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Training AI models on imbalanced datasets with skewed class distributions poses a significant 
challenge, as it leads to model bias towards the majority class while neglecting the minority class. 
Various methods, such as Synthetic Minority Over Sampling Technique (SMOTE), Adaptive Synthetic 
Sampling (ADASYN), Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs), 
have been employed to generate synthetic data to address this issue. However, these methods 
are often unable to enhance model performance, especially in case of extreme class imbalance. To 
overcome this challenge, a novel approach to generate synthetic data is proposed which uses Genetic 
Algorithms (GAs) and does not require large sample size. It aims to outperform state-of-the-art 
methods, like SMOTE, ADASYN, GAN and VAE in terms of model performance. Although GAs are 
traditionally used for optimization tasks, they can also produce synthetic datasets optimized through 
fitness function and population initialization. Our synthetic data generation approach analyzes the 
Simple as well as the Elitist Genetic Algorithms, along with Logistic Regression and Support Vector 
Machines to evaluate the population initialization and fitness function. Experimental results across 
three datasets (Credit Card Fraud Detection, PIMA Indian Diabetes, and PHONEME) demonstrate that 
the proposed method significantly outperforms the previous techniques based on the commonly used 
performance metrics, including accuracy, precision, recall, F1-score, ROC-AUC, and AP (Accuracy-
Precision) curve. This highlights the potential of GAs in the development of accurate and reliable AI 
models for imbalanced datasets.

In recent years, Neural Networks are considered one of the most significant breakthroughs in the field of Machine 
Learning. Despite being widely used, Neural networks heavily rely on the quality and distribution of the training 
data1. A significant challenge they face is the imbalanced nature of many datasets, where the number of instances 
across different classes is unevenly distributed. This imbalance leads to biased model predictions, favoring the 
majority class while neglecting the minority class. Such bias can severely impact the model’s overall performance 
and accuracy, especially in critical areas like medical diagnosis or anomaly detection, where minority instances 
are vital. Recent applications in healthcare shows the critical importance of addressing class imbalance, such as in 
predicting mechanical ventilation outcomes and mortality rates2, orthopedic disease classification3, cardiovascular 
disease detection4, and lung cancer classification5. To address this problem, various methods have been developed 
over time, which are broadly classified into three categories, data-level methods that modify data samples, 
algorithm-level methods that adjust the learning algorithms, and hybrid methods that combine both approaches6.

The data-level methods allow the use of standard machine learning architectures and pipelines which has 
made them widely popular. Standard data-level methods include random over-sampling, which increases the 
number of minority class instances through random duplication, and random under-sampling, which decreases 
the number of majority class instances by randomly discarding samples of this class. The effectiveness of over-
sampling versus under-sampling has been widely researched. Some studies have found under-sampling to be 
more advantageous in certain situations, while others suggest that a combination of both techniques effectively 
addresses imbalanced datasets. For example, a boosting-based approach that incorporates both over-sampling 
and under-sampling to handle imbalanced data has been used in a study7.

A comparative study8 of several over-sampling and under-sampling methods shows that the performance 
varies based on the dataset and the classifier used. Synthetic Minority Over-sampling Technique (SMOTE)9 
generates synthetic samples for the minority class by interpolating between existing minority class instances. 
Borderline SMOTE is a variant of SMOTE10, which performs synthetic instance generation near the decision 
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boundary. Other data-level methods, such as Adaptive Synthetic Sampling (ADASYN)11, Edited Nearest 
Neighbor (ENN)12, and Cluster-Based Over-Sampling (CBO)13, have also been proposed.

Algorithm-level methods modify the learning process to handle imbalanced data, allowing the possibility 
of more customized and specific solutions. Several methods fall in this category, such as Cost-Sensitive 
Learning14, which modifies the learning algorithm to assign higher costs to misclassifications of the minority 
class. Class weightings, ensemble methods15, Boosting16, Kernel-Based Methods17 have also been applied. The 
Active Learning approach18 has been employed as well, where the learning algorithm actively selects the most 
informative samples to label, focusing on minority class instances.

Some hybrid methods that combine both data-level and algorithm-level approaches have also been utilized. 
Another approach to data generation is Variational Autoencoders (VAEs)19, which are a type of generative 
model that combines the principles of deep learning and Bayesian inference to generate new data samples that 
resemble the training data. Although different from the traditional data-level and algorithm-level methods 
mentioned above, their behavior and a comparative analysis with our approach is also presented. While all 
the above-mentioned data generation methods find applications in a wide range of tasks, they still have some 
limitations, due to which optimal model performance is not achieved. One major issue with methods like 
SMOTE is the higher probability of overfitting, as synthetic instances are created by interpolating between the 
minority instances of the dataset. This leads to the creation of models that generalize well over the training data 
but perform poorly when presented with unseen test data20. A by product of overfitting is noise amplification, 
especially if noise is present within the minority class, further impacting the accuracy of the trained model. 
While some methods like CBO aim to reduce overfitting by encapsulating the synthetic data generation process 
within clusters, the probability of overfitting remains high if the data is of a higher dimension. Moreover, the 
effectiveness of CBO is heavily dependent on the clustering step. Inaccurate selection of the clustering algorithm 
or its parameters can result in clusters that do not appropriately represent the structure of the underlying data21. 
Algorithm-level methods often introduce additional complexity to the training process. For example, Cost-
Sensitive Learning requires the incorporation of a cost matrix when modifying the learning algorithm, which 
makes training comparatively more complex22.

While hybrid methods such as Tomek Link and SMOTE23 address some of these drawbacks, they are often 
computationally quite extensive during the training process, especially when dealing with large datasets or real-
time applications. In this research, a novel approach is proposed which uses Genetic Algorithms (GAs)24 for 
producing synthetic data for the ANNs in data-constrained environments. GAs, modeled after the phenomenon 
of natural selection, have found wide usage in various domains, most commonly in optimization and search 
problems. Their ability to explore a large search space and evolve solutions makes them a potential candidate 
for solving many real-world problems, including noise removal25, transportation and logistics26, image 
segmentation27, routing problems28, and manufacturing services29. GAs have also shown promise in biomedical 
signal processing, particularly in EEG-based classification tasks where optimization of feature selection and 
classification accuracy is crucial30.

Over the years, GAs have also been used for synthetic data generation by other researchers. For instance, 
synthetic datasets have been generated using GAs for testing and validating software systems, ensuring diverse 
and comprehensive test cases31,32. Additionally, realistic synthetic data has been applied to privacy-preserving 
data publishing, balancing the trade-off between data utility and privacy33. In the field of intrusion detection, 
synthetic attack data has been utilized for the development and testing of robust detection systems34.

Another study presents a method combining WCGAN-GP for synthetic attack data generation and 
Genetic Algorithms (GA) for feature selection to enhance Intrusion Detection Systems (IDS)35. While these 
applications are fairly useful, Genetic Algorithms (GAs) have not been specifically used to generate synthetic 
training data for Artificial Neural Networks (ANNs) in order to improve their performance and to mitigate the 
effect of imbalanced training data36. In this study, GAs are used to produce synthetic data while simultaneously 
addressing the limitations of existing data generation methods and improving ANN performance. Initially, a 
fitness function that accurately captures the underlying characteristics of the data is developed. Since a precise 
mathematical description of the data is difficult to achieve analytically, therefore, the process of creating the 
fitness function is automated. This approach utilizes Support Vector Machines (SVM)37 and logistic regression38 
to fit a model to the data generating the equations for the underlying data distribution, and creating the fitness 
functions to maximize the minority class representation. The synthetically generated data is then used to train 
the neural network using three benchmark datasets all of which contain binary imbalanced classes.

To validate the proposed method, a comprehensive comparative analysis of various techniques is conducted, 
including different variants of Genetic Algorithms, such as Simple GA, Elitist GA, and SVM-based GA, 
alongside previously established methods, such as SMOTE and ADASYN. To measure the effectiveness of these 
techniques, several evaluation metrics, including accuracy, precision, recall, F1-score, ROC-AUC, and average 
precision (AP) are used. These metrics provide a comprehensive view of the model’s performance, particularly 
in terms of its ability to correctly classify minority class instances without compromising the overall accuracy.

Related work
Handling imbalanced data
Imbalanced data pose a significant challenge in machine learning, impacting the performance and accuracy of 
predictive models39. Researchers have explored various strategies to mitigate this challenge due to its significant 
implications6.

A detailed comparison of techniques for managing unbalanced data in machine learning, particularly in 
the context of electricity theft detection, is provided by40. Another study evaluates several machine learning 
methods aimed at overcoming the obstacles presented by extremely unbalanced datasets in industrial quality 
control41. Additionally, research has applied Random Forest algorithms to imbalanced datasets, enhancing 
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detection accuracy and reliability, as seen in network monitoring analysis42,43. The Synthetic Minority Over-
sampling Technique (SMOTE)9 is a widely used method that generates synthetic samples for the minority class, 
thus balancing the dataset and improving model learning effectiveness across both classes.

Synthetic data generation
Synthetic data generation techniques serve as viable solutions for addressing class imbalance in datasets. Methods 
such as Adaptive Synthetic (ADASYN)11 and Borderline-SMOTE10 have emerged as effective oversampling 
techniques.

ADASYN In11, ADASYN is employed to tackle imbalanced datasets by generating synthetic samples for 
minority class instances. The core concept of ADASYN is to utilize a weighted distribution for different minority 
class samples, generating more synthetic data for instances that are harder to learn. This approach reduces bias 
from class imbalance and adapts the classification decision boundary toward difficult examples, ultimately 
enhancing classifier performance. ADASYN is applied in combination with Random Forest to effectively identify 
fraud in telecommunication, showcasing the technique’s versatility in handling imbalanced datasets44.

Borderline-SMOTEIn10, Borderline-SMOTE is used to address imbalanced datasets by generating synthetic 
samples along the decision boundary between classes. This method, an extension of SMOTE, focuses on 
oversampling only the minority class instances near the borderlines, where class imbalance is most pronounced. 
By targeting these critical instances, Borderline-SMOTE enhances the classifier’s ability to differentiate between 
classes, resulting in improved true positive rates and F-values compared to traditional SMOTE and random 
oversampling methods.

Cost-Sensitive Learning The foundations of cost-sensitive learning are explored in14, with emphasis on the 
need to incorporate misclassification costs into the learning process. It is illustrated how traditional classification 
algorithms can be adapted to minimize total costs rather than merely focusing on error rates, providing a more 
practical approach for scenarios with varying misclassification costs.

Genetic Algorithms for Data Generation The use of Genetic Algorithms (GAs) for data generation is 
investigated in31. Recent work includes5 applying Greylag goose optimization with multilayer perceptron for 
lung cancer classification, and45 using Game Shapley local search embedded binary social ski-driver optimization 
for cancer classification from RNA sequencing data. A hybrid approach is described in46 that combines GAs 
with reinforcement learning to automate software test data generation. Since significant development costs are 
associated with software testing, substantial savings can be achieved through automation, especially in complex 
domains. Despite the success of GAs in generating simple test data, their application to more complex data types 
such as images, videos, sounds, and 3D models is rarely explored.

