
decision trees, utilizing the gradient boosting algorithm to mitigate overfitting in predictions. Cubist operates as 
a rule-based regression model, employing linear regression models at the terminal nodes for prediction. These 
machine learning models were developed using the “caret” package using the R 4.1.2 and RStudio (version 
2021.9.1.372) software.

Evaluation of machine learning models
We took image data of 100 genotypes, 70% were allocated for training the ML models, while the remaining 30% 
were reserved for testing. The hyperparameters of the ML models were optimized using tenfold cross-validation 
with 5 repetitions, facilitated by the ‘caret’ package in R software36. The performance of the models were assessed 
using multiple statistical criteria (R2, d-index, MBE and n-RMSE) of validation and the models were finally 

Disease scale Per cent infection Infection category

0 No plants exhibiting any symptoms Immune (I)

1 1% or less plants exhibiting symptoms Resistant (R)

3 1–10% plants exhibiting symptoms Moderately Resistant (MR)

5 11–20% plants exhibiting symptoms Moderately Susceptible (MS)

7 21–50% plants exhibiting symptoms Susceptible (S)

9 51% plants exhibiting symptoms Highly Susceptible (HS)

Table 1.  Mungbean yellow mosaic disease rating scale (0–9)33.
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S.No Name Abbreviation Definition References

Visible indices

Red R Red (0–255) -

Green G Green (0–255) -

Blue B Blue (0–255) -

Normalised 
Red r R/(R+G+B) Xu et al. 2010

Normalised 
green g G/(R+G+B) Xu et al. 2010

Normalised 
blue b B/(R+G+B) Xu et al. 2010

Colour intensity 
index INT (R + G + B)/3 Ahmad and Reid, 1996

Green red 
difference GRD G-R -

Blue red 
difference BRD B-R -

Green blue 
difference GBD G-B Xu et al. 2010

Green red ratio 
index GRRI G/R -

Green blue ratio 
index GBRI G/B -

Red blue ratio 
index RBRI R/B -

Woebbecke 
index WI (G-B)/(R-G) Woebbecke et al. 1995

Green–red 
vegetation 
index

GRVI
(G-R)/(G+R)

Hunt et al. 2005

Kawashima 
index IKAW (R-B)/(R+B) Kawashima and Nakatani, 1998

Normalized 
Difference 
Turbidity Index

NDTI
(R-G)/(R+G)

Lacaux et al. 2007

GBI (G-B)/(G+B) -

NGRDI (G-R)/(R+G+B) -

NBRDI (B-R)/(R+G+B) -

NGBDI (G-B)/(R+G+B) -

Green leaf 
index GLI (2g-b-r)/(2g-b-r) Louhaichi et al. 2001

Visible 
atmospherically
resistant index

VARI (g-r)/(g+r-b) Gitelson et al. 2002

Normalized 
difference index NDI (g-r)/(g+r) Woebbecke et al. 1995

Gray Gray 0.2898 × r + 0.5870 × g + 0.1140 × b Kazmi et al. 2015

Brightness 
index BI

√
(R2+G2 + B2)/3 Levin et al., 2005

Hue index HI (2 × R - G - B)/(G - B) Levin et al. 2005

Redness index RI R2/(B × G3) Levin et al. 2005

Saturation 
index SI 2 × (R - G - B)/(G - B) Levin et al. 2005

Colouration 
index CI (R - B) / R Levin et al., 2005

Color index of 
vegetation CIVE 0.441 × R - 0.811 × G + 0.385 × B + 18.78745 Kataoka et al. 2003

Vegetative 
Index VEG G/(R0.667B0.334) Hague et al. 2006

Excessive green 
index ExG 2g-r-b Meyer et al. 1999

Excessive red ExR 1.4r-g Meyer et al. 1999

Excessive green 
index
minus excess 
red index

ExGR 3g-2.4r-b Meyer et al. 2004

Continued
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ranked based on standardized Ranking Performance Index (sRPI) using formulas suggested by Aschonitis et 
al.37. The overall methodology is depicted in Fig. 1.

