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Fine-mapping seeks to identify causal variants associated to a phenotype of interest. Fine-mapping 
searches through genomic regions previously identified by single marker analysis of genome-wide 
association studies (GWAS) data. This two-stage approach (1) often fails to identify causal variants 
with smaller effect sizes, and (2) does not properly correct for multiple comparisons. The former 
problem leads fine-mapping to have low recall of causal genetic variants, and the latter problem leads 
to high false discovery rate (FDR). To address these issues, we propose a novel Genome-wide Iterative 
fiNe-mApping method for non-Gaussian data (GINA-X). GINA-X efficiently extracts information from 
GWAS data by iterating a screening step and a variable selection step. The screening step provides 
a list of candidate genetic variants and an estimate of the proportion of null genetic variants. After 
that, the variable selection step selects a more focused list of genetic variants using the estimated null 
proportion to appropriately control for genome-wide multiplicity. A simulation study shows that, when 
compared to competing fine-mapping methods, GINA-X reduces FDR and increases recall. Case studies 
on alcohol use disorder and breast cancer show that GINA-X provides more focused lists of candidate 
causal genetic variants with better predictive performance.
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Fine-mapping seeks to identify causal variants associated to a phenotype of interest. Typically, these genomic 
regions were identified in previous studies using single marker analysis (SMA)1,2 of genome-wide association 
studies (GWAS) data. This two-stage approach has two problems: first, SMA often fails to identify causal variants 
with smaller effect sizes, thus missing important genomic regions; and second, current fine-mapping methods—
by not taking into account that SMA was performed in a genome-wide manner—do not properly correct for 
multiple comparisons. The former problem leads fine-mapping to have low recall of causal genetic variants, and 
the latter problem leads to high false discovery rate (FDR). To address these issues, here we present GINA-X, a 
novel Genome-wide Iterative fiNe-mApping method for non-Gaussian data belonging to the eXponential family 
of distributions. GINA-X iterates in an integrated Bayesian framework two steps: a screening step and a variable 
selection step. As our results show, when compared to currently used fine-mapping methods, GINA-X reduces 
the FDR and increases recall of true causal genetic variants.

Here, non-Gaussian data refers to phenotypes such as binary outcomes, time to events, and counts of 
events. Examples of such phenotypes include an indicator of presence or absence of disease (binary), age of first 
diagnostic of breast cancer (time to event), and number of alcoholic drinks in the last month (count). Time to 
event phenotypes not only are asymmetric, which precludes the use of the Gaussian distribution, but also are 
subject to censoring3. Dealing with censoring is out of the scope of this manuscript; the extension of GINA-X 
to time to event phenotypes is a potential topic for future research. Currently, GINA-X focuses on binary and 
counts phenotypes. In our simulation studies, we compare GINA-X with a state-of-art fine-mapping method 
based on Gaussian regression with summary statistics. In that comparison, GINA-X has favorable performance 
because, among other reasons, GLMMs are statistically more efficient (smaller standard errors) than Gaussian 
models to analyze non-Gaussian data. Finally, using the Gaussian approximation may yield nonsensical results 
such as negative predictions for binary data. This latter problem may occur for example in unbalanced studies 
with binary data, as often encountered in GWAS.

GINA-X proceeds as follows. GINA-X is initialized with a baseline model with only control covariates. Then, 
GINA-X’s screening step fits as many generalized linear mixed models (GLMMs) as the number of possible 

1Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA. 2Division of Cancer Epidemiology and 
Genetics, National Cancer Institute, Bethesda, MD, USA. 3Department of Statistics, Virginia Tech, Blacksburg, VA 
24060, USA. email: marf@vt.edu

OPEN

Scientific Reports |        (2025) 15:30080 1| https://doi.org/10.1038/s41598-025-09270-x

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-09270-x&domain=pdf&date_stamp=2025-8-17


genetic variants, where each model includes the baseline model and one genetic variant. These model fits yield 
screening posterior probabilities for each genetic variant. After that, GINA-X’s screening step uses Bayesian 
FDR control4–7 to choose a list of candidate genetic variants. Next, the variable selection step performs a search 
through the space of models defined by all possible GLMMs obtained by combinations of the genetic variants 
that are either in the list of candidate genetic variants or in the baseline model. This model search is either 
exhaustive (when the number of candidate genetic variants is small) or done through a genetic algorithm. Then, 
the model with largest posterior probability found in the model search is declared the best model. If the best 
model is different from the current baseline model, then the baseline model is updated to be the same as the best 
model and another iteration of GINA-X starts with a new screening step. On another hand, if the best model 
is the same as the current baseline model, then GINA-X has converged. In the latter case, GINA-X reports the 
genetic variants in the best model as the identified genetic variants.