Machine Learning and Data Augmentation In47, a Generative Adversarial Network (GAN) is utilized for 
data augmentation, highlighting its ability to generate synthetic data without predefined classes. This method 
is proven effective for infrared small target detection, outperforming real data. However, it is acknowledged 
that GANs present challenges, including high training complexity which requires substantial computational 
power and time to converge. Additionally,48 proposes a three-phase hybrid soft computing approach for cancer 
classification of gene expression micro-array data. The article49 provides a systematic review of machine learning 
techniques in cancer classification for imbalanced medical datasets.

In another study50, GAN-based data augmentation is applied to preserve image objects and maintain 
translation consistency. Although effective, GAN models can be complex to implement and interpret, and 
evaluating generated data quality poses ongoing challenges. Furthermore, GANs are susceptible to overfitting, 
particularly with limited augmentation scope, and their success largely depends on the quality and diversity of 
the original training data.

Active Learning in Imbalanced Data Classification In18, Active Learning is introduced as a novel approach 
to address imbalanced data. It is demonstrated that active learning can effectively resolve class imbalance by 
providing the learner with more balanced classes. This method selects informative instances from a smaller 
sample pool, eliminating the need for exhaustive searches through the entire dataset, resulting in an efficient 
querying system applicable to large datasets.

Oversampling for Imbalanced Data Classification In51, an oversampling method is implemented using 
an Adversarial Network to tackle class imbalance. A synthetic minority dataset is generated via a black-box 
oversampler, followed by refinement with a network trained using adversarial loss. Striking a balance between 
generating realistic synthetic data and maintaining data quality is crucial, as is improving classification 
performance by ensuring synthetic data closely resembles minority class instances.

SMOTE-Boost-based Sparse Bayesian Model In52, the SMOTE algorithm is employed in combination with a 
boosting procedure to address imbalanced datasets. The proposed model comprises three modules: SMOTE-
based data enhancement, an AdaBoost training strategy53, and sparse Bayesian model construction54. The 
SMOTE algorithm is utilized for data enhancement, generating additional minority samples to reduce imbalance, 
while a specific AdaBoost strategy is applied to adaptively enhance predictive ability and mitigate overfitting, 
ultimately improving learning from minority class instances.

Tomek Link and SMOTE Approaches In23, SMOTE and Tomek Link techniques are combined to address 
challenges in imbalanced dataset classification. These methods are applied alongside various classifiers, including 
Naïve Bayes, support vector machines, and k-nearest neighbors, to enhance classification performance. Our 
study investigates their application in condition monitoring systems for electrical machines, revealing the 
practical challenges posed by imbalanced data. Results indicate that combining SMOTE with Tomek Link 
improves performance across all classifiers, particularly k-nearest neighbors, thereby enhancing classification 
accuracy in scenarios with limited fault data.

Diffusion-based Synthetic Data Generation In55, the labor-intensive task of preparing training data for deep 
vision models is tackled by leveraging generative models to produce synthetic data. Unlike traditional models 
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that generate image-level category labels, a novel approach is employed using the text-to-image generative 
model, Stable Diffusion (SD), to create pixel-level semantic segmentation labels. By utilizing text prompts, cross-
attention, and self-attention mechanisms, three innovative techniques are introduced: class-prompt appending, 
class-prompt cross-attention, and self-attention exponentiation. These techniques generate segmentation maps 
corresponding to synthetic images, serving as pseudo-labels for training semantic segmenters and minimizing 
the need for labor-intensive pixel-wise annotation.

Privacy-Preserving Data Publishing In56, an information-driven distributed genetic algorithm (ID-DGA) is 
presented for optimal anonymization through attribute generalization and record suppression. The proposed 
study addresses the privacy-preserving data publishing (PPDP) problem by incorporating various components, 
including an information-driven crossover operator, mutation operator, improvement operator, and a two-
dimensional selection operator. Additionally,57 introduces a technique for image captioning using hierarchical 
clustering and deep learning.58 presents improved GA-based clustering with new selection methods for 
categorical dental data.

Our contribution
Our work contributes significantly to synthetic data generation and class imbalance handling in machine learning:

•	 We introduce the first GA-based synthetic data generation approach that systematically integrates SVMs and 
logistic regression within both the initialization and fitness evaluation phases. Unlike existing GA applications in 
data generation31,36,47 that rely on random initialization and simplistic fitness functions, our method uses SVM 
decision boundaries to intelligently initialize populations near classification boundaries and employs logistic 
regression-based fitness evaluation to ensure synthetic samples contribute meaningfully to model performance. 
This dual-model integration represents a significant departure from traditional GA approaches and addresses 
the critical limitation of generating synthetic samples that may not enhance classification performance.

•	 A critical limitation of existing oversampling techniques is addressed by developing a distribution-aware syn-
thetic data generation method. Unlike SMOTE and ADASYN, which rely on simple interpolation between 
neighboring points, the GA-based approach introduces controlled variations in the feature space. This allows for 
better exploration of potential minority class instances while maintaining the core characteristics of the original 
data distribution, as shown in the KDE plot analyses.

•	 A comprehensive comparison is presented between the Simple Genetic Algorithm (SGA) and SVM-guided GA 
approaches for synthetic data generation. The experiments reveal that incorporating SVM decision boundaries 
enhances the effectiveness of synthetic samples, particularly near classification boundaries where discrimination 
is crucial. The SVM-guided approach consistently outperforms both traditional oversampling methods and ba-
sic GA implementations across the evaluation metrics.

•	 It is demonstrated that the GA-based framework enhances model generalization through strategic synthetic 
data generation. By incorporating machine learning models in the fitness evaluation process, it is ensured that 
synthetic samples meaningfully contribute to the learning process rather than merely balancing the dataset nu-
merically. This strategy addresses common challenges in synthetic data generation, such as amplifying noise or 
producing unrealistic samples that do not aid in classification.

•	 The experimental results across multiple datasets highlight the value of this approach, particularly in severe class 
imbalance scenarios where traditional methods often struggle.

Dataset
The proposed algorithm is evaluated on three benchmark datasets, with their class distributions summarized in 
Table 1.

Credit card fraud detection
The Credit Card Fraud Detection dataset59 comprises credit card transactions made by European cardholders 
over two days in September 2013. With a total of 284,807 samples, only 492 transactions (0.172%) are classified 
as fraudulent, resulting in a highly imbalanced class distribution. This dataset contains 30 features.

Pima Indian diabetes
The Pima Indian Diabetes dataset60 provides information about diabetes cases within a population near Phoenix, 
Arizona. It consists of 768 samples divided into two classes: positive and negative cases. The minority class contains 
268 samples (34.9% of the total), while the majority class comprises 500 samples. This dataset includes a total of 8 
features.

Dataset Majority class Minority class Ratio

Credit card fraud detect 284,315 492 578:1

Pima Indian diabetes 500 268 1.87:1

Phoneme 3818 1586 2.41:1

Table 1.  Class distributions and imbalance ratios of benchmark datasets.
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Phoneme
This dataset61 contains 5404 samples and 5 features, with two classes distinguishing between nasal (class 0) and 
oral (class 1) sounds. The minority class has 1586 samples (29.35% of all samples), while the majority class has 
3818 samples.

Proposed algorithm
In proposed methodology, various machine learning (ML) algorithms, including logistic regression and support 
vector machines (SVM) are utilized to generate optimal equations for the dataset, which are subsequently integrated 
into the Genetic Algorithms (GAs) for population initialization and fitness function evaluation, as shown in Fig. 
1. The process begins with the Original Data, which consists of the raw dataset to be processed. This data is passed 
into the machine learning models for feature extraction and predictive modeling.

Theoretical Foundations of GAs for Synthetic Data Generation Genetic Algorithms (GAs) are particularly 
effective for synthetic data generation in imbalanced datasets due to their evolutionary optimization, which 
addresses the challenges of sparse minority class instances and complex distributions. The schema theorem24 
formalizes GAs’ ability to explore high-dimensional feature spaces:

	
ξ(S, t + 1) ≥ ξ(S, t) · f(S)

f̄
·
(

1 − pc · δ(S)
l

− pm · o(S)
)

� (1)

where ξ(S, t) is the number of schema S instances at generation t, f(S) is schema fitness, f̄  is average fitness, pc 
and pm are crossover and mutation probabilities, δ(S) is the defining length,  is chromosome length, and o(S) 
is schema order. This ensures efficient navigation of non-linear minority class distributions, unlike SMOTE and 
ADASYN’s local interpolation, which may generate noisy samples52,62. Our fitness function (Eqs. 4, 9) prioritizes 
misclassified minority instances, guided by fitness proportionate selection:

	
P (xi) = f(xi)∑

j
f(xj) � (2)

This focuses synthetic data on challenging classification regions, enhancing model performance. Single-point 
crossover (Eq. 10) and mutation (Eq. 11) introduce controlled diversity, ensuring synthetic samples explore new 
feature space regions while remaining representative, unlike GANs and VAEs, which struggle with sparse data 
due to training instability and latent space assumptions63. GAs’ robustness to noise, modeled as:

	
E[L] =

ˆ
L(h(x), y) p(x, y) dx dy� (3)

mitigates outlier effects, outperforming deep generative models in data-constrained settings. These mathematical 
foundations provide rigorous theoretical support, validated by superior F1-scores (Section 7), justifying GAs’ 
effectiveness for class imbalance.

The output of the ML algorithms serves as the starting population for the GA. The next phase is Population 
Initialization, where the initial solutions from the ML models are introduced as candidates in the GA population. 
The GA then proceeds through an iterative process, beginning with Selection, where candidate solutions are 
evaluated based on a fitness function. This fitness function is derived from the ML models’ predictions, ensuring 
that only the most optimal solutions are retained. To introduce diversity and explore the solution space more 
thoroughly, Mutation is applied, where random alterations are made to certain solutions. Following mutation, 

Fig. 1.  Methodology framework for synthetic data generation using a genetic algorithm approach. This figure 
illustrates the process flow of the proposed methodology, from original data to training an NN with synthetic 
data via a Genetic Algorithm.
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Crossover is used to combine features from selected solutions,  producing new off-springs that inherit traits from 
multiple parent solutions. After applying the GA process, synthetic data is generated, which is used to train a 
neural network model, improving its performance by providing a more diverse training set.

ML algorithms
Logistic Regression Logistic regression is widely used in classification analysis that models the probability of a 
binary outcome based on one or more variables. It is particularly suitable for cases where the dependent variable 
can take on two possible outcomes. The logistic regression model is given in Eq. (4).

	 P(y) = Sigmoid(β0 + β1x1 + β2x2 + · · · + βpxp)� (4)

where P(y) is the probability of the class for the dependent variable y being 1, β0 is the intercept, and 
β1, β2, . . . , βp are the coefficients of the independent variables x1, x2, . . . , xp.

Logistic regression is selected due to its effectiveness in handling binary classification problems64 and its 
straightforward implementation and interpretability which make it a suitable choice for initial population 
generation and fitness evaluation in GAs. The logistic regression model is trained on the dataset to produce the 
coefficients β and the intercept β0, which are then used to initialize the GA population and evaluate the fitness 
of individuals.