Results
Disease progress in yard long bean and screening of germplasm
The progression of disease severity in one hundred forty three yardlong genotypes under research recorded up 
to 95% disease severity based on the genotypes. Six groups—Immune (I), Resistant (R), Moderately resistant 
(MR), Moderately susceptible (MS), Susceptible (S), and Highly susceptible (HS) were distinguished based on 
the severity of the disease (Fig. 2). For training and testing the ML models, all one hundred forty three of the 
yard-long bean genotypes that were taken into consideration in this study provided varying degrees of disease 
severity. No visible symptoms were observed in genotypes IC-626170, IC-630412, IC-20514, IC-20298 and 
IC-586954. Genotypes IC-622570, IC-622574, IC-626139, IC166140, IC-626143, IC-630388, IC-630390, IC-
630391, IC-626163, IC-630413, IC-398083, IC-202893, IC-361502 and IC-471938 were found to be resistant. 
Rest of the genotypes were categorized in moderately resistant, moderately susceptible, susceptible and highly 
susceptible categories (Table 3).

Correlation analysis between indices and disease severity
Table 4 presents an analysis of the Pearson’s correlation coefficient (PCC) between 45 visible indices and the 
YMD severity. Of the visible image indices, the correlation coefficients were significant for 34 indices (p < 0.01), 
of which 23 had a positive association with the YMD severity and the remaining 12 had a negative correlation. 
The image indices RCC and ExR (r = 0.87) showed the highest positive correlations, while the GRD (r = −0.88) 
showed the largest negative correlation. Out of 34 significant correlations, 19 indices have very strong correlations 
with YMD disease severity above ± 0.7.

Performance of ML models
For estimating the visible indices based disease severity of YMD, all the ML models were assessed using R2, 
d-index, MBE and n-RMSE. The values of these statistics for all models during the calibration and validation 
stages are reported in Table 5 and illustrated in Figs. 3 and 4 respectively using a 1:1 plot. The sRPI values shown 
in Table 6 were used to rank the models’ performances.

All of the ML models performed satisfactorily during calibration, as evidenced by R2 values above 0.92, 
d-index values above 0.98, and least error values (nRMSE and MBE) (Fig. 3). R2 (0.99) and d-index (1.00) values 
were highest for the Cubist and XGB model, while R2 (0.92) was lowest for the PLS and SVM. The PLS, SVM, 
KNN, and ELNET, on the other hand, all performed similarly with the lowest d-index value of 0.98. While SVM 
displayed the lowest MBE value (−0.46), the KNN model indicated the highest MBE value (2.19). The n-RMSE 
was also lowest for the Cubist (3.70) model and highest for the SVM (9.30) model (Table 5). All other models 
with positive MBE values, with the exception of SVM, somewhat overestimated during the calibration phase; 
however, the model-generated results for YMD severity were found to be excellent, with a n-RMSE of less than 
10%.

During validation, R2 and d-index were determined to be marginally lower than the calibration values, 
with ceiling values of 0.95 and 0.98, respectively. The results indicated that the performance of XGB, Cubist, 
and RF was identical with the highest R2, and that the performance of XGB, Cubist, KNN, RF, and GBM was 
also identical with the highest d-index value (Fig. 4). Conversely, MARS was determined to have the lowest 
performance in terms of both statistical parameters (R2 of 0.87 and d-index of 0.96). Nearly all of the models 

S.No Name Abbreviation Definition References

Modified Excess 
Green Index MxEG 1.262G-0.884R-0.311B Burgos-Artizzu et al. 2011

Excessive blue ExB 1.4 × b-g Wenhua Mao et al. 2003

Principal 
component 
analysis index

IPCA
0.994 (R - B) + 0.961 (G-B) + 0.914 (G-R)

Saberioon et al. 2014

Red green 
blue VI RGBVI (G2 - (R × B))/(G2 + (R × B)) Bending et al. 2015

GLAI (25 × (G - R)/(G + R - B) + 1.25) -

Overall 
Saturation 
Index

SAT
(max(R,G,B) - min(R,G,B)) / max(R,G,B)