GINA-X usually finds more true causal genetic variants than currently available fine-mapping methods. This 
is because, while currently available fine-mapping methods8 are applied separately from SMA, GINA-X uses an 
iterative integrated Bayesian approach. Specifically, in SMA as many models as the number of genetic variants 
are fitted, with each model containing only one genetic variant1,2. The problem with such an approach is that 
contributions by causal genetic variants not included in a model inflate the estimate of the error variance. This 
causes a decrease in statistical power, leading SMA to miss causal genetic variants with smaller effect sizes and 
their respective regions of interest9,10. Because currently available fine-mapping methods11,12 are conditional 
on the list of genetic variants provided by SMA, they are not able to find those causal genetic variants with 
smaller effect sizes. In contrast, by iterating the screening and variable selection steps, GINA-X is able to discover 
causal genetic variants not identified by current fine-mapping methods. In the first iteration, the screening step 
selects genetic variants which are the most associated with the phenotype under study. However, this step selects 
not only causal genetic variants but also genetic variants in linkage disequilibrium with them. The variable 
selection step uses the information about sparsity from the screening step, thus reducing false discovery rate. In 
consecutive iterations, models in both screening and variable selection steps are based on the detected genetic 
variants from the last iteration. Conditional on the genetic variants with larger effect sizes in the baseline model, 
the screening step reconsiders the remainder of genetic variants in the whole genome and finds more regions of 
interest. These new regions contain genetic variants with smaller effect sizes.

GINA-X is able to handle non-Gaussian phenotypes and related subjects. In contrast, most genetic fine-
mapping methods are proposed for Gaussian data from unrelated subjects13,14. While some of these methods11,12 
are applied to binary traits by using summary data and Gaussian approximation, as shown by a simulation study 
in section “Simulation studies”, their performance in terms of FDR, recall, and F1 score is much worse than that 
of GINA-X. To the best of our knowledge, there is no fine-mapping method specifically built for binary or count 
data. Furthermore, most fine-mapping methods do not consider the correlation among GWAS observations due 
to population stratification and hidden relatedness11,15. To allow for binary and count traits as well as related 
subjects, GINA-X is based on GLMMs with a vector of kinship random effects.

Recent work has shown that fine-mapping may be improved by modeling polygenic infinitesimal effects16. 
Similarly to Bayesian sparse linear mixed models (BSLMM)17 for polygenic modeling, GINA-X considers both 
infinitesimal polygenic effects (through kinship or relatedness random effects) and Bayesian sparse regression. 
Specifically, the kinship or relatedness random effect captures the combined infinitesimal polygenic effects of all 
markers17. This is in contrast with traditional fine-mapping methods11,12,14,15,18,19 that assume linear models with 
independent observations. Therefore, GINA-X ultimately produces one model with multiple potentially causal 
genetic variants with medium and large effect sizes while concomitantly accounting for infinitesimal polygenic 
effects.

We have performed four simulation studies using real genotype data to evaluate the performance of GINA-X 
when compared to competing fine-mapping methods. Specifically, we compare GINA-X to SuSiE-RSS12 because: 
(1) SuSiE-RSS is based on summary statistics and, thus, may be used as an approximate method for the analysis 
of non-Gaussian phenotypes; (2) SuSiE-RSS performs similarly12 to its sister method SuSiE14; and (3) SuSiE 
has better performance14 than competing fine-mapping methods DAP-G18,19, CAVIAR15, and FINEMAP11. In 
the first three simulation studies, GINA-X finds more true positives and less false positives than SuSiE-RSS. As 
a consequence, when compared to SuSiE-RSS, GINA-X has a much smaller FDR. In the fourth case study, the 
phenotype datasets are simulated from a null model without any causal genetic variants. In this case, GINA-X 
did not select any genetic variant as causal whereas SuSiE-RSS selected genetic variants as causal in 4% of the 
datasets. Therefore, these four simulation studies show that, when compared to a state-of-art fine-mapping 
method, GINA-X has favorable performance.

We further study the usefulness and flexibility of GINA-X with two case studies on alcohol use disorder and 
breast cancer. The phenotype for alcohol use disorder is the maximum number of alcohol drinks per day, which 
is count data. While SuSiE-RSS finds 9 genetic variants, GINA-X finds one genetic variant related to alcohol 
comsumption. The reason for this difference is elicited with a closer look at the results from GINA-X’s screening 
and variable selection steps. GINA-X’s screening step in the first iteration found the same 9 genetic variants and 
one more genetic variant. However, in the variable selection step, when controlling for genomewide multiplicity, 
GINA-X detects only one genetic variant in the best model. In the breast cancer case study, the phenotype is 
whether the individual has breast cancer or not, which is a binary phenotype. While SuSiE-RSS finds 24 genetic 
variants, GINA-X finds 16 genetic variants. Of importance, while the genetic variants found by SuSiE-RSS are 
only from 6 regions of interest, those found by GINA-X are from 16 different regions of interest. Finally, a tenfold 
cross validation shows that, when compared to SuSiE-RSS, the genetic variants found by GINA-X have better 
predictive performance.
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Results
Overview of the method
We assume the non-Gaussian trait of interest follows a generalized linear mixed model of the form:

	 g(E(yyy|ααα1,ααα2)) =XSβββS + Xcβββc + Z1ααα1 + Z2ααα2, � (1)

where yyy is the vector of n observed phenotypes, XS  is the matrix of candidate genetic variants, and Xc is the 
matrix of control covariates (e.g., age, gender, and environmental factors). In addition, ααα1 is the vector of kinship 
random effects, which follows a multivariate normal distribution N(000, κ1Σ1), where κ1 is an unknown scalar and 
Σ1 is a kinship or relatedness matrix. Furthermore, if phenotypes are count data and follow Poisson distribution, 
we have ααα2 in the model, which is a vector of overdispersion random effects following N(000, κ2I). The conditional 
expectation of phenotypes E(yyy|ααα1,ααα2) is linked to the linear predictor XSβββS + Xcβββc + Z1ααα1 + Z2ααα2 by the 
link function g(.).