Support Vector Machines (SVM) Support Vector Machines (SVM) are powerful supervised learning models 
used for classification65 and regression tasks. SVMs aim to find the optimal hyperplane that best separates data 
points of different classes in a high-dimensional space. The optimal hyperplane is defined by maximizing the 
margin between the closest data points of the classes, known as support vectors. SVMs have also been used for 
the imbalanced learning problems. For example, in66 support vector machine ensemble is utilized to effectively 
classify imbalanced data. The decision function for a logistic SVM is given in Eq. (5):

	 f(x) = w · x + b� (5)

where w is the weight vector, x is the input feature vector, and b is the bias term. The objective is to minimize the 
optimization problem as given in Eq. (6):

	
min
w,b

1
2∥w∥2 + C

n∑
i=1

ξi� (6)

subject to the constraints as given in Eq. (7):

	 yi(w · xi + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , n� (7)

Here, yi represents the class labels, ξi are the slack variables that allow for misclassifications, C  is the regularization 
parameter that controls the trade-off between maximizing the margin and minimizing the classification error, 
and n is the number of training samples.

Although nonlinear kernels such as RBF could potentially model more complex minority class distributions, 
we use linear SVMs to maintain computational efficiency during population initialization. This choice ensures 
scalability across large datasets without incurring the heavy computational cost associated with kernel-based 
methods.

GA components
While GAs have traditionally been known for optimization problems, in this study, they are utilized for generating 
an optimized population for the minority class. The two types of GAs used are Simple Genetic Algorithm (SGA) 
and Elitist Genetic Algorithm (EGA)67, and their performance is compared using a range of evaluation metrics, 
providing a comprehensive view of their effectiveness. The key components of GAs that impact their performance 
are Population Initialization, Fitness Function, Parent Selection, Crossover, and Mutation. These components are 
designed to enhance the effectiveness of the proposed approach.

Population Initialization Population Initialization is the first and one of the most crucial steps in GAs. The 
quality of the initial population significantly influences the performance of the algorithm. To enhance the 
initialization process, machine learning algorithms such as Logistic Regression and Support Vector Machines 
(SVM) are utilized to derive the equations that predict the output class on training data. The rationale behind 
selecting these algorithms is their ability to provide a mathematical representation of the data, which facilitates 
the generation of a more informed and diverse initial population. The initial population is created using these 
equations with slight random variations to ensure diversity, as given in Eq. (8).

	 P0 = S + N (0, 0.05)� (8)

where P0 represents the initial population, S is the sample of misclassified minority class instances with central 
probability, and N (0, 0.5) is a normal distribution with mean 0 and standard deviation 0.05. The standard 
deviation can be adjusted based on the scope of features in the dataset to adaptively control the variation 
introduced.

Fitness Function The Fitness Function is a key component of GAs as it determines which samples are 
identified as suitable to proceed to the next generation. In our dataset, the output class format is binary (0 for 
the majority class and 1 for the minority class). The aim is to generate a dataset such that the model trained on it 
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can effectively perform classification on the original test data. For this purpose, emphasis is given to the subset 
of data that is misclassified by logistic regression. The minimum and maximum probabilities of misclassified 
samples of class 1, as well as of the minimum and maximum probabilities of the entire class (from only the 
training dataset), are identified and used in the fitness function. The goal is to generate a synthetic dataset for 
class 1 with probabilities falling mostly between these minimum and maximum probabilities of the misclassified 
class (extracted from logistic regression and support vector machine). By doing so, it is ensured that the synthetic 
samples are representative of the challenging cases, thereby enhancing the model’s ability to correctly classify 
the minority class in the original dataset. The coefficients from the ML algorithms are used to predict the output 
class for each sample in the initial population. Samples with probabilities that lie within the probability range 
of a minority class are considered fit samples and are assigned a fitness score of 1. Among these, samples with 
probabilities within the range of misclassified minority class samples are considered the fittest samples and are 
given a fitness score of 2. Samples whose probabilities do not fall within the minority class probability range are 
assigned a fitness score of 0, as given in Eq. (9). By doing this, samples for the minority class are generated, with 
more emphasis on the misclassified samples.

	
f(x) =

{
2 if Pmin ≤ p ≤ Pmax&MPmin ≤ p ≤ MPmax
1 if Pmin ≤ p ≤ Pmax
0 otherwise

� (9)

where f(x) is the fitness function, Pmin and Pmax are the minimum and maximum probability of minority 
class respectively. MPmin and MPmax are the minimum and maximum probabilities of misclassified samples 
of minority class respectively. These values are extracted from the probabilities output by the machine learning 
model (Logistic Regression or SVM).

Parent Selection Parent Selection is another critical aspect of GAs, where the fitness scores are used to select 
parents for the next generation. In the proposed approach, a tournament selection method with a size of 5 is 
employed, which was found to yield the best results after experimenting with different sizes.. From these 5 
individuals, the one with the highest fitness score is selected as a parent, as described in Algorithm 1.

Algorithm 1.  Tournament selection

Crossover and Mutation Crossover and Mutation are genetic operators used to maintain genetic diversity 
from one generation of a population to the next.

Crossover: Single-point crossover is utilized, where a crossover point is randomly selected, and the genetic 
material is exchanged between two parents to produce offspring, as given in Eq. (10).

	 offspring = [p1(1 : crossover_point), p2(crossover_point + 1 :)]� (10)

Mutation: Mutation introduces random variations in the offspring. Each gene in the offspring has a probability 
of being altered as given in Eq. (11).

	 mutated_gene = gene + N (0, σ)� (11)

where σ is the mutation rate which is 0.01 in our case. Following the approach discussed above, the resulting 
Simple Genetic Algorithm is given in Algorithm 2.
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Algorithm 2.  Simple genetic algorithm

Stopping Criteria for GA Iterations The Genetic Algorithm (GA) iterations were stopped after a fixed number 
of generations (50) across all datasets. This criterion was chosen based on preliminary experiments, which 
showed that fitness values and synthetic data diversity stabilized before reaching 50 generations in most cases. 
Fixing the number of generations ensures computational efficiency while maintaining high-quality synthetic 
data generation.

GA Components and Hyperparameter Specification The hyperparameters for Simple Genetic Algorithm 
(SGA), Elitist Genetic Algorithm (EGA), and Support Vector Machine-based Genetic Algorithm (SVMGA) 
were configured to balance computational efficiency and solution quality. The key settings were:

•	 Population Size: Varied based on the target synthetic data percentage (20%–100% of majority class size)..
•	 Number of Generations: 50.
•	 Crossover Probability: 0.5.
•	 Mutation Probability: 0.01.
•	 Selection Method: Tournament selection (size: 5).
•	 Elitism (EGA only): Top 2 individuals retained.
•	 Initialization: Population initialized near ML Models decision boundaries.

These settings enabled better exploration and convergence, with crossover ensuring diversity and mutation 
preventing stagnation. EGA’s elitism preserved high-quality solutions, while SVMGA’s initialization focused the 
search near critical decision boundaries, enhancing performance across datasets.

Elitist genetic algorithm
Elitism is a strategy that ensures the best individuals (elite) are retained across generations. In the Elitist GA, a 
specified number of elite individuals (2 in our case) with the highest fitness scores are carried over to the next 
generation without alteration, as given in Algorithm 3. This mechanism ensures that the best solutions are not 
lost due to crossover or mutation, contributing to a steady improvement in the overall fitness of the population.
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Algorithm 3.  Elitist genetic algorithm

Neural network model
After the synthetic dataset is generated using the Genetic Algorithm and merged with the original dataset, a Neural 
Network is trained to predict the minority class. Initially, a simplified ANN model with only two hidden layers is 
tested. followed by a more complex model with batch normalization and dropout to stabilizing and speed up the 
learning process and prevent overfitting. This refined model facilitates the comparative analysis of the effectiveness 
of the synthetic dataset.

Time complexity analysis
In terms of computational complexity, SMOTE and ADASYN are relatively lightweight, with time complexities 
of approximately O (n · k · d), where n is the number of samples, k is the number of neighbors, and d is the 
dimensionality of the feature space. These methods rely on nearest-neighbor computations and linear interpolation, 
making them suitable for quick augmentation but limited in generating diverse data. Deep learning approaches 
like Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) offer more sophisticated 
data generation capabilities but at significantly higher computational costs, typically O(E · B · M), where E 
is the number of training epochs, B is the batch size, and M is the model complexity, which can be orders of 
magnitude larger than traditional methods due to the neural network architectures involved. Additionally, these 
approaches require substantial training data to achieve stable performance, potentially limiting their application 
in extreme imbalance scenarios where minority class samples are scarce.

In contrast, the GA-based methods introduce additional overhead due to their iterative nature. For a population 
size P, number of generations G, and fitness evaluation cost F, the overall complexity is O (G · P · F ). In our 
implementation, F primarily depends on model-based probability predictions using logistic regression or SVM, 
which are efficient for low-to-moderate dimensional data. While the GA-based methods are computationally 
more intensive, they operate on relatively small synthetic batches and converge within a limited number of 
generations (typically G ≤ 50), making the runtime practical for offline data preparation. Furthermore, the 
improved performance and generalization offered by the GA-generated data justify this modest computational 
cost, especially in critical tasks where minority class detection is vital. These theoretical complexity analyses are 
further validated by empirical runtime and memory usage measurements presented in Subsection 7.6, which 
demonstrate the practical tradeoffs between computational efficiency across all methods discussed.

Distribution of synthetic data vs. original data
The comparative analysis of synthetic data distributions through various methodologies reveals distinct patterns 
that highlight fundamental differences between traditional oversampling techniques and the proposed genetic 
algorithm-based approaches. To understand how the GA methods (SGA and SVM-based GA) differ from 
SMOTE, ADASYN, GAN and VAE in replicating the underlying distribution of data, a detailed analysis is 
performed using using the PIMA Indian Diabetes dataset. The distributions are illustrated using KDE plots, 
where the y-axis represents the Probability Density Estimate (PDE) and the x-axis represents the features.

The analysis shows that traditional oversampling methods demonstrate a notably conservative approach to 
synthetic data generation. As shown in Fig. 2, the synthetic data generated by SMOTE is constrained to lie within 
the convex hull formed by the existing minority class instances and therefore closely resembles the distribution 
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of the original dataset, with only slight variations in some features. This high correlation between the original 
and synthetic data points limits the exploration of new, potentially beneficial regions in the feature space.

The performance of the ADASYN (Adaptive Synthetic Sampling) method is also evaluated on the same 
datasets. Like SMOTE, ADASYN aims to balance class distribution by creating synthetic samples. It adapts to 
the local density distribution of the data, using a density-based sampling strategy to generate more synthetic 
data in regions where the minority class is sparse, effectively focusing on harder-to-learn examples. However, as 
shown in Fig. 3, despite these adaptations, the ADASYN-generated data still largely overlaps the original data 
distribution, not exploring beyond the constrained space defined by existing minority class instances.

On the other hand, the SGA-based method introduces a certain variability into the synthetic data while still 
capturing the broader features of the original data, as observed in the differences between the distributions of 
the original and synthetic datasets in Fig. 4. Moreover, this method produces noticeably different distribution 
pattern, characterized by enhanced feature space exploration and evolutionary diversity.

