Table 8 Performance metrics of various machine learning algorithms Evaluated.
Algorithm | Accuracy | Precision | Recall | F1-Score | Area Under Curve | Hamming Loss | Jaccard Score | Log Loss | Mathews Correlation Coefficient |
---|---|---|---|---|---|---|---|---|---|
Grid Search | |||||||||
Random Forest | 0.8 | 0.8 | 0.80 | 0.79 | 0.84 | 0.205 | 0.672 | 7.389 | 0.5959 |
KNN | 0.74 | 0.76 | 0.75 | 0.74 | 0.81 | 0.255 | 0.617 | 9,191 | 0.501 |
Decision Tree | 0.66 | 0.68 | 0.66 | 0.65 | 0.71 | 0.345 | 0.5369 | 12.435 | 0.333 |
catBoost | 0.78 | 0.78 | 0.78 | 0.77 | 0.84 | 0.225 | 0.643 | 8.109 | 0.554 |
Logistic Regression | 0.74 | 0.75 | 0.75 | 0.74 | 0.84 | 0.255 | 0.605 | 9.191 | 0.494 |
Ensemble Stack | 0.76 | 0.76 | 0.76 | 0.76 | 0.84 | 0.24 | 0.607 | 8.65 | 0.519 |
Randomized Search | |||||||||
Random Forest | 0.79 | 0.81 | 0.79 | 0.79 | 0.86 | 0.21 | 0.6865 | 7.5691 | 0.5945 |
KNN | 0.72 | 0.73 | 0.72 | 0.72 | 0.8 | 0.2775 | 0.6007 | 10.0021 | 0.4519 |
Decision Tree | 0.66 | 0.71 | 0.66 | 0.64 | 0.72 | 0.3375 | 0.5781 | 12.1647 | 0.3689 |
catBoost | 0.78 | 0.79 | 0.78 | 0.77 | 0.83 | 0.225 | 0.6703 | 8.1098 | 0.5663 |
Logistic Regression | 079 | 0.8 | 0.79 | 0.79 | 0.83 | 0.2125 | 0.6755 | 7.6592 | 0.5818 |
Ensemble Stack | 0.76 | 0.77 | 0.76 | 0.76 | 0.83 | 0.24 | 0.6404 | 8.6504 | 0.5255 |
Bayesian Optimization Search | |||||||||
Random Forest | 0.77 | 0.79 | 0.77 | 0.77 | 0.84 | 0.2275 | 0.6654 | 8.1999 | 0.559 |
KNN | 0.72 | 0.74 | 0.72 | 0.71 | 0.8 | 0.2825 | 0.6076 | 10.1823 | 0.4513 |
Decision Tree | 0.74 | 0.75 | 0.74 | 0.73 | 0.8 | 0.2625 | 0.6196 | 0.8643 | 0.4836 |
catBoost | 0.74 | 0.76 | 0.74 | 0.73 | 0.83 | 0.2625 | 0.66315 | 9.4614 | 0.4947 |
Logistic Regression | 0.75 | 0.76 | 0.75 | 0.75 | 0.81 | 0.25 | 0.6282 | 9.0109 | 0.5052 |
Ensemble Stack | 0.79 | 0.79 | 0.79 | 0.79 | 0.85 | 0.2125 | 0.6718 | 7.6592 | 0.5793 |
Neural Network | |||||||||
ANN | 0.74 | 0.75 | 0.74 | 0.74 | - | - | - | - | - |