GINA-X is a Bayesian iterative two-step fine-mapping method. At the beginning of the algorithm, the 
baseline model is initialized with only the control covariates and the kinship random effects. Then, the screening 
step fits as many models as the number of genetic variants where each model is comprised of the baseline model 
and a single genetic variant. After that, the screening step calculates the posterior probabilities for each genetic 
variant, and uses Bayesian false discovery rate control to select a set of candidate genetic variants. The second 
step, variable selection, searches the model space implied by the genetic variants that are either in the baseline 
model or in the set of candidate genetic variants. Then, the variable selection step selects the genetic variants in 
the model with the highest posterior probability, which we define as the best model. If the best model is the same 
as the baseline model from the screening step, then GINA-X has converged. Otherwise, the best model becomes 
the baseline model for the screening step in the next iteration of GINA-X.

To calculate posterior probabilities for models in both the screening and the variable selection steps, we need 
the integrated likelihood function. However, the integrated likelihood function L(βββS ,βββc, κ1, κ2|yyy) cannot be 
computed analytically in GLMMs. To solve this problem, we use a pseudo-likelihood approach, which is an 
iterative procedure to estimate the parameters βββS , βββc, κ1, and κ2, and the random effects ααα1 and ααα2. In addition, 
the pseudo-likelihood method provides a vector of adjusted observations yyy⋆ which can be approximately 
modeled by linear mixed models (LMMs). In LMMs, the integrated likelihood function L(βββS ,βββc, κ1, κ2|yyy⋆) 
can be computed in closed form.

To speed up computations, GINA-X uses a population parameters previously determined approach (P3D) 
for GLMMs20. We apply pseudo-likelihood method to the baseline model once in the screening step and the 
variable selection step. From the baseline model, we obtain the adjusted observations and estimate of variance 
components for random effects, and assume they are the same for every model in the screening step or in the 
variable selection step. The general form of the baseline model is

	 g(E(yyy|ααα1,ααα2)) =XBβββB + Z1ααα1 + Z2ααα2, � (2)

where XB  contains covariates in the baseline model. In the screening step of the first GINA-X iteration, the 
baseline model does not contain any genetic variants and, thus, XB  only contains control covariates and intercept. 
In the variable selection step of the first GINA-X iteration, the baseline model has the control covariates and all 
candidate genetic variants from the screening step. Starting in the second iteration, in the screening step XB  
contains additionally the genetic variants identified in the previous GINA-X iteration.

Simulation studies
To evaluate the performance of GINA-X when compared to competing fine-mapping methods, we conduct 
simulation studies that use the real genotypes from the two case studies presented in section “Case studies”. 
Specifically, we compare GINA-X to the fine-mapping method SuSiE-RSS12 because: (1) SuSiE-RSS is based on 
summary statistics and, thus, may be used as an approximate method for the analysis of non-Gaussian phenotypes; 
(2) SuSiE-RSS performs similarly12 to its sister method SuSiE14; and (3) SuSiE has better performance14 than 
competing fine-mapping methods DAP-G18,19, CAVIAR15, and FINEMAP11. To provide SuSiE-RSS with lists 
of candidate genetic variants, we first perform single marker analysis with GEMMA21. We then define each 
region of interest as a window of 10,000 base pairs centered around each genetic variant found by GEMMA. 
Using the summary statistics provided by GEMMA, SuSiE-RSS is then applied separately to each region of 
interest; the combined set of genetic variants identified by SuSiE-RSS is reported. For context, we also report the 
performance of GEMMA. Our assessment considers four key criteria: True Positives (TP), False Positives (FP), 
False Discovery Rate (FDR), and the F1 score. The F1 score is defined as the harmonic mean of precision and 
recall. Because the objective of fine-mapping is to identify causal genetic variants, we define a false positive as an 
identified genetic variant that is not causal. This may not be fair to GEMMA, which aims to identify associated 
–but not necessarily causal– genetic variants. Thus, the reported FPs for GEMMA should be taken with a grain 
of salt. Additionally, we report the computational time of each method.

We present four simulation studies to evaluate the performance of GINA-X and SuSiE-RSS under different 
settings. Simulation study 1 evaluates the performance of GINA-X and SuSiE-RSS in the analysis of small 
datasets with large effect sizes. Meanwhile, simulation studies 2, 3, and 4, evaluate the performance of GINA-X 
and SuSiE-RSS in the analysis of medium sized datasets. We have designed simulation studies 2 and 3 based on 
actual analyses of the breast cancer dataset with GINA-X and with SuSiE-RSS. The potentially causal genetic 
variants selected by each of these two methods have distinct genetic architectures. Specifically, GINA-X tends 
to select many regions of interest, and one genetic variant per region of interest. Meanwhile, SuSiE-RSS tends to 
select a smaller number of regions of interest, and many genetic variants per region of interest. Thus, simulation 
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studies 2 and 3 evaluate the performance of, respectively, GINA-X and SuSiE-RSS under each of these two 
possible genetic architectures. Finally, simulation study 4 evaluates the performance of GINA-X and SuSiE-RSS 
when the phenotypes are generated with no causal SNPs.

In all presented simulation studies, all datasets are simulated from GLMMs with kinship/relatedness random 
effects. Similarly to Bayesian sparse mixed linear models for polygenic modeling17, by including kinship or 
relatedness random effects we are accounting for the combined contribution of infinitesimal polygenic effects 
of all genetic variants.