In contrast to these traditional methods, Variational Autoencoders (VAEs) represent a deep learning 
approach to synthetic data generation. As illustrated in Fig. 5, VAEs encode the original data into a latent space 
and then decode it to generate new samples. While VAEs can theoretically create diverse synthetic instances 
by sampling from the learned latent distribution, the analysis reveals that VAE-generated data exhibits distinct 
characteristics. The distribution shows that VAEs tend to capture the central tendencies of the original data but 
may smooth out some of the finer details and extremes of the distribution. Similarly, the GAN-based approach 
introduces a higher degree of variability while retaining essential distribution characteristics, as shown in Fig. 
6. By learning the underlying data distribution, GANs generate synthetic samples that approximate the original 
dataset, albeit with occasional deviations in features such as Skin Thickness and Insulin. This variability reflects 
GAN’s capacity to capture complex data patterns while enabling exploration of diverse feature spaces.

This variability is due to the genetic diversity introduced and propagated by the GA methods during the 
data generation process. The population is randomly initialized around a starting point, crossover is applied to 
merge features from different individual samples, and samples are also mutated. Controlled mutation introduces 
strategic variations in the feature space. Moreover, the fitness function allows for a range of possible solutions 
that approximately fulfill the target criteria rather than imposing strict uniformity. The combination of these 
mechanisms across successive generations leads to a diverse set of data points, which differ considerably from 
the original data points but still retain their most significant attributes. This expanded exploration is particularly 
significant for discovering new, yet valid, instances of the minority class.

The SVM-based GA method exhibits a more nuanced distribution pattern, as shown in Fig. 7. Notable 
variations in the synthetic dataset are produced; however, the distribution aligns more closely with the original 
dataset compared to the SGA method. This balanced behavior can be attributed to three key factors:

Fig. 2.  Comparison of original and synthetic data generated by SMOTE.
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Fig. 4.  Comparison of original and synthetic data generated by SGA.

 

Fig. 3.  Comparison of original and synthetic data generated by ADASYN.
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Fig. 6.  Comparison of original and synthetic data generated by GAN.

 

Fig. 5.  Comparison of original and synthetic data generated by VAE.
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•	 The SVM decision boundaries guide synthetic data generation, creating meaningful clusters near critical re-
gions.

•	 The dual-layered fitness function ensures that synthetic samples maintain proximity to the original distribu-
tion while introducing meaningful variations.

•	 The synthetic data points concentrate in clusters at the decision boundary, where class separation is most 
crucial.

The theoretical foundations of these distribution patterns stem from the fundamental principles of genetic 
algorithms. The combination of initialization, crossover mechanisms, and mutation operators leads to synthetic 
samples that are both diverse and valid within the problem domain. Significant implications for downstream 
machine learning tasks are associated with this approach, particularly in enhancing model generalization 
through exposure to a more diverse set of training examples while preventing overfitting that might occur with 
more closely clustered synthetic data. A balance between maintaining the essential characteristics of the original 
data and introducing meaningful variations that contribute to improved model performance is thus achieved by 
the proposed genetic algorithm-based method. This results in the production of a comprehensive training set 
that helps the model generalize better.

To further examine the empirical differences in data distributions, a t-SNE projection was applied to the 
original training set of Phoneme together with all seven synthetic datasets as shown in Fig. 8. In this two-
dimensional embedding, each point corresponds to a single sample, colored by its source. The original data 
forms a compact yet clearly structured cluster, reflecting the intrinsic feature correlations present in the raw 
observations. The t-SNE projection in Fig. 8 presents the two-dimensional embedding of the original training 
data alongside seven distinct synthetic datasets. Each point represents an individual sample, colored according 
to its source: the original dataset, GA-generated data (both basic and enhanced implementations), SMOTE and 
its variant, and samples produced by ADASYN, GAN, and VAE approaches. The original data exhibits a well-
defined cluster structure, while the GA-based synthetic samples closely follow its overall topology but introduce 
additional dispersion along key feature axes. In contrast, SMOTE and ADASYN yield denser, more uniform 
clusters around the original distribution, and the GAN- and VAE-generated points display broader exploration 
of the feature space. These patterns confirm that each generation method imparts a unique distributional 
signature, with GA variants striking an effective balance between fidelity and diversity.

To further support explainability and practical model interpretability, we analyzed how GA-generated 
synthetic samples influence the decision boundaries of classifiers. Our observations indicate that these samples 
frequently populate regions close to class boundaries or areas with high misclassification rates. As a result, they 
encourage more refined and adaptive decision surfaces compared to interpolation-based methods like SMOTE 
and ADASYN, which often reinforce already well-represented regions. This effect is especially noticeable in SVM-
guided GA, where the fitness function inherently targets the most informative zones near decision margins. By 

Fig. 7.  Comparison of original and synthetic data generated by SVM-based GA.
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placing synthetic instances in these sensitive regions, GA-based approaches improve the classifier’s capacity to 
learn complex separations, thus producing more interpretable and trustworthy models. Consequently, beyond 
performance gains, the proposed method also enhances the explainability of learned models by influencing 
decision boundaries in a meaningful and controlled manner.

Quantitative noise analysis
To empirically assess the claim that GA-based methods introduce less harmful noise, we computed the average 
Signal-to-Noise Ratio (SNR) for synthetic data generated by different methods across all datasets. SNR is a 
widely used metric to quantify the amount of noise relative to the signal, where higher values indicate cleaner 
and more consistent data generation.

Table 2 summarizes the average SNR values for each synthetic data generation method.
While SNR values are comparable across most methods–especially between SMOTE, ADASYN, and GA 

variants–the crucial distinction lies in the nature of the variability introduced. Traditional oversampling methods 
like SMOTE and ADASYN often produce synthetic samples that closely mimic existing data points, limiting 
the exploration of new patterns. In contrast, our GA-based methods introduce purposeful and fitness-guided 

Method Average SNR (dB)

SMOTE 27.87

ADASYN 26.83

GAN 20.28

VAE 29.58

GA (SGA) 26.29

Elitist GA (EGA) 23.40

SVM-guided GA (SVMGA) 28.44

Table 2.  Average signal-to-noise ratio (SNR in dB) for various methods. Significant values are in bold.

 

Fig. 8.  t-SNE projection of the original training set of and seven synthetic datasets. GA-based samples 
maintain the core structure of the original cluster while extending its boundaries, SMOTE/ADASYN densely 
fill the minority-class envelope, and generative models (GAN, VAE) explore broader feature-space regions. 
This comparative embedding highlights the balance between data fidelity and diversity achieved by each 
synthetic data generation method.
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variability, especially near class boundaries or underrepresented regions in the feature space. This controlled 
variability does not equate to harmful noise. Instead, it enhances the diversity of the training set in a structured 
manner, allowing models to better generalize and learn complex decision boundaries. The slightly lower SNR 
of EGA, for instance, reflects this diversity rather than random noise, as evidenced by its strong classification 
performance across multiple datasets.

Results
In this study, the dataset is initially split into training and test sets randomly. Synthetic data is generated using 
the training data, and the model is trained on the combined dataset (original training data and synthetic data). 
The original test data, which is kept separate from the start, is used for evaluation. This approach aims to evaluate 
the effectiveness of synthetic data in improving classification performance when applied to real-world data. 
Specifically, the original dataset serves as a reference to gauge the enhancements brought about by synthetic data 
augmentation.

In evaluating the performance of our data generation models, a range of performance metrics is utilized, 
including accuracy, precision, recall, F1 score, and ROC AUC score. While accuracy is a common measure, it 
alone can be misleading, especially in the presence of class imbalance. Additionally, as demonstrated by another 
study68, the Area Under the ROC Curve (AUC) is a valuable metric for assessing the overall discriminative 
ability of the model across all classification thresholds, offering a more comprehensive evaluation beyond 
what accuracy alone can provide. As noted by69, accuracy might mask poor performance on minority classes, 
leading to an overestimation of a model’s effectiveness. Therefore, other metrics are also considered to obtain a 
comprehensive overview of the model’s performance.

In this study, the noise introduced by synthetic data generation methods such as SMOTE and ADASYN is 
also analyzed, as it can compromise the quality of the generated data and, consequently, the performance of 
machine learning models.

Moreover, as discussed by70, the generation of synthetic training data often leads to the production of 
unwanted noise that can adversely affect the domain adaptation of deep learning models. The noise introduced 
by synthetic data generation methods such as SMOTE and ADASYN is analyzed and compared with our 
proposed GA-based methods, which focus on producing noiseless synthetic data.

Credit card fraud detection
Initially, logistic regression is employed to generate an equation for both population initialization and the fitness 
function. Subsequently, support vector machine (SVM) is applied for the purposes of population initialization 
and the fitness function. These methods ensure a feasible starting point for the genetic algorithms. Following 
this, models are trained on both synthetic and original datasets, with both being tested on a consistent subset 
of the original data. Synthetic data is generated using state-of-the-art methods, SMOTE and ADASYN. Our 
experiments involve the implementation of Logistic Regression-based Genetic Algorithms (SGA & EGA) and 
SVM-based Genetic Algorithm. The performance metrics of models trained on synthetic data by our proposed 
method are compared with those of models trained on the synthetic dataset generated by SMOTE and ADASYN, 
and the proposed methods show notable improvements, as given in Table 3.

SMOTE Results SMOTE shows moderate initial performance with low precision and F1 scores at low data 
sampling, but precision and F1 score drop more as more data is sampled, particularly precision falling to 57.2% 
and F1 score decreasing to 68.2% when 80% of the data is sampled. This indicates that as synthetic data increases, 
patterns too specific to the data are learned by the model (overfitting), and hence the generalizability of the model 
is reduced. Despite this, the ROC AUC remains stable around 91.6%-92.3%, and the accuracy in predicting the 
minority class steadily increases proportional to the increase in data size. SMOTE achieves the highest Recall 
(85.1) and ROC AUC (91.6), but this leads to the lowest precision (57.1) and F1 score (68.3) after 80% sampling. 
It shows that the model trained on SMOTE-based generated synthetic data becomes more biased towards class 
1, which tends to increase the number of false positives.

ADASYN Results In Table 3, the ADASYN results show a decline in precision and F1 scores as the percentage 
of synthetic data increases, particularly after 60% or more of the data is sampled. Initially, the method achieves 
high precision (80.1%) and a balanced F1 score (79.5%) at 20% sampling. However, at 80% data usage, precision 
drops to 57.2%, and the F1 score decreases to 68.2%, despite a stable high ROC AUC of 92.3%. Similar to 
SMOTE, this decline suggests that while the ADASYN method is effective in balancing class distribution, noise is 
introduced as the amount of synthetic data samples increases. This leads to a reduction in precision as the model 
starts to overfit. This trend is not observed in our proposed GA-based methods.

GAN Results The results of the GAN-based approach, as detailed in Table 3, highlight its potential in 
generating synthetic data for fraud detection. At lower data usage levels (20%), GAN achieves relatively high 
precision (83.0%) and balanced F1 scores (82.4%), indicating a good initial performance. However, as the 
percentage of synthetic data increases, the results suggest diminishing returns. For example, at 80% data usage, 
precision drops to 61.6%, and the F1 score falls to 74.2%. This decline may indicate that the GAN-generated data 
introduces noise or fails to generalize effectively as the volume of synthetic data increases. Despite this, GAN 
maintains a competitive ROC AUC (80.8%-90.1%) across all data splits, showcasing its capability to distinguish 
between classes. Overall, while GAN demonstrates promise, it faces challenges in maintaining precision and F1 
scores as the data volume scales up, suggesting room for improvement in its generative capacity.

