Table 8 Performance metrics of various machine learning algorithms Evaluated.

From: Explainable artificial intelligence driven insights into smoking prediction using machine learning and clinical parameters

Algorithm

Accuracy

Precision

Recall

F1-Score

Area Under Curve

Hamming Loss

Jaccard Score

Log Loss

Mathews Correlation Coefficient

Grid Search

Random Forest

0.8

0.8

0.80

0.79

0.84

0.205

0.672

7.389

0.5959

KNN

0.74

0.76

0.75

0.74

0.81

0.255

0.617

9,191

0.501

Decision Tree

0.66

0.68

0.66

0.65

0.71

0.345

0.5369

12.435

0.333

catBoost

0.78

0.78

0.78

0.77

0.84

0.225

0.643

8.109

0.554

Logistic Regression

0.74

0.75

0.75

0.74

0.84

0.255

0.605

9.191

0.494

Ensemble Stack

0.76

0.76

0.76

0.76

0.84

0.24

0.607

8.65

0.519

Randomized Search

Random Forest

0.79

0.81

0.79

0.79

0.86

0.21

0.6865

7.5691

0.5945

KNN

0.72

0.73

0.72

0.72

0.8

0.2775

0.6007

10.0021

0.4519

Decision Tree

0.66

0.71

0.66

0.64

0.72

0.3375

0.5781

12.1647

0.3689

catBoost

0.78

0.79

0.78

0.77

0.83

0.225

0.6703

8.1098

0.5663

Logistic Regression

079

0.8

0.79

0.79

0.83

0.2125

0.6755

7.6592

0.5818

Ensemble Stack

0.76

0.77

0.76

0.76

0.83

0.24

0.6404

8.6504

0.5255

Bayesian Optimization Search

Random Forest

0.77

0.79

0.77

0.77

0.84

0.2275

0.6654

8.1999

0.559

KNN

0.72

0.74

0.72

0.71

0.8

0.2825

0.6076

10.1823

0.4513

Decision Tree

0.74

0.75

0.74

0.73

0.8

0.2625

0.6196

0.8643

0.4836

catBoost

0.74

0.76

0.74

0.73

0.83

0.2625

0.66315

9.4614

0.4947

Logistic Regression

0.75

0.76

0.75

0.75

0.81

0.25

0.6282

9.0109

0.5052

Ensemble Stack

0.79

0.79

0.79

0.79

0.85

0.2125

0.6718

7.6592

0.5793

Neural Network

ANN

0.74

0.75

0.74

0.74

-

-

-

-

-