Simulation study 1: Small datasets with large effect sizes
We simulate GWAS phenotype data using real genotypes from the Study of Addiction: Genetics and Environment 
(SAGE) which is part of the National Human Genome Research Institute’s Gene Environment Association 
Study Initiative [Database for Genotypes and Phenotypes (dbGaP) study accession phs000092.v1.p1]. We have 
considered 2772 European Americans from SAGE. In this simulation study, the genetic variants are single 
nucleotide polymorphisms (SNPs). While the dataset has 846,076 SNPs with minor allele frequency (MAF) 
larger than 0.01 and missing rate less than 5%, for convenience we considered a subset of 800,000 of these 
SNPs. From these 800,000 SNPs, we selected 20 evenly spaced SNPs to be the causal genetic variants, where 5 
SNPs have relatively large coefficients βl and 15 SNPs have small coefficients βs. Likelihood ratio tests indicated 
that none of the 20 causal genetic variants violate the hypothesis of Hardy-Weinberg equilibrium. We have 
four parameter settings: (a) βl = 1.2, βs = 0.3; (b) βl = 1.6, βs = 0.4; (c) βl = 2, βs = 0.5; (d) βl = 2.4, 
βs = 0.6. We set the intercept β0 = −0.5, and the variance component κ of the kinship random effects ααα equal 
to 0.15. Thus, the phenotype data are simulated from the Bernoulli GLMM

	
logit(pi) =β0 +

5∑
j=1

βlxij +
20∑

j=6

βsxij + αi, � (3)

	 ααα ∼N(000, κΣ), � (4)

where pi is the probability that yi is equal to 1, and Σ is the kinship matrix. The causal SNPs have heritability in 
the logit scale varying from 0.01 for small effect sizes to 0.17 for large effect sizes. While the number of cases and 
controls vary among simulated datasets, the average number of cases and controls for each of the four parameter 
settings is: (a) 1294 cases and 1478 controls; (b) 1344 cases and 1428 controls; (c) 1374 cases and 1398 controls; 
and (d) 1397 cases and 1375 controls.

Figure 1 shows the number of true positives (TP), number of false positives (FP), false discovery rate (FDR), 
F1 score (F1), and computational time for GINA-X, GEMMA, and SuSiE-RSS under the four considered 
parameter settings. For each setting, all reported values of assessment criteria are averages over 100 simulated 
datasets. With respect to number of true positives, GEMMA and SuSiE-RSS have the same number, thus we 
can only see the curve for SuSiE-RSS. In addition, under all settings considered, GINA-X finds substantially 
more true positives than GEMMA and SuSiE-RSS. That is because, on average, GINA-X is able to detect all five 
genetic variants with large coefficients and, depending on the setting, three to five genetic variants with smaller 
coefficients. In contrast, GEMMA and SuSiE-RSS have much more difficulty detecting the genetic variants with 
smaller coefficients. With respect to number of false positives, GINA-X has on average at most only 3 false 
positives. In contrast, in the settings considered, GEMMA and SuSiE-RSS have on average more than 100 and 30 
false positives, respectively. Consequently, when compared to GEMMA and SuSiE-RSS which have FDR of about 
0.95 and 0.85 respectively, GINA-X has much lower FDR between 0.18 and 0.25. With respect to F1 score, while 
GEMMA and SuSiE-RSS have F1 score of about 0.08 and 0.20 respectively, GINA-X has F1 score between 0.55 
and 0.64. Therefore, according to F1 score, GINA-X has the best performance detecting genetic variants. Finally, 
to compare computational time, we note that SuSiE-RSS requires the prior application of an SMA method. Thus, 
the figure shows the total computational time of SuSiE-RSS and GEMMA, labeled GEMMA+SuSiE-RSS. The 
total computational time of GEMMA and SuSiE-RSS is more than 30 min per dataset. In contrast, GINA-X is 
much faster and, in the settings considered, takes only between 10 and 20 min per dataset.

Simulation study 2: Medium sized datasets with genetic variants identified by GINA-X
This simulation study evaluates the performance of GINA-X and SuSiE-RSS when applied to medium sized 
datasets with causal genetic variants following the genetic architecture identified by GINA-X. In this simulation 
study, phenotypes are simulated using real genotypes from the DRIVE breast cancer dataset analyzed in the 
case study in section “Breast cancer”. Considering only genetic variants with MAF larger than 0.01 and missing 
rate less than 5%, the sample considered has 21,653 individuals with 410,854 genetic variants. Specifically, 50 
phenotype datasets are generated from a Bernoulli GLMM with kinship random effects and with causal genetic 
variants being the 16 genetic variants identified by GINA-X in the analysis of the DRIVE breast cancer dataset. 
The regression coefficients in the simulation study are the estimates from the breast cancer dataset based on a 
GLMM fit with kinship random effects and with all 16 genetic variants included in the model. These regression 
coefficients range from − 0.222 to 0.168. Causal genetic variants have heritability in the logit scale varying from 
0.01 for small effect sizes to 0.07 for large effect sizes. While the number of cases and controls vary among 
simulated datasets, the average number of cases and controls is 9733 cases and 11,920 controls per dataset.