VAE Results The results of the VAE-based approach, as presented in Table 3, demonstrate its effectiveness in 
generating synthetic data for fraud detection. At 20% data usage, VAE achieves respectable precision (82.0%) 
and recall (80.2%), resulting in a competitive F1 score (81.1%) and strong ROC AUC (90.1%). As the percentage 
of synthetic data increases, VAE shows better stability compared to traditional methods like SMOTE and 
ADASYN. For instance, at 80% data usage, VAE maintains a precision of 84.2% and F1 score of 82.6%, notably 
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higher than SMOTE’s 57.1% precision and 68.3% F1 score at the same threshold. However, VAE experiences 
a slight performance decline at 100% data usage, with recall dropping to 73.9% and F1 score decreasing to 
79.6%. This suggests that while VAE effectively captures the underlying data distribution at moderate synthetic 
data volumes, it may introduce some generalization challenges when exclusively relying on synthetic samples. 
Nevertheless, VAE demonstrates more consistent performance across different data sampling percentages 
compared to SMOTE and ADASYN, indicating its reliability in generating quality synthetic data for imbalanced 
credit card fraud detection scenarios.

Logistic Regression-Based GA Results The results of the data generated by the Logistic Regression-based GA 
for the Credit Card Fraud Detection dataset, as demonstrated in Table 3, show a consistent improvement in 
performance metrics as the percentage of data usage increases. The data generated by SGA follows the trends of 
improved performance with increasing data. Overall, it achieves greater accuracy in minority class predictions, 
i.e., 83.3%. Interestingly, the highest precision of 90.5% is observed at 20% data sampling, and the lowest 
precision of 78.8% is recorded at 100% data sampling. The F1 score remains relatively stable throughout. The 
ROC AUC increases steadily.

The experimental results obtained from the data generated by EGA also demonstrate a consistent improvement 
in performance metrics with the increase in available data. It starts with precision and F1 scores better than SGA 
at 20% data usage, but as data usage increases, EGA shows a more pronounced improvement. For example, at 
20% data usage, EGA achieves an F1 score of 84.1% and a ROC AUC of 89.4%, compared to SGA’s 82.7% F1 
score and 88.0% ROC AUC. This trend continues at higher data levels, with EGA reaching a final F1 score of 
81.1% and a ROC AUC of 92.0% at 100% data usage, outperforming SGA at both metrics.

SVM-Based GA Results The SVM-based GA results demonstrate high accuracy and precision across all data 
splits, with ROC AUC consistently above 90%, indicating the strong discriminative power of this classifier. The 
accuracy and precision remain high, particularly with increasing data percentages, highlighting the method’s 
effectiveness in correctly identifying the minority class samples. The Support Vector Machine Genetic Algorithm 
(SVMGA) method achieves the highest Recall (83.3) and highest ROC AUC (92.0), indicating its superior ability 
to capture patterns of class 1 and differentiate between classes more effectively than other methods.

% Metrics SMOTE9 ADASYN11 GAN71 VAE63 SGA EGA SVMGA

20%

Accuracy 99.9 99.9 99.9 99.9 99.9 99.9 99.9

Precision 87.8 80.1 83.0 82.0 90.5 90.0 86.7

Recall 78.3 79.0 81.8 80.2 76.0 79.0 80.4

F1 Score 82.7 79.5 82.4 81.1 82.7 84.1 83.4

ROC AUC 89.1 89.5 90.1 90.1 88.0 89.4 90.2

40%

Accuracy 99.9 99.9 99.9 99.9 99.9 99.9 99.9

Precision 69.2 77.4 86.8 83.8 85.0 93.1 84.4

Recall 83.3 81.8 81.1 82.6 82.6 78.9 82.6

F1 Score 75.6 79.5 83.9 83.2 83.8 85.5 83.5

ROC AUC 91.6 90.9 90.5 91.3 91.3 89.5 91.3

60%

Accuracy 99.9 99.9 99.9 99.9 99.9 99.9 99.9

Precision 71.8 72.1 85.7 84.4 85.0 87.0 83.8

Recall 84.7 82.6 78.2 82.6 82.6 82.6 83.2

F1 Score 77.7 77.0 81.8 83.5 83.8 84.7 82.9

ROC AUC 92.3 91.2 89.1 91.3 91.3 91.3 92.3

80%

Accuracy 99.9 99.9 99.9 99.9 99.9 99.9 99.9

Precision 57.1 57.2 93.4 84.2 86.3 87.6 83.3

Recall 85.1 84.5 61.6 81.1 82.1 82.1 83.3

F1 Score 68.3 68.2 74.2 82.6 84.1 84.8 83.3

ROC AUC 91.6 92.3 80.8 90.5 91.3 91.3 91.6

100%

Accuracy 99.9 99.9 99.9 99.9 99.9 99.9 99.9

Precision 68.5 73.1 92.4 86.4 78.8 78.4 82.6

Recall 83.1 82.4 71.0 73.9 83.3 84.0 82.5

F1 Score 75.1 77.5 80.3 79.6 81.0 81.1 82.5

ROC AUC 91.9 92.3 85.5 86.9 91.6 92.0 92.0

Table 3.  Comparison of credit card fraud detection results across different models. This table presents a 
detailed comparison of performance metrics such as accuracy, precision, recall, F1 score, and ROC AUC 
achieved by different models (SMOTE, ADASYN, GAN, VAE, SGA, EGA, and SVMGA) on the credit card 
fraud detection dataset at varying percentages of data usage. Significant values are in bold.
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Models comparison
In this section, the performances of models are compared by taking average values of all the metrics including 
accuracy, precision, recall, F1 score, and ROC AUC. The results show the dominance of the models using our 
proposed GA-based synthetic data, as given in Table 4.

From Table 4, it is observed that the accuracy remains consistent across all models. The highest precision 
is achieved by EGA (87.3), followed by SGA (85.12), GAN (84.9), VAE (84.1), and SVMGA (83.92). A notable 
difference is found between the precision of the proposed GA-based models and that of SMOTE (70.88) and 
ADASYN (71.98). All three of the proposed methods, as well as GAN and VAE, show higher precision compared 
to SMOTE and ADASYN, indicating that the false positive rate in these models is significantly lower. While the 
highest recall (82.9) is achieved by SMOTE, followed closely by SVMGA (82.40) and both SGA and EGA (81.32), 
both GAN (74.7) and VAE (80.1) lag behind in this metric. This suggests that while SMOTE is slightly better at 
identifying all positive instances, the GA-based models still perform more competitively with a more balanced 
precision-recall trade-off than GAN and VAE. Similarly, the proposed EGA-based model exhibits the highest 
F1 score (84.04), followed by SGA (83.38), SVMGA (83.12), VAE (82.0), and GAN (80.5). SMOTE (75.88) and 
ADASYN (76.34) perform poorly in terms of F1 score. Regarding ROC AUC scores, SVMGA achieves the 
highest value (91.48), followed by SMOTE (91.30) and ADASYN (91.24), while SGA and EGA both score 90.7, 
VAE achieves 90.0, and GAN shows the lowest performance with 87.2, indicating its limited ability to distinguish 
between classes effectively.

The Precision-Recall Curve after 100% data sampling, as illustrated in Fig. 9, shows similar trends with slightly 
varying values. The Average Precision of SGA (0.85) is improved, while SVMGA and ADASYN experience slight 
decreases, with AP scores of 0.85 and 0.79, respectively. Despite the slight decline, the highest AP score of 0.85 
is still achieved by SVMGA, matching the performance of SGA and EGA, which also have an AP score of 0.85. 
SMOTE matches the AP score of 0.83 with the Original data.

The ROC AUC is plotted after 100% data sampling, which provides a complete picture of how well the model 
can separate the two classes, considering all possible thresholds, as given in Fig. 9. The highest ROC AUC score 
of 0.97 is achieved by the SVMGA and EGA methods, indicating that models trained on data generated by these 
methods can effectively distinguish between the classes. The SGA method attains a slightly lower ROC AUC 
score of 0.96, while both SMOTE and ADASYN match the original data’s ROC AUC score of 0.95. The proposed 
GA-based methods are found to outperform the SMOTE and ADASYN methods by a significant margin.

Statistical Significance Testing of F1 Scores To determine whether the observed differences in model 
performance are statistically significant, pairwise t-tests were conducted on the average F1 scores of all evaluated 
models. Table 5 presents the corresponding p values and mean differences for each comparison. The results 
indicate that the proposed GA-based methods–particularly EGA and SGA–frequently achieve p-values below 
the conventional threshold of 0.05 when compared to traditional oversampling techniques such as SMOTE and 
ADASYN. For example, EGA demonstrates statistically significant improvements over SMOTE (p = 0.0307) and 
ADASYN (p = 0.0298). Similarly, SGA exhibits statistically significant differences when compared to SMOTE (p 
= 0.0475) and ADASYN (p = 0.0470).

In contrast, comparisons between GA-based approaches and generative models such as VAE and GAN reveal 
fewer statistically significant differences. Although VAE achieves competitive F1 scores, the difference between 
EGA and VAE is statistically significant (p = 0.0030), as is the comparison between SGA and VAE (p = 0.0149). 
However, GAN does not yield statistically significant differences in most pairwise comparisons, suggesting its 
performance is not consistently distinguishable from the other methods.

PIMA Indian diabetes
The results with the PIMA Indian Diabetes dataset show notable differences in the performance of the EGA, 
SGA, and SVMGA methods. Overall, it is observed that SVMGA outperforms all other methods, indicating that 
more reliable and discriminative synthetic data is generated by SVMGA, as given in Table 6.

SMOTE Results The model trained on the synthetic data generated by the SMOTE method shows a 
considerable improvement in recall and F1 Score as the percentage of sampled synthetic data increases up to 
40%, with the highest value of precision being observed at this point compared to earlier stages, as given in Table 
6. However, at higher percentages (80% and 100%), precision and F1 Score begin to decline, particularly at 100%, 
where both metrics drop significantly. This demonstrates that the ability of the model to accurately predict class 
labels decreases with the increase in generated synthetic data samples.

Metric SMOTE9 ADASYN11 GAN71 VAE63 SGA EGA SVMGA

Accuracy 99.9 99.9 99.9 99.9 99.9 99.9 99.9

Precision 70.88 71.98 84.9 84.1 85.12 87.3 83.92

Recall 82.90 82.06 74.7 80.1 81.32 81.32 82.40

F1 score 75.88 76.34 80.5 82.0 83.38 84.04 83.12

ROC AUC 91.30 91.24 87.2 90.0 90.70 90.70 91.48

Table 4.  Average model performance on credit card fraud detection dataset.  This table presents the 
performance metrics (accuracy, precision, recall, F1 score, and ROC AUC) for models trained with different 
synthetic data generation techniques (SMOTE, ADASYN, GAN, VAE, SGA, EGA, and SVMGA) on the credit 
card fraud detection dataset. Significant values are in bold.
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ADASYN Results The results of the ADASYN method on the PIMA dataset, as given in Table 6, show that 
while balanced performance across different metrics is maintained, the overall effectiveness slightly decreases 
when using the full dataset (100%), with lower precision (55.2%) and ROC AUC (71.4%) compared to earlier 
stages. This suggests that noise may be introduced by ADASYN when generating synthetic data, which can affect 
the model’s precision and generalization as more data is utilized. The method demonstrates optimal performance 
with the highest ROC AUC (73.4%) after 40% sampling on the dataset.