-

OHI atan(2 × (R - G - B) / 30.5 × (G - B)) -

True Color 
Vegetation 
Index

TCVI 1.4 × (2R-2B)/(2R- G-2B + 255 × 0.4) -

Combined 
Indices 1 COM1 ExG + CIVE + ExGR + VEG Guijarro et al. 2011

Combined 
Indices 2 COM2 0.36 × ExG + 0.47 × CIVE + 0.17 × VEG Guerrero et al. 2012

Table 2.  Details of visible and thermal indices used.
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Fig. 2.  Yellow mosaic symptoms on Yardlong bean; (A). Immune (B). Resistant (C). Moderately resistant (D). 
Moderately susceptible (E). Susceptible (F). Highly susceptible.

 

Fig. 1.  Flow diagram describing the methodology.
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provided slightly overstated but still acceptable results (n-RMSE < 15%) during validation with + ve values of 
MBE as well. The MARS model had the highest (12.8%), whereas RF had the lowest n-RMSE (7.80) (Table 5). 
The top five models throughout the validation phase were the RF, GBM, KNN, XGB, and Cubist (R2 > 0.91, 
d-index > 0.97, and n-RMSE < 10).

In the validation phase, sRPI values were used to rank all nine ML models from high to low performing 
(Table 6). As per sRPI values RF was the best performing models, while MARS is the poorest performing model 
to predict the disease severity. According to this validation sRPI-based ranking, the best models for predicting 
YMD severity in yard-long beans using visible indices were RF, followed by Cubist, XGB, and KNN.

Discussion
The utilization of imaging technologies in conjunction with ML models for identifying diseases in crops has 
gained considerable attention recently38. However, the majority of the studies were limited to the detection 
and classification of different diseases. Only a handful of studies had been conducted to estimate the extent or 
severity of crop diseases in field. While reviewing the literature it was discovered that, this is the first study to 
employ visible image-based indices to estimate YMD severity in any vegetable crop and first of its kind under 
Indian conditions. The use of visible image derived data along with ML models to estimate YMD in the yard long 
bean field has not been tested so far. Our results revealed significant correlations visible image derived indices 
with YMD severity in different yard long bean genotypes and the potential of using these indices to estimate the 
YMD severity by training the ML models.