Table 1 presents TP, FP, FDR, and F1 score averaged over 50 simulated datasets. When compared to SuSiE-
RSS, GINA-X finds on average 1.19 more true positives and 7.94 less false positives, leading to a much smaller 
FDR and a much higher F1 score.
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Simulation study 3: Medium sized datasets with genetic variants identified by SuSiE-RSS
This simulation study evaluates the performance of GINA-X and SuSiE-RSS when applied to medium sized 
datasets with causal genetic variants following the genetic architecture identified by SuSiE-RSS. In this simulation 
study, phenotypes are simulated using real genotypes from the DRIVE breast cancer dataset analyzed in the 
case study in section “Breast cancer”. Considering only genetic variants with MAF larger than 0.01 and missing 
rate less than 5%, the sample considered has 21,653 individuals with 410,854 genetic variants. Specifically, 50 
phenotype datasets are generated from a Bernoulli GLMM with kinship random effects and with causal genetic 
variants being the 24 genetic variants identified by SuSiE-RSS. The regression coefficients in the simulation study 
are the estimates from the breast cancer dataset based on a GLMM fit with all 24 genetic variants included in the 
model. These regression coefficients range from − 0.633 to 0.604. The magnitudes of the estimated regression 
coefficients are related to the fact that many of the SNPs identified by SuSiE-RSS are highly positively correlated, 
and the corresponding estimated coefficients have large absolute magnitudes but with opposite signs. As a result, 
the total combined heritability of the genetic variants in this simulation study is actually much smaller than the 
sum of the squares of the regression coefficients. Thus, for this simulation study, it makes more sense to just 

Method TP FP FDR F1

GINA-X 6.69 10.17 0.586 0.410

SuSiE-RSS 5.50 18.11 0.767 0.277

GEMMA 4.50 58.11 0.928 0.114

Table 1.  Simulation study 2 (genetic architecture identified by GINA-X).

 

Fig. 1.  Comparison of true positives (TP), false positives (FP), false discovery rate (FDR), F1 score (F1), and 
computational time for GINA-X, GEMMA, and SuSiE-RSS. Four parameter settings: (1) βl = 1.2, βs = 0.3; 
(2) βl = 1.6, βs = 0.4; (3) βl = 2, βs = 0.5; (4) βl = 2.4, βs = 0.6. For each setting, all reported values of 
assessment criteria are averages over 100 simulated datasets.
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consider the total heritability of the causal genetic variants (but not the heritability of each causal genetic variant). 
Here, the total heritability of the causal genetic variants in the logit scale is 0.23. Finally, in this simulation study, 
there are on average 9725 cases and 11,928 controls per dataset.

Table  2 presents results averaged over 50 simulated datasets. Specifically, when compared to SuSiE-RSS, 
GINA-X finds on average 0.42 more true positives and 7.04 less false positives, leading to a much smaller FDR 
and a higher F1 score. Surprisingly, even in this simulation study where the genetic architecture is the same as 
estimated by SuSiE-RSS for the breast cancer dataset, GINA-X performs better than SuSiE-RSS.

Simulation study 4: Medium sized datasets without causal genetic variants
This simulation study evaluates the performance of GINA-X and SuSiE-RSS when applied to medium sized 
datasets without causal genetic variants. In this simulation study, phenotypes are simulated using real genotypes 
from the DRIVE breast cancer dataset analyzed in the case study in section “Breast cancer”. Considering only 
genetic variants with MAF larger than 0.01 and missing rate less than 5%, the sample considered has 21,653 
individuals with 410,854 genetic variants. Specifically, 50 phenotype datasets are generated from a null Bernoulli 
GLMM with kinship random effects but with no causal genetic variants. In this simulation study, there are on 
average 10,817 cases and 10,836 controls per dataset.

For all 50 simulated datasets, GINA-X does not select any genetic variants. Meanwhile, SuSiE-RSS and 
GEMMA do not select any genetic variants in 48 datasets, but incorrectly select one or two genetic variants 
as causal in two datasets. Therefore, in this setting with no causal genetic variants, GINA-X also has favorable 
performance.

Case studies
To illustrate the applicability of GINA-X to non-Gaussian GWAS data, we present here two case studies: alcohol 
consumption (count data), and breast cancer diagnosis (binary data). In addition, we compare GINA-X with 
GEMMA and SuSiE-RSS.

Maximum number of alcoholic drinks
The Collaborative Study on the Genetics of Alcoholism (COGA)22 was a large-scale family research project, 
primarily aiming to pinpoint genes linked to alcohol dependence. Using this dataset, we apply GINA-X to 
analyze the maximum number of alcoholic drinks consumed within a 24-h span. We focus on single nucleotide 
polymorphisms (SNPs) as genetic variants in this case study. The COGA dataset was one of the components of 
the SAGE dataset used in the simulation study in section “Simulation study 1: Small datasets with large effect 
sizes”. While the part of the SAGE dataset used in section “Simulation study 1: Small datasets with large effect 
sizes” considered 2772 European Americans, 13 of those did not have information about the maximum number 
of alcoholic drinks consumed within a 24-h span. Thus, our analysis encompasses data from 2759 European 
Americans, evaluating 846,076 SNPs with minor allele frequency (MAF) larger than 0.01 and missing rate less 
than 5%. For this analysis, we employed Poisson GLMMs. Additionally, we incorporated kinship random effects 
to accommodate the relatedness across the 2759 participants. Finally, we also included overdispersion random 
effects in the GLMM to account for extra Poisson variability.