Fig. 9.  Resultant Images of all three datasets with 100% data sampling where (a) represents the PR-Curve for 
the Credit Card Fraud Detection dataset, (b) represents the ROC-AUC for the Credit Card Fraud Detection 
dataset, (c) represents the PR-Curve for the PIMA dataset, (d) represents the ROC-AUC for the PIMA dataset, 
(e) represents the PR-Curve for the Phoneme dataset, and (f) represents the ROC-AUC for the Phoneme 
dataset.
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GAN Results The GAN-based approach on the PIMA Indian Diabetes dataset, as shown in Table 6, demonstrates 
inconsistent performance across sampling percentages. At 20%, it achieves moderate precision (74.6%) but low 
recall (59.5%), missing many positive cases. As sampling increases to 40%, performance significantly deteriorates 
with precision dropping to 54.9% and accuracy decreasing to 67.0%–the lowest among all methods at this level. 
Although recall improves at 40% and 60% sampling (89.9% and 82.0%), precision suffers, indicating issues with 
generating balanced synthetic data. This instability suggests GAN fails to accurately capture the underlying data 
distribution of the PIMA dataset. By 100% data sampling, GAN’s F1 Score (63.9%) is among the lowest of all 
methods, demonstrating its limitations in generating quality synthetic data for this classification task.

VAE Results The VAE method on the PIMA Indian Diabetes dataset, as presented in Table 6, shows several 
shortcomings across different sampling percentages. Starting with a suboptimal 58.8% precision at 20% 
sampling–among the lowest of all methods–VAE struggles to generate discriminative synthetic samples. While 
precision improves to 68.9% at 40% sampling, the recall remains stagnant at 67.4%, indicating a persistent 

% Metrics SMOTE9 ADASYN11 GAN71 VAE63 SGA EGA SVMGA

20%

Accuracy 71.1 75.0 76.6 73.1 72.1 74.3 78.2

Precision 61.0 67.9 74.6 58.8 64.5 65.9 73.6

Recall 62.0 61.8 59.5 67.4 69.6 65.1 62.9

F1 Score 62.2 64.7 66.2 65.9 65.6 65.5 67.8

ROC AUC 69.1 71.8 73.4 72.0 71.8 72.0 74.4

40%

Accuracy 75.0 75.4 67.0 75.5 73.0 75.6 75.4

Precision 65.6 67.4 54.9 68.9 65.3 67.0 67.0

Recall 73.0 67.4 89.9 67.4 69.6 70.7 68.5

F1 Score 69.1 67.4 65.5 68.1 67.4 68.9 67.8

ROC AUC 74.5 73.4 69.7 74.2 73.2 74.5 73.7

60%

Accuracy 73.2 74.0 71.4 72.7 76.9 75.1 78.9

Precision 64.1 65.2 59.3 65.1 73.5 67.0 73.7

Recall 66.3 67.4 82.0 62.9 56.0 66.3 66.3

F1 Score 65.1 66.3 68.8 64.0 64.0 66.6 69.8

ROC AUC 71.5 72.4 73.4 70.9 71.8 72.9 75.7

80%

Accuracy 70.5 67.6 72.2 74.0 60.6 69.0 76.1

Precision 65.0 56.7 60.0 62.8 57.0 60.0 60.8

Recall 71.0 85.0 84.2 79.7 82.0 78.0 88.3

F1 Score 67.9 68.0 70.0 70.3 67.3 67.8 72.0

ROC AUC 70.0 72.0 74.5 75.1 67.0 72.0 75.7

100%

Accuracy 68.8 69.0 69.2 76.2 71.3 73.6 76.4

Precision 59.1 55.2 58.3 67.7 70.8 60.6 59.0

Recall 72.6 83.4 70.7 73.0 76.0 74.0 91.4

F1 Score 65.2 66.4 63.9 70.2 73.3 66.6 71.5

ROC AUC 71.0 71.4 69.5 75.6 72.0 74.0 76.3

Table 6.  Comparison of PIMA Indian results across different models. This table shows the performance 
metrics (accuracy, precision, recall, F1 score, and ROC AUC) for models trained with different synthetic 
data generation techniques (SMOTE, ADASYN, GAN, VAE, SGA, EGA, and SVMGA) on the PIMA Indian 
diabetes dataset at varying percentages of data usage. Significant values are in bold.

 

Model SMOTE9 ADASYN11 GAN71 VAE63 SGA EGA SVMGA

SMOTE 75.88 − 0.46 (0.7291) − 4.64 (0.0305) − 6.12 (0.0754) − 7.20 (0.0475) − 8.16 (0.0307) -7.24 (0.0355)

ADASYN 0.46 (0.7291) 76.34 − 4.18 (0.0023) − 5.66 (0.0734) − 6.74 (0.0470) − 7.70 (0.0298) − 6.78 (0.0326)

GAN 4.64 (0.0305) 4.18 (0.0023) 80.52 − 1.48 (0.4583) − 2.56 (0.2425) − 3.52 (0.1224) − 2.60 (0.1959)

VAE 6.12 (0.0754) 5.66 (0.0734) 1.48 (0.4583) 82.00 − 1.08 (0.0149) − 2.04 (0.0030) − 1.12 (0.1584)

SGA 7.20 (0.0475) 6.74 (0.0470) 2.56 (0.2425) 1.08 (0.0149) 83.08 − 0.96 (0.0261) − 0.04 (0.9352)

EGA 8.16 (0.0307) 7.70 (0.0298) 3.52 (0.1224) 2.04 (0.0030) 0.96 (0.0261) 84.04 0.92 (0.2125)

SVMGA 7.24 (0.0355) 6.78 (0.0326) 2.60 (0.1959) 1.12 (0.1584) 0.04 (0.9352) − 0.92 (0.2125) 83.12

Table 5.  Pairwise comparison of mean F1-scores across various different models on credit card fraud detection 
dataset. Diagonal entries show the average F1-score for each model. Off-diagonal entries represent the mean 
difference in F1-score between the row and column models, followed by the p-value from a paired t-test in 
parentheses. Significant values are in bold.
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problem with identifying positive cases. As sampling increases to 60%, VAE shows a regression in performance 
with recall dropping to 62.9%, demonstrating an inability to maintain consistent improvement as more 
synthetic data is incorporated. Although VAE reaches 76.2% accuracy at 100% sampling, its overall metrics 
still fall short compared to GA-based methods, particularly in recall and F1 Score when compared to SVMGA. 
These limitations highlight VAE’s deficiency in generating optimal synthetic data for imbalanced classification 
problems like the PIMA dataset.

Logistic Regression-based GA Results The results from the experiments on the PIMA Indian Diabetes dataset 
show notable differences in the performance of the EGA and the baseline (SGA) methods across various metrics, 
as given in Table 6. Overall, it is observed that SGA outperforms the EGA methods, particularly in terms of 
precision and F1 Score, indicating that more reliable and discriminative synthetic data is generated by SGA. 
When focusing on experimental results obtained after 100% data sampling, the advantages of SGA become 
more apparent. It achieves better precision (70.8) and F1 Score (73.3) compared to EGA, which reports precision 
values of 60.6 and F1 Scores of 66.6 after 100% data sampling. The ROC AUC for EGA at 100% data sampling is 
superior (74.0) compared to SGA (72.0), suggesting a stronger overall performance in distinguishing between 
classes.

SVM-based GA Results The results from the SVM-based GA, as given in Table 6, demonstrate consistent 
improvement in performance metrics as the percentage of data used increases. Notably, the highest performance 
is achieved with 100% sampling of the data, where strong recall (91.4%), F1 Score (71.5%), and ROC AUC 
(76.3%) are shown, indicating that the SVM-based GA is effective in enhancing the model’s ability to identify 
true positives and maintain a balanced performance across various metrics as more data is leveraged. Initially, 
after 20% sampling, SVMGA achieves better scores across accuracy (78.2), precision (73.6), F1 Score (67.8), and 
ROC AUC (74.4), indicating the effectiveness of the data generated by SVMGA. All other methods perform 
similarly across all metrics but remain lower than SVMGA, with SGA achieving the highest recall of 69.6.

Models comparison
As given in Table 7, it is observed that the SVM-based method exhibits the best performance in terms of 
accuracy (77.0), precision (66.82), F1 Score (69.78), and ROC AUC (76.16) while GAN shows highest recall 
(77.26) followed by SVM-based method (75.48). This indicates that the SVM-based GA method generates data 
with considerable variability while effectively capturing the critical decision boundaries of the original data.

The Precision-Recall curve after 100% sampling on the data, illustrated in Fig. 9, shows a considerable 
improvement in the performance of the SGA (0.75) and EGA (0.74) methods, while the SVM-based GA (0.75) 
method maintains its highest position. This is attributed to the availability of the entire dataset, which introduces 
more diversity, inherently suitable for the GA-based methods. The performance of the ADASYN method worsens 
slightly, while the rest of the methods do not show a pronounced change in their outputs.

Figure  9 shows the ROC (Receiver Operating Characteristic) curve for the original and synthetic data and is 
used to evaluate the trade-off between the true positive rate (sensitivity) and the false positive rate (1-specificity) 
for different threshold values, with the Area Under the Curve (AUC) providing an overall measure of model 
performance. The SVM-based Genetic Algorithm (AUC = 0.84) outperforms all other methods, indicating that 
it is the most effective in improving model performance by maximizing the true positive rate while minimizing 
the false positive rate. SMOTE-based methods (AUC = 0.80) perform comparably to the original data (AUC = 
0.80). EGA (AUC = 0.81) and ADASYN (AUC = 0.81) slightly outperform the original data-trained model but 
do not match the performance of the SVM-based GA. SGA (AUC = 0.83) shows better performance than EGA 
and ADASYN, though it still lags behind the SVM-based GA. Overall, the SVM-based GA and SGA-based 
approaches demonstrate superior effectiveness in handling class imbalance, as reflected by their higher AUC 
scores.

Statistical Comparison of F1 Scores on the PIMA Dataset Table 8 presents pairwise comparisons of mean 
F1-scores for models evaluated on the PIMA dataset. Diagonal entries show the average F1-score per model, 
while off-diagonal values indicate the mean difference and corresponding p-values from paired t-tests. SVMGA 
achieved the highest mean F1-score (69.78) and showed statistically significant improvements over SMOTE (p 
= 0.0451) and ADASYN (p = 0.0146). While comparisons with other models such as GAN and VAE yielded 
favorable differences, the p-values suggest marginal significance. Other GA-based methods (SGA and EGA) also 
demonstrated competitive performance, though their advantages were not statistically significant. These results 
indicate that GA-based approaches, particularly SVMGA, offer superior classification performance on the PIMA 
dataset compared to conventional resampling and generative methods.