S.No Genotype DR S.No Genotype DR S.No Genotype DR S.No Genotype DR

1 IC-622557 * HS 37 IC-626143 * R 73 IC-626395 * R 109 IC-401315 * HS

2 IC-622559 * HS 38 IC-626144 S 74 IC-626396 * R 110 IC-420657 * S

3 IC-622560 * HS 39 IC-626145 * MS 75 IC-626397 * MS 111 IC-420662 HS

4 IC-622562 S 40 IC-630379 * S 76 IC-626136 HS 112 IC-420663 * HS

5 IC-622563 * MS 41 IC-630380 S 77 IC-626165 * S 113 IC-420664 * MR

6 IC-622565 * S 42 IC-630381 * HS 78 IC-626172 HS 114 IC-420666 * MS

7 IC-622566 * MS 43 IC-626146 HS 79 IC-626173 * S 115 IC-423357 * S

8 C-1 (YB-7) S 44 Arka megha HS 80 Gitika HS 116 Lola HS

9 IC-622570 * R 45 IC-626147 HS 81 IC-630399 * MS 117 IC-20215 * MR

10 IC-622571 * MR 46 IC-626148 * HS 82 IC-630401 * MS 118 IC-43178 * MS

11 IC-622573 * MS 47 IC-626143 HS 83 IC-630402 * S 119 IC-471939 * MS

12 IC-622574 * R 48 IC-626150 * MR 84 IC-630403 * HS 120 IC-471941 * HS

13 IC-622577 * MS 49 IC-626151 * S 85 IC-630404 HS 121 IC-471943 * HS

14 IC-622578 * MS 50 IC-626152 * M R 86 IC-626170 * I 122 IC-471926 S

15 IC-622580 * MR 51 IC-626153 HS 87 IC-630412 * MR 123 IC-471946 * S

16 IC-622585 * S 52 IC-630382 HS 88 IC-630413 * R 124 IC-471948 * HS

17 IC-622568 HS 53 IC-626154 * R 89 IC-244274 S 125 IC-471949 * HS

18 IC-622587 * HS 54 IC-630383 HS 90 IC-398083 * R 126 IC-471550 HS

19 IC-622588 HS 55 IC-626155 * S 91 IC-20514 * R 127 IC-471951 HS

20 IC-622589 * HS 56 IC-626156 HS 92 YB-7 S 128 YB-7 * S

21 IC-622591 * HS 57 IC630386 * MR 93 IC-44799 * HS 129 IC-471952 S

22 IC-622592 HS 58 IC-626157 * MS 94 IC-622569 * S 130 IC-471954 * S

23 IC-622595 * HS 59 IC-630387 * S 95 IC-622579 HS 131 IC-471955 S

24 IC-622596 HS 60 IC-626158 HS 96 IC-81071 * MR 132 IC-488068 * MS

25 IC-622598 * HS 61 IC-630388 * R 97 IC-91428 * MS 133 IC-471938 * R

26 IC622599 * HS 62 IC-630389 * HS 98 IC-91515 * MR 134 IC-560919 * MR

27 IC-622600 HS 63 IC-630390 * R 99 IC-91523 * HS 135 IC-560930 HS

28 IC-630376 HS 64 IC-626159 * MR 100 IC-97767 * MR 136 IC-206558 * MS

29 IC-626137 * MR 65 IC-626160 * S 101 IC-622567 * MR 137 IC-725068 * HS

30 IC-626138 HS 66 IC-626161 * S 102 IC-202893 * R 138 IC-586952 HS

31 IC-626139 * R 67 IC-626162 HS 103 IC-20298 * I 139 IC-586954 * I

32 IC166140 * R 68 IC-630391 * R 104 IC-259058 * MR 140 IC-590804 HS

33 IC-630377 * MR 69 IC-630392 S 105 IC-589059 * MR 141 IC-273191 HS

34 IC-626141 * S 70 IC-626163 * R 106 IC-259071 * S 142 IC-28486 * S

35 IC-630378 S 71 IC-626393 S 107 IC-265643 * MS 143 IC-28491 * S

36 IC-626142 * S 72 IC-626394 HS 108 IC-361502 * R

Table 3.  Yardlong bean genotypes and their disease reaction used for genotype classification. *genotypes 
included in image based analysis for disease severity assessment.
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The RGB indices in this study were well correlated with r values between −0.88 to 0.87. Out of 45 indices, 34 
indices had significant correlations at 1% significance level. Also, the correlations with 19 indices are very strong 
with YMD disease severity. Recently, researchers reported weak to medium correlation coefficients of the RGB 
indices in chickpea wilt31 and wheat yellow rust30 under field conditions, which might be due to the different 
dates of observations in their both work. The strong correlations in the current study were majorly attributed to 
collection of all images on same date at same crop growth stages with dominant disease symptoms, which have 
kept the environmental factor constant in all images. Alves et al.39 reported correlations up to 0.99 between the 
RGB indices like GLI, NGRDI, BI, HI, SI, VARI, BGI and gray with wheat leaf blast, potato late blight, soybean 
rust, Calonectria blight of eucalypts, which supports higher correlation values of our work. Similarly, the work 
of Bhandari et al.40 on stripe rust reported GI, GLI and NDI values correlations ranging from 0.63–0.68 and 
0.72–0.79, which is also comparable to the present work.