GINA-X identified only one SNP residing within the coding region of the PTGER4 gene on chromosome 
5. A likelihood ratio test indicated that the identified SNP does not violate the hypothesis of Hardy-Weinberg 
equilibrium. The PTGER4 gene encodes a receptor for prostaglandin E2 (PGE2), a molecule implicated in the 
body’s inflammatory response to alcohol intake. Notably, PGE2’s involvement in inflammation is consistent with 
the observation that tolfenamic acid, a PGE2 inhibitor, significantly mitigates a range of hangover symptoms. 
Conversely, GEMMA and SuSiE-RSS identify the same 9 SNPs. Importantly, while in the first iteration of 
GINA-X the screening step identifies a total of 10 SNPs that include the 9 SNPs identified by SuSiE-RSS and 
GEMMA, the variable selection step reduces that to just 1 identified causal SNP. Finally, GINA-X converges 
in the second iteration with just that one identified SNP. We have evaluated the predictive performance of the 
SNPs identified by GINA-X and SuSiE-RSS with a tenfold cross validation. Because the maximum number of 
alcoholic drinks is a count variable, we compare predictive performance using the mean squared prediction 
error (MSPE). While the MSPE of SuSiE-RSS based on 9 SNPs is 264.18, the MSPE of GINA-X based on only 1 
SNP is 263.97. Therefore, by providing a more focused list of SNPs and avoiding false positives, GINA-X leads 
to better predictive performance.

Breast cancer
The analysis of GWAS data has played an important role in identifying genetic variants associated with breast 
cancer. Discovery, Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE) was a project part of the 
NCI’s Genetic Associations and Mechanisms in Oncology (GAME-ON) initiative ​(​​​h​t​t​p​:​/​/​e​p​i​.​g​r​a​n​t​s​.​c​a​n​c​e​r​.​g​o​v​/​g​
a​m​e​o​n​/​​​​​)​. The DRIVE dataset has 60,015 breast cancer cases and controls, and is composed by 10 consent groups. 

Method TP FP FDR F1

GINA-X 4.42 6.96 0.581 0.250

SuSiE-RSS 4.00 14.00 0.778 0.190

GEMMA 16.00 37.00 0.698 0.416

Table 2.  Simulation study 3 (genetic architecture identified by SuSiE-RSS).
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Here, we focus on consent group 8, which is the general research use (GRU) group. Considering only genetic 
variants with MAF larger than 0.01 and missing rate less than 5%, the sample considered has 21,653 subjects 
with 410,854 genetic variants. For this analysis, we employed Bernoulli GLMMs with kinship random effects to 
accommodate the relatedness across the 21,653 subjects.

In the analysis of this breast cancer dataset, GINA-X identified a total of 16 genetic variants, 5 of which have 
not been reported in the breast cancer literature (details in the Supplementary Material). Likelihood ratio tests 
indicated that none of the identified genetic variants violate the hypothesis of Hardy-Weinberg equilibrium. 
Meanwhile, GEMMA and SuSiE-RSS found 63 and 24 genetic variants, respectively. Of importance, while the 
24 genetic variants found by SuSiE-RSS are located in only 6 regions of interest, the genetic variants found by 
GINA-X are located in 16 regions of interest. Therefore, GINA-X finds causal genetic variants in 10 additional 
regions of interest.

Figure 2 provides a visual understanding of the progression of GINA-X through the iterations. In this breast 
cancer case study, GINA-X converged in 4 iterations. Because the fourth iteration is similar to the third iteration, 
Fig. 2 shows only the first three iterations. For each iteration, Fig. 2 shows the posterior probabilities of the 
genetic variants given by the screening step and by the variable selection step. In the first iteration, GINA-X’s 

Fig. 2.  GINA-X analysis of breast cancer data. Posterior probabilities of genetic variants for screening step and 
variable selection step in the first three iterations. Green dots indicate identified genetic variants at each step. 
Iteration 4 is not shown because no new SNPs were identified and the results were the same as in Iteration 3. 
The genetic variants identified at the last iteration of GINA-X belong to 16 distinct regions of interest.

 

Scientific Reports |        (2025) 15:30080 7| https://doi.org/10.1038/s41598-025-09270-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


screening step found 137 candidate genetic variants. Due to linkage disequilibrium, many of the genetic variants 
are clustered, such as a cluster in chromosome 5. Then, the variable selection step reduces this list of 137 genetic 
variants to just 13 genetic variants. These 13 variants are included in the baseline model for the second iteration. 
In the second iteration, the screening step finds 46 additional candidate genetic variants that are reduced by the 
variable selection step to 2 genetic variants. Then, the number of genetic variants in the baseline model for the 
third iteration increases to 15. In the third iteration, the screening step finds 44 additional candidate genetic 
variants, and the variable selection step selects one more genetic variant than those in the second iteration. In the 
fourth iteration, GINA-X does not find additional candidate genetic variants, and thus, the algorithm converges 
and reports 16 genetic variants.

For comparison, Fig. 3 shows the posterior probabilities of the 24 genetic variants in the 6 regions of interest 
considered by SuSiE-RSS. These are the regions of interest initially found by GEMMA. Importantly, GINA-X not 
only finds these 6 regions, but also finds 10 additional regions of interest.

We have evaluated the predictive ability of the genetic variants identified by GINA-X and SuSiE-RSS with a 
tenfold cross validation. Because the indicator of breast cancer case is a binary variable, in this study we compare 
predictive performance with the area under the curve (AUC) of the receiver operating characteristic (ROC) 
curve. Larger AUC indicates better predictive performance. While the AUC for SuSiE-RSS is 0.5736, GINA-X 
provides a larger AUC which is equal to 0.5912. Therefore, by providing a more focused list of SNPs, avoiding 
false positives, and finding more regions of interest, GINA-X leads to better predictive performance.