Metric SMOTE9 ADASYN11 GAN71 VAE63 SGA EGA SVMGA

Accuracy 71.72 72.2 71.3 74.3 70.8 73.52 77.0

Precision 62.96 62.48 61.42 64.7 65.84 64.1 66.82

Recall 68.96 73.0 77.26 70.08 70.64 70.82 75.48

F1 Score 65.9 66.56 66.9 67.7 67.53 67.08 69.78

ROC AUC 71.22 72.2 72.1 73.5 71.16 73.08 75.16

Table 7.  Average model performance on PIMA dataset. This table presents the average performance 
metrics (accuracy, precision, recall, F1 score, and ROC AUC) for models trained with different synthetic 
data generation techniques (SMOTE, ADASYN, GAN, VAE, SGA, EGA, and SVMGA) on the PIMA Indian 
Diabetes dataset. Significant values are in bold.
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Phoneme
The results from the experiments on the Phoneme dataset show notable improvements in performance across 
various metrics for several methods, particularly SVMGA. Overall, SVMGA is observed to outperform the 
other methods in most scenarios, indicating that more reliable and discriminative synthetic data is generated, 
as shown in Table 9.

SMOTE Results The model trained on the synthetic data generated by the SMOTE method shows a 
considerable improvement in recall and F1 Score, as presented in Table 9, as the percentage of sampled synthetic 
data increases up to 60%, with the highest precision being observed at this point compared to earlier stages. 
However, at higher percentages (80% and 100%), precision and F1 Score start to decline, particularly at 100%, 
where both metrics drop significantly. This indicates that the model’s ability to accurately predict class labels 
decreases as the volume of generated synthetic data increases. Compared to SGA and EGA, SMOTE provides 

% Metrics SMOTE9 ADASYN11 GAN71 VAE63 SGA EGA SVMGA

20%

Accuracy 83.7 82.7 81.0 81.6 81.5 82.8 83.2

Precision 68.9 66.4 62.2 64.2 62.9 66.7 68.1

Recall 79.4 80.7 86.9 81.8 87.1 80.9 79.2

F1 Score 73.8 72.9 72.5 71.9 73.0 73.1 73.2

ROC AUC 82.4 82.1 82.8 81.7 83.1 82.3 82.4

40%

Accuracy 82.6 81.7 79.9 80.9 81.6 82.0 82.6

Precision 65.9 63.5 60.8 62.1 63.1 64.3 64.7

Recall 82.8 85.2 85.2 86.7 86.7 84.1 85.8

F1 Score 73.4 72.8 71.0 72.3 73.1 72.9 73.8

ROC AUC 82.7 82.7 81.5 82.6 83.1 82.6 83.5

60%

Accuracy 83.9 78.3 80.2 82.6 80.6 81.8 82.4

Precision 68.0 57.9 60.5 66.2 63.7 64.3 64.7

Recall 83.7 89.7 89.5 81.3 83.0 83.0 88.0

F1 Score 75.0 70.4 72.2 73.0 72.1 72.5 74.6

ROC AUC 83.8 81.7 82.9 82.2 83.0 82.2 84.3

80%

Accuracy 79.9 78.6 80.2 80.2 79.7 80.8 80.9

Precision 60.2 52.3 60.5 61.2 58.4 61.6 59.1

Recall 89.3 94.2 89.9 85.8 88.8 87.5 90.7

F1 Score 71.9 67.3 72.3 71.5 70.5 72.3 71.6

ROC AUC 82.6 80.1 83.1 81.9 82.5 82.7 83.8

100%

Accuracy 69.8 77.2 79.5 78.7 77.5 79.3 79.6

Precision 52.5 55.8 59.7 58.5 58.9 58.5 60.8

Recall 94.2 92.7 88.2 89.7 87.1 87.2 90.5

F1 Score 67.4 69.7 71.2 70.8 70.3 70.0 72.7

ROC AUC 76.9 81.7 82.1 82.0 80.3 82.3 82.7

Table 9.  Comparison of PHONEME Indian results across different models. This table shows the performance 
metrics (accuracy, precision, recall, F1 score, and ROC AUC) for models trained with different synthetic data 
generation techniques (SMOTE, ADASYN, GAN, VAE, SGA, EGA, and SVMGA) on the PHONEME dataset 
at varying percentages of data usage. Significant values are in bold.

 

Model SMOTE9 ADASYN11 GAN71 VAE63 SGA EGA SVMGA

SMOTE 65.90 − 0.66 (0.4003) − 0.98 (0.5447) − 1.80 (0.2184) − 1.62 (0.4308) − 1.18 (0.1389) − 3.88 (0.0451)

ADASYN 0.66 (0.4003) 66.56 − 0.32 (0.7748) − 1.14 (0.3226) − 0.96 (0.5750) − 0.52 (0.1498) − 3.22 (0.0146)

GAN 0.98 (0.5447) 0.32 (0.7748) 66.88 − 0.82 (0.6758) − 0.64 (0.8073) − 0.20 (0.8758) − 2.90 (0.0722)

VAE 1.80 (0.2184) 1.14 (0.3226) 0.82 (0.6758) 67.70 0.18 (0.8626) 0.62 (0.6077) − 2.08 (0.1078)

SGA 1.62 (0.4308) 0.96 (0.5750) 0.64 (0.8073) − 0.18 (0.8626) 67.52 0.44 (0.8007) − 2.26 (0.1784)

EGA 1.18 (0.1389) 0.52 (0.1498) 0.20 (0.8758) − 0.62 (0.6077) − 0.44 (0.8007) 67.08 − 2.70 (0.0615)

SVMGA 3.88 (0.0451) 3.22 (0.0146) 2.90 (0.0722) 2.08 (0.1078) 2.26 (0.1784) 2.70 (0.0615) 69.78

Table 8.  Pairwise comparison of mean F1-scores across various different models on PIMA Dataset. Diagonal 
entries show the average F1-score for each model. Off-diagonal entries represent the mean difference in 
F1-score between the row and column models, followed by the p-value from a paired t-test in parentheses. 
Significant values are in bold.
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better initial improvements in recall and F1 score; however, its performance declines at higher synthetic data 
percentages, suggesting sensitivity to the noise introduced by the larger volume of synthetic data.

ADASYN Results Similar to the SMOTE results, the results obtained from the ADASYN method show a 
gradual improvement in the accuracy of minority class predictions, but the performance of the model peaks at 
40% data sampling. A notable decline in precision and F1 score is observed after more than 40% of the data is 
sampled. The ROC AUC remains relatively stable, with a slight improvement observed at 40%.

GAN Results The GAN-based approach on the PHONEME dataset shows mixed results as per Table 9. GAN 
achieves strong recall values (86.9%-89.9%) across all sampling levels and ties for the highest F1 Score (72.3%) 
at 80% sampling with EGA. It also shows competitive ROC AUC (82.8%) at 20% sampling. However, GAN 
consistently underperforms in precision, recording the lowest values at multiple sampling levels. Its accuracy 
remains below most other methods, particularly at 40% sampling (79.9%). These limitations suggest GAN 
generates synthetic samples that introduce classification errors, preventing it from achieving the balanced 
performance of GA-based methods, especially SVMGA, which demonstrates superior precision-recall trade-
offs across sampling percentages.

VAE Results The VAE method on the PHONEME dataset demonstrates moderate strengths per Table 9. At 
40% sampling, VAE achieves the highest recall (86.7%, tied with SGA), while at 60% sampling, it shows good 
accuracy (82.6%) and the second-highest precision (66.2%). VAE maintains relatively stable performance across 
metrics as sampling increases. However, VAE struggles to balance precision and recall simultaneously–when 
recall improves, precision often suffers. At 100% sampling, VAE’s precision drops to 58.5%, significantly lower 
than SVMGA’s 60.8%. While VAE achieves reasonable ROC AUC values throughout, it consistently falls short 
of the more balanced performance demonstrated by GA-based methods, particularly SVMGA, which better 
handles the precision-recall trade-off across different sampling levels.

Logistic Regression-based GAs Results When using SGA, accuracy scores remain relatively consistent across 
different sampling percentages, but precision and recall slightly decrease as the percentage increases, leading to 
a slight drop in F1 score and ROC AUC values. This suggests that while overall accuracy is maintained by SGA, 
it slightly struggles with precision and recall, particularly as more synthetic data is introduced. Interestingly, the 
highest accuracy for minority class predictions is observed at 80% data sampling, where the model appears to 
strike a balance between meaningful diversity and minimal noise.

The EGA results for the Phoneme dataset demonstrate relatively stable accuracy, with precision and recall 
showing modest variability as the percentage of synthetic data increases. The F1 score shows a slight decline at 
higher synthetic data percentages, reflecting a minor degradation in model performance, particularly in handling 
the trade-offs between precision and recall. Compared to the SGA results, EGA exhibits similar performance on 
precision and recall, though EGA achieves slightly higher accuracy than the SGA-based model.

SVM-based GA Result The results of the experiments conducted on synthetic data obtained from the SVM-
based GA show a consistent improvement in the accuracy of minority class predictions, except for a slight 
dip at 100% data sampling. However, a slight drop in precision and F1 score is observed at higher synthetic 
data percentages, particularly at 80%, where both metrics display their lowest values. The ROC AUC remains 
relatively stable across different data percentages. Optimal model performance is observed at 20%-60% data 
sampling, with high accuracy, recall, and F1 score.

Models comparison
As observed from Table 10, the models perform comparably across all performance metrics, including accuracy, 
precision, recall, F1 score, and ROC AUC. The overall precision achieved ranges from 59 to 63%; however, 
the proposed SVMGA-based method outperforms the GAN, VAE, SMOTE and ADASYN methods. The most 
optimal performance appears to be achieved by the SVM-based GA method, with relatively high and stable 
values across all metrics. SVM-based GA demonstrates the highest F1 score (73.18) and ROC AUC (83.34), 
indicating a balance between precision and recall. While GAN shows highest recall (87.9), representing the 
percentage of class 1 samples correctly classified, ADASYN exhibits the lowest precision (59.18), accuracy (79.7), 
F1 score (70.0), and ROC AUC (80.0), indicating poor performance across all performance metrics.

The Precision-Recall Curve after 100% data sampling does not produce much variation in the outcome. The 
models are ranked in the same manner, with the SVM-based GA method leading the others, as observed in Fig. 
9.

The ROC curve, illustrated in Fig. 9 indicates that the SVM-based GA method is the best performer, with 
an AUC of 0.93. This is followed by SGA and EGA, with AUCs of 0.92 and 0.91, respectively. The other models 

Metric SMOTE9 ADASYN11 GAN71 VAE63 SGA EGA SVMGA

Accuracy 79.98 79.7 80.1 80.8 80.18 81.34 81.74

Precision 63.1 59.18 60.8 62.4 61.4. 63.08 63.48

Recall 85.88 87.0 87.9 85.1 86.5 84.54 86.84

F1 Score 72.3 70.0 71.8 71.9 71.8 72.1 73.18

ROC AUC 81.68 80.0 82.5 82.1 82.4 82.41 83.34

Table 10.  Average model performance on phoneme dataset. This table presents the average performance 
metrics (accuracy, precision, recall, F1 score, and ROC AUC) for models trained with different synthetic data 
generation techniques (SMOTE, ADASYN, GAN, VAE, SGA, EGA, and SVMGA) on the Phoneme dataset. 
Significant values are in bold.
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(ADASYN, SMOTE-based, Original) have lower AUC values of 0.89 and 0.9, suggesting slightly less effective 
classification performance compared to SVM-based GA, EGA, and SGA.