In our research, the ML models effectively predicted disease severity based on the RGB indices. Given the 
absence of prior studies on assessing YMD severity, we benchmarked our results against analogous investigations 
conducted by various researchers in different agricultural contexts. Our observed values of R2, d-index, n-RMSE, 
and MBE align closely with those reported in similar studies32,41–43. The patterns observed in the statistical 
parameters employed for evaluating the ML models during validation lack consistency. With nine models 

Calibration Validation

ML models R2 d-index MBE n-RMSE R2 d-index MBE n-RMSE

ELNET 0.93 0.98 0.00 9.00 0.91 0.97 2.55 10.30

RF 0.98 1.00 0.31 4.50 0.95 0.98 2.67 7.80

MARS 0.97 0.99 0.00 6.10 0.87 0.96 2.37 12.80

PLS 0.92 0.98 0.00 9.20 0.88 0.97 2.66 11.60

SVM 0.92 0.98 −0.46 9.30 0.90 0.97 2.42 10.90

GBM 0.98 0.99 0.02 4.80 0.92 0.98 3.04 9.60

KNN 0.95 0.98 2.19 8.10 0.94 0.98 3.49 8.70

XGB 0.99 1.00 0.69 3.80 0.95 0.98 3.75 8.20

Cubist 0.99 1.00 0.38 3.70 0.95 0.98 3.47 8.10

Table 5.  Performance of ML models for calibration and validation to predict YMD severity.

 

S.No Index PCC S.No Index PCC

 1. Red 0.86*  24. CIVE 0.09

 2. Green 0.05  25. VEG −0.03

 3. Blue −0.66*  26. ExG −0.11

 4. RCC 0.87*  27. NDI −0.85*

 5. GCC −0.11  28. ExR 0.87*

 6. BCC −0.70*  29. ExGR −0.57*

 7. INT 0.05  30. MxEG −0.63*

 8. GRD −0.88*  31. Grey 0.39*

 9. GBD 0.64*  32. ExB −0.54*

 10. BRD −0.85*  33. IPCA 0.65*

 11. GRRI −0.79*  34. RGBVI 0.39*

 12. GBRI 0.59*  35. BI 0.38*

 13. RBRI 0.75*  36. HI 0.76*

 14. WI −0.15  37. RI 0.77*

 15. GRVI −0.85*  38. SI 0.61*

 16. IKAW 0.75*  39. GLAI −0.83*

 17. NDTI 0.85*  40. CI 0.72*

 18. GBI 0.64*  41. SAT 0.65*

 19. NGRDI −0.83*  42. OHI 0.24

 20. NBGDI −0.49*  43. TCVI 0.37*

 21. NBRDI −0.80*  44. COM1 0.08

 22. GLI −0.09  45. COM2 0.09

 23. VARI −0.83*

Table 4.  Pearson’s correlation coefficient (PCC) between image indices and YMD severity. * represents 
significant correlation at 5% level of significance.
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evaluated across four statistical parameters (d-index, r-square, MBE, and n-RMSE), determining the optimal 
model became more complex. The utilization of sRPI37 in this investigation, streamlined this process, offering 
a robust metric for straightforward ranking of the machine learning models based on multiple statistics during 
validation. Using similar approach44,45) also ranked several ML models under different disease severity level, 
while predicting disease severity and crop yield under field conditions.