Discussion
When compared to the competing fine-mapping method SuSiE-RSS, GINA-X has favorable statistical 
performance. Specifically, a simulation study shows that GINA-X is able to detect more true positives than SuSiE-
RSS. In addition, GINA-X has a much lower false discovery rate than SuSiE-RSS. Further, GINA-X is able to 
detect causal genetic variants in regions not detected by traditional SMA and fine-mapping methods. To validate 
these simulation study findings, we applied GINA-X and SuSiE-RSS to an alcohol use disorder dataset and a 
breast cancer dataset. For both datasets, GINA-X provided smaller more focused lists of potentially causal SNPs. 
In addition, for the breast cancer dataset, the smaller number of SNPs found by GINA-X covered 10 additional 
regions of interest not identified by SuSiE-RSS. To compare the predictive ability of these fine-mapping methods, 
we performed tenfold cross validation studies for the two datasets. For both datasets, when compared to SuSiE-
RSS, the more focused list of potentially causal SNPs provided by GINA-X has better predictive performance. 
Therefore, GINA-X has lower FDR, higher recall, and leads to better out-of-sample predictive performance.

GINA-X is designed for the analysis of polygenic traits that exhibit a combination of sparse moderate to 
strong effect sizes from a relatively small number of genetic variants and infinitesimal contributions from all 
the other genetic variants. The infinitesimal contributions are modeled by GINA-X through relatedness kinship 
random effects. Thus, GINA-X will only report a relatively small number of genetic variants with moderate to 
strong effect sizes. In addition, as our simulation study in the new section “Simulation study 4: Medium sized 
datasets without causal genetic variants” shows, if the genetic architecture has only infinitesimal contributions 
from all genetic variants, then GINA-X will usually not report any causal genetic variant. Finally, we note that 
in cases with genetic architecture with a few genetic variants with moderate to strong effects and infinitesimal 
contributions from thousands of other genetic variants, there may be scientific, economic, and/or medical value 
in identifying the genetic variants with moderate to strong effects.

Because of its two-step nature, GINA-X may not be adequate for cases with complex interaction effects 
among genetic variants. This is because GINA-X screening step fits single-SNP GLMMs, which could overlook 
interacting genetic variants with weak main effects. In contrast, if the interacting genetic variants have main 
effects strong enough to be detected by GINA-X screening step, then a modification of GINA-X variable 
selection step could be able to detect complex interactions among genetic variants. This is a potentially useful 
future research direction.

Fig. 3.  SuSiE-RSS analysis of breat cancer dataset. Posterior probabilities of genetic variants in the regions of 
interest. Green dots indicate identified genetic variants. The genetic variants identified by SuSiE-RSS belong to 
6 distinct regions of interest, a reduction of 10 regions of interest when compared to GINA-X results.
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Another current limitation of GINA-X is related to scalability. Currently, GINA-X is computationally feasible 
for datasets with sample sizes of order 104. For example, for the DRIVE breast cancer dataset with sample 
size n = 21, 653 and p = 410, 854 genetic variants, GINA-X takes about 10 h. In its current implementation, 
GINA-X computations scale cubicly with sample size. Hence, GINA-X is not computationally feasible for 
biobank scale data. Therefore, a promising future research direction is to extend GINA-X for the analysis of 
biobank scale data.

There are many other promising avenues for future research. One highly useful extension is to develop GINA-X 
for the analysis of survival time data. This may be useful to identify genetic variants that lead to early onset of 
diseases. Another promising extension of GINA-X is to integrate information about functional annotations in 
a way similar to that of the recently proposed methods CARMA23 and Funmap24. Further, connected with its 
extension for the analysis of larger datasets, an open question is whether GINA-X would produce calibrated FDR 
in the analysis of biobank scale data. Finally, we anticipate that the application of GINA-X to existing genetic/
phenotype datasets may identify many currently undiscovered causal genetic variants.

Methods
Screening step
In the screening step, GINA-X fits a baseline GLMM with covariates XB  to obtain adjusted observations yyy⋆ 
and estimates β̂ββB , κ̂1, κ̂2, and V̂ . After that, GINA-X fits one GLMM for each genetic variant which is not in 
the baseline model. To fit these GLMMs. GINA-X takes a pseudo-likelihood approach25 that uses yyy⋆, β̂ββB , κ̂1, 

κ̂2, and V̂  obtained from the baseline model. Let xxxs be the vector of covariate genetic variant s, and βs be the 
coefficient of genetic variant s. This pseudo-likelihood approach approximates the GLMM for genetic variant s 
by the LMM

	 yyy⋆ =XBβ̂ββB + xxxsβs + ααα1 + ααα2 + V̂ −1ϵϵϵ. � (5)

Integrating out the vectors of random effects ααα1 and ααα2, the adjusted observations yyy⋆ can be approximately 
modeled by the multivariate Gaussian distribution N(XBβ̂ββB + xxxsβs, Ĥ), where Ĥ = κ̂1Σ + κ̂2I + V̂ −1.