The models in our study attained an R2and d-index above 0.92 and 0.98, respectively, in calibration, and 0.88 
and 0.96 in validation. This demonstrates the ML models’ capability to predict YMD severity effectively. The 
MBE of all the models were slightly higher side during validation as compared to calibration indicating over-
prediction of YMD severity by the ML models. The n-RMSE of the ML models during validation remained below 
10%, indicating “excellent” performance during Calibration. At validation stage, except ELNET, MARS and PLS 
all other ML models have again n-RMSE < 10%, which indicates “excellent” prediction of the disease. This is also 
in line with the final sRPI rankings of the ML models as the best three models ranked using the sRPI, including 
the RF, Cubist and XGB has < 10% of n-RMSE in both calibration and validation stage31,44.) also reported Cubist, 
XGB and RF models as best predictors of disease severity under field condition for yellow rust and chickpea 
wilt, respectively. Duarte-Carvajalino et al.46 assessed the severity of late blight in potatoes by employing 
multispectral imagery from UAVs and analyzed the data using RF and SVR algorithms. They found that only 
the RF algorithm achieved satisfactory results, with an R2 of 0.75 and an n-RMSE of 16%, which is less accurate 
then our findings. Chemura et al.42 detected coffee leaf rust (CLR) using a greenhouse-based spectroradiometer 
with PLS regression and reported R2 = 0.92, and RMSE = 6.1%. Feng et al.47 found R2 values ranging from 0.54 
to 0.68 when forecasting powdery mildew in wheat through PLSR, SVR, and RF models. They indicated RF as 
the superior model compared to PLSR and SVR in predicting powdery mildew, aligning with our observations 
supported by sRPI rankings and n-RMSE. Kang et al.48 reported an R2 value of 0.91–0.93 and RMSE between 
5.77% and 6.35% using a CNN approach for detecting verticillium wilt in cotton through a combination of field-
collected images and spectral data, results that are comparable to our findings. Similarly, Martinez-Martinez et 
al.49 achieved an R2 of 0.87 in assessing angular leaf spot in beans using spectral measurements ranging from 
440 to 850 nm with an ANN model, which is slightly lower than the outcomes observed in our study. Liu et al.50 
assessed the severity of apple mosaic using ELNET, GPR, KNN, and SVR algorithms applied to hyperspectral 
data, reporting prediction accuracies and model rankings that closely align with our findings. Mandal et al.32 
effectively demonstrated the use of hyperspectral remote sensing combined with machine learning models for 

Fig. 3.  Performance of ML models in predicting YMD severity in calibration using disease severity and image 
based indices. (Pink envelope represents 95% confidence interval).
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rapid assessment of rice blast disease severity. They reported high predictive accuracy and with calibration and 
validation R2 values of 0.99 and 0.94, respectively.

Overall, our study demonstrates the potential of machine learning models, optimized with random 
parameter selection, for accurately estimating YMD disease severity in field conditions. This study provides 
a robust framework for non-destructive, scalable disease monitoring that aligns with real-world agricultural 
practices and supports early disease detection and timely management decisions, contributing to yield stability 
and resource-efficient farming. The findings also support the development of early warning systems for timely 
disease management and integrating such predictive tools into crop insurance schemes can also aid in risk 
assessment and premium planning. Future work could benefit from the integration of grid search optimization 
and advanced techniques like deep learning and transfer learning. Also, by expanding the dataset through 
additional field experiments of multiple seasons and geographical location could further refine the predictive 
accuracy and robustness of the models. Integrating this approach into mobile or UAV-based platforms may 
also enable real-time, high-throughput field phenotyping and disease surveillance. Such advancements would 

Rank Model sRPI

1 RF 1

2 Cubist 0.79

3 XGB 0.67

4 KNN 0.62

5 GBM 0.51

6 ELNET 0.48

7 SVM 0.38

8 PLS 0.13

9 MARS 0

Table 6.  Ranking of ML models based on validation sRPI.

 

Fig. 4.  Performance of ML models in predicting YMD severity in validation using disease severity and image 
based indices. (Pink envelope represents 95% confidence interval).
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not only improve the management of YMD but also contribute to the broader goal of developing reliable, data-
driven solutions for plant disease monitoring and crop management in diverse agricultural settings.

Conclusions
In this study, visible imaging was used with ML models for YMD severity estimation at the canopy level in yard-
long beans. The ML models could predict the yellow mosaic disease severity using visible (RGB) images, offering 
a quick and easy way to measure the severity of YMD in yard-long bean fields. RF model was found to be the best 
for predicting YMD severity in yard long beans under field settings. Based on the sRPI-based model ranking RF, 
Cubist, XGB, KNN, and GBM were the top five models for predicting YMD severity in yard-long beans using 
visible imaging, while MARS was the poorest performing model. The results of this study point to the potential 
of visible imaging and machine learning (ML) models as a quick and accurate way to measure the severity of 
plant diseases under field conditions. The findings of this study can serve as a valuable resource for real-time 
monitoring of crop diseases, aiding stakeholders in making informed decisions.

Data availability
The datasets used for this research study are available from the corresponding author on reasonable request.
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