Consider the spectral decomposition Ĥ = P DP ⊤. Let ỹyy = P ⊤(yyy⋆ − XBβ̂ββB) and x̃xxs = P ⊤xxxs. Then, an 
estimator of βs is β̂s = (x̃xx⊤

s D−1x̃xxs)−1x̃xx
⊤
s D−1ỹ, which has an approximate distribution N(βs, σ2

s), where 
σ2

s = var(β̂s) = (x̃xx⊤
s D−1x̃xxs)−1.

Let π0 be the probability that genetic variant s is not in the model. We use a mixture prior for βs, that is

	 p(βs|π0, g) =π0δ(βs = 0) + (1 − π0)π(βs|g), � (6)

where π(βs|g) is the prior density for βs when genetic variant s is in the model. We assume for βs a prior similar 
to a Zellner g prior given by π(βs|g) = N(βs|0, gσ2

s). Then, the marginal density of β̂s is

	
p(β̂s|τ, π0) =

∫
p(β̂s|βs)p(βs|τ, π0) dβs. � (7)

Assuming that β̂1, . . . , β̂p are conditionally independent given π0 and g, the likelihood function of π0 and g is

	
L(β̂1, . . . , β̂p|π0, g) =

p∏
s=1

p(β̂s|π0, g). � (8)

Let π(π0) and π(g) be the prior densities of π0 and g, respectively. Specifically, we use non-informative flat prior 
π(π0) ∝ 1 and π(g) ∝ 1. Thus, the joint posterior density of π0 and g is

	 π(π0, g|β̂1, . . . , β̂p) ∝π(π0)π(g)L(β̂1, . . . , β̂p|π0, g). � (9)

We use the posterior modes π̂0 and ĝ to estimate π0 and g. We then calculate the posterior probability for each 
regressor genetic variant s in the screening step as

	
P (βs ̸= 0|β̂s, π̂0, ĝ) =1 − π̂0N(β̂s|0, σ2

s)
p(β̂s|π̂0, ĝ)

. � (10)

After that, we apply Bayesian FDR control4–7 to the posterior probabilities of all genetic variants with nominal 
FDR at 5% and select a list of candidate genetic variants.

Variable selection step
In the variable selection step, we consider all combinations of candidate genetic variants from the screening 
step as the candidate models. Assume we obtain k candidate genetic variants from the screening step. The 
variable selection step considers S = 2k  possible models. Let Mm be the mth model with pm genetic variants, 
m = 1, . . . , S.
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As mentioned in section “Overview of the method”, we use baseline model to obtain the adjusted observations 
yyy⋆ and estimates of βββB , κ1 and κ2. In the model selecting step, the baseline model is the full model with all k 
candidate genetic variants. Then, we assume all possible models have the same adjusted observations. Let Xm 
be the matrix of genetic variants in model Mm, and βββm be the corresponding vector of regression coefficients. 
The general model is:

	 yyy⋆ =XBβ̂ββB + Xmβββm + ααα1 + ααα2 + V̂ −1ϵϵϵ � (11)

The adjusted observations yyy⋆ can be approximately modeled by a multivariate Gaussian distribution 
N(XBβ̂ββB + Xmβββm, Ĥ), where Ĥ = κ̂1Σ + κ̂2I + V̂ −1. Consider the spectral decomposition Ĥ = P DP ⊤. 
Let ỹyy = P ⊤(yyy⋆ − XBβ̂ββB) and X̃m = P ⊤Xm. Then, conditional on βββm, the vector of transformed adjusted 
observations ̃yyy is approximately distributed as N(X̃mβββm, D). For βββm we assign a prior distribution inspired by 
the well-known Zellner-g prior for linear models26,27. Specifically, the prior density for βββm conditional on model 
Mm is π(βββm|Mm) ∼ N(βββm|000, ĝ(X̃⊤

mD−1X̃m)−1), where ĝ is the estimate from the screening step. Then, by 
integrating out βββm we can obtain the marginal density m(ỹyy|Mm), which is

	

m(ỹyy|Mm) =
∫

N(ỹyy|X̃mβββm, D)N(βββm|000, ĝ(X̃⊤
mD−1X̃m)−1) dβββm

=(2π)−n/2(ĝ + 1)−pm/2|D|−1/2

exp
[

−1
2 ỹyy⊤D−1ỹyy + 1

2 ỹyy⊤D−1X̃m( ĝ + 1
ĝ

X̃⊤
mD−1X̃m)−1X̃⊤

mD−1ỹyy

]
.

� (12)

The prior probability for model Mm is P (Mm) = π̂k−pm
0 (1 − π̂0)pm , where π̂0 is the estimate from the 

screening step in the first GINA-X iteration. Then, the posterior probability of model Mm is

	 P (Mm|ỹyy) ∝P (Mm)m(ỹyy|Mm). � (13)

GINA-X reports the genetic variants in the model with the highest posterior probability.

Data availability
Genotype and phenotype data for alcohol use disorder in humans are based on the use of study data downloaded 
from the dbGaP web site, under phs000092.v1.p1. Genotype and phenotype data for breast cancer in humans are 
based on the use of study data downloaded from the dbGaP web site, under phs001265.v1.p1.

Code availability
Code that implements the GINA-X method is currently available in an R package called GINAX on Github 
at https://github.com/marf-at-vt/GINAX. To install GINAX in R, use the function “install_github” from the 
devtools package with the command install_github("marf-at-vt/GINAX"). Code for two examples of use of the 
GINAX package can be found in a vignette available at https://marf-at-vt.github.io/GINAX-vignette.html. In 
addition,  the GINAX R package has been submitted to the Bioconductor repository.
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