Statistical comparison of F1 scores on the PHONEME dataset Table 11 displays pairwise comparisons of 
mean F1-scores across models on the PHONEME dataset. Diagonal values indicate average F1-scores per model, 
and off-diagonal values show mean differences and associated p-values from paired t-tests. SVMGA attained 
the highest mean F1-score (73.18), outperforming several models with statistically significant improvements 
over ADASYN (p = 0.0355), VAE (p = 0.0146), and SGA (p = 0.0399). Although SVMGA also showed positive 
differences against other models such as GAN and EGA, the corresponding p-values indicate marginal or non-
significant differences. Other GA-based models (SGA and EGA) remained competitive, though their relative 
advantages were not statistically significant. These findings further shows the effectiveness of GA-based methods, 
with SVMGA in particular showing statistically superior performance on the PHONEME dataset.

Comparative performance analysis
A comparative analysis of F1 scores across all synthetic data generation techniques and benchmark datasets is 
presented in Fig. 10. The analysis reveals the consistent superiority of the proposed genetic algorithm variants 
(SGA, EGA, and SVMGA) over conventional oversampling methods and deep learning-based approaches.

The experimental results indicate that the proposed GA-based methodologies consistently outperform 
baseline approaches across all evaluated datasets. SVMGA exhibits the most consistent performance 
characteristics, achieving optimal F1 scores on two of the three benchmark datasets. The comparative analysis 

Fig. 10.  F1 Score comparison across synthetic data generation methods on three benchmark datasets. The 
proposed genetic algorithm variants (SGA, EGA, SVMGA) exhibit superior performance compared to 
traditional approaches, with SVMGA achieving optimal F1 scores on Phoneme (73.18%) and PIMA (69.78%) 
datasets, while EGA exhibits superior performance on the Credit Card Fraud dataset (84.04%).

 

Model SMOTE9 ADASYN11 GAN71 VAE63 SGA EGA SVMGA

SMOTE 72.30 + 1.68 (0.2710) + 0.46 (0.7211) + 0.40 (0.7078) + 0.50 (0.6284) + 0.14 (0.8744) − 0.88 (0.4751)

ADASYN − 1.68 (0.2710) 70.62 − 1.22 (0.3485) − 1.28 (0.2558) − 1.18 (0.1097) − 1.54 (0.1769) − 2.56 (0.0355)

GAN − 0.46 (0.7211) + 1.22 (0.3485) 71.84 − 0.06 (0.8925) + 0.04 (0.9546) − 0.32 (0.5565) − 1.34 (0.0992)

VAE − 0.40 (0.7078) + 1.28 (0.2558) + 0.06 (0.8925) 71.90 + 0.10 (0.8311) − 0.26 (0.5383) − 1.28 (0.0146)

SGA − 0.50 (0.6284) + 1.18 (0.1097) − 0.04 (0.9546) − 0.10 (0.8311) 71.80 − 0.36 (0.3974) − 1.38 (0.0399)

EGA − 0.14 (0.8744) + 1.54 (0.1769) + 0.32 (0.5565) + 0.26 (0.5383) + 0.36 (0.3974) 72.16 − 1.02 (0.1779)

SVMGA + 0.88 (0.4751) + 2.56 (0.0355) + 1.34 (0.0992) + 1.28 (0.0146) + 1.38 (0.0399) + 1.02 (0.1779) 73.18

Table 11.  Pairwise comparison of mean F1-scores across various different models on PHONEME Dataset. 
Diagonal entries show the average F1-score for each model. Off-diagonal entries represent the mean difference 
in F1-score between the row and column models, followed by the p-value from a paired t-test in parentheses. 
Significant values are in bold.
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substantiates the effectiveness of integrating machine learning guidance within genetic algorithm frameworks 
for synthetic data generation, thereby validating the fundamental contributions of this research.

Feature importance analysis
A feature importance analysis was conducted using permutation importance across the three datasets: PIMA, 
Credit Card Fraud Detection, and Phoneme. This analysis identifies the most influential features contributing to 
synthetic data generation and overall model performance.

Key insights include:

•	 PIMA Dataset: Features such as Glucose (25%) and BMI (20%) were the most significant, reflecting their 
importance in determining diabetes risk. Pregnancies (15%) and Diabetes Pedigree Function (12%) also con-
tributed substantially.

•	 Credit Card Dataset: Amount (20%), V3 (22%), and V2 (18%) emerged as the most critical features, highlight-
ing their role in distinguishing fraudulent transactions.

•	 Phoneme Dataset: The feature Sh (30%) showed the highest influence in classifying sound categories, followed 
by Ao (25%) and Aa (20%).

The combined plot as shown in Fig. 11 illustrates the feature importance across datasets, emphasizing the diverse 
factors impacting classification performance. This analysis confirms the effectiveness of our GA-based approach 
in leveraging dataset-specific key features for improved model accuracy.

Ablation study: evaluating GA components
To thoroughly assess the contributions of the Genetic Algorithm (GA) components–namely, crossover and 
mutation–to the quality of synthetic data and model performance, we conducted an ablation study across 
the three benchmark datasets: Credit Card Fraud Detection, PIMA Indian Diabetes, and Phoneme. Each 
component was systematically excluded from the GA process, and the resultant effects on performance metrics 
were analyzed.

Impact of crossover
The crossover operator in GA plays a pivotal role in combining genetic information from parent solutions to 
generate diverse offspring. To evaluate its impact, experiments were conducted with the crossover operator 
entirely disabled. The absence of crossover resulted in a significant reduction in genetic diversity within the 
synthetic data. As a consequence, the generated data failed to adequately explore critical regions of the feature 
space. This limitation was reflected in diminished model performance across all datasets, particularly in metrics 

Fig. 11.  Permutation importance analysis across the three datasets: PIMA, Credit Card Fraud Detection, 
and Phoneme. The graph highlights the relative contribution of each feature to the model’s performance, as 
measured by the decrease in accuracy when the feature’s values are permuted.
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such as F1-score, precision, and ROC AUC. The PIMA Indian Diabetes dataset, in particular, exhibited a sharp 
decline in classification performance due to its inherently lower data diversity.

Impact of mutation
Mutation introduces random variations to offspring, enabling exploration beyond the local optima in the 
solution space. To isolate its effect, experiments were performed with mutation disabled, while retaining all other 
GA components. The absence of mutation led to premature convergence in the population, with the algorithm 
failing to explore potentially beneficial areas of the solution space. This resulted in suboptimal synthetic data 
generation, particularly evident in the Credit Card Fraud Detection dataset, where the F1-score decreased 
significantly. The lack of mutation restricted the diversity of generated samples, thereby limiting the classifier’s 
ability to generalize to unseen data.

SVM vs. logistic regression initialization analysis
To evaluate the impact of different initialization strategies, we compared SVM-based initialization with logistic 
regression-based initialization and random initialization. The SVM-based approach uses decision boundary 
information to strategically position initial population members near classification boundaries, while logistic 
regression initialization uses probability-based positioning. Random initialization serves as the baseline 
approach. The results show that SVM-based initialization consistently outperforms both logistic regression 
and random initialization across all datasets. The geometric properties of SVM decision boundaries provide 
superior guidance for identifying critical regions in the feature space where synthetic samples can be most 
beneficial. Logistic regression initialization, while better than random initialization, lacks the explicit boundary 
information that makes SVM-based initialization particularly effective for minority class synthesis. ‘

Combined analysis
A comparative analysis was conducted between the full GA implementation and the ablated versions (no 
crossover and no mutation). Table 12 presents a detailed comparison of performance metrics across the three 
datasets. The results demonstrate the essential role of both components in improving synthetic data quality and 
enhancing model performance.

Discussion of findings
The ablation study results in Table 12 highlight the significant contributions of the Genetic Algorithm (GA) 
components–crossover and mutation–to synthetic data quality and model performance. In the Credit Card Fraud 
dataset, characterized by severe class imbalance, the removal of either crossover or mutation led to a marked 
decline in performance. The full GA implementation achieved the highest results (F1-score: 0.82, precision: 
0.82, ROC AUC: 0.92). Similarly, in the PIMA Diabetes dataset, with moderate class imbalance, performance 
decreased when crossover was removed (F1-score: 0.62, precision: 0.50) and when mutation was excluded (F1-
score: 0.61, precision: 0.53). The full GA improved all metrics (F1-score: 0.71, precision: 0.59, ROC AUC: 0.76). 
In the Phoneme dataset, with a more balanced class distribution, performance also decreased with the removal 
of either component, with the full GA achieving the best results (F1-score: 0.72, precision: 0.60, ROC AUC: 0.82). 
Across all datasets, the full GA consistently outperformed the ablated versions, underscoring the importance of 
both crossover and mutation. Crossover contributes to exploring diverse solutions, while mutation prevents 
premature convergence by maintaining genetic diversity. These findings emphasize the effectiveness of the GA 
approach in generating high-quality synthetic data and improving model performance across different datasets.

Computational cost analysis
In addition to classification performance, we also evaluated the computational cost of each synthetic data generation 
method in terms of runtime and memory usage. This comparison provides insight into the practical feasibility of 
each approach, especially when applied to large datasets.

Table  13 reports the average time and peak memory consumed during synthetic data generation for the 
Credit Card Fraud Detection dataset, which has the largest volume among the three benchmarks.

As expected, interpolation-based methods such as SMOTE and ADASYN are the most efficient in terms of 
both time and memory, making them suitable for real-time or resource-constrained environments. However, 

Dataset Metric No crossover No mutation LR init Random init Full SVM-GA

Credit card fraud

F1-score 0.70 0.74 0.78 0.73 0.82

Precision 0.67 0.72 0.76 0.71 0.82

ROC AUC 0.84 0.82 0.88 0.85 0.92

PIMA diabetes

F1-score 0.62 0.61 0.68 0.64 0.71

Precision 0.50 0.53 0.56 0.52 0.59

ROC AUC 0.65 0.69 0.73 0.70 0.76

Phoneme

F1-score 0.65 0.68 0.70 0.67 0.72

Precision 0.49 0.51 0.57 0.53 0.60

ROC AUC 0.72 0.71 0.78 0.75 0.82

Table 12.  Performance metrics for comprehensive ablation study across datasets.
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these methods offer limited data diversity and may contribute to overfitting. In contrast, GA-based methods 
require more computational resources due to their iterative nature and fitness-based optimization. Among them, 
the SGA method is the most efficient, while the SVM-guided GA shows the highest cost due to model-driven 
evaluation. Nonetheless, the overhead remains acceptable for offline preprocessing, especially when weighed 
against the significant gains in classification performance and generalization. For large-scale applications, 
runtime can be mitigated using parallel or GPU-accelerated fitness evaluations, and memory usage can be 
reduced through batch-wise evolution strategies. This makes the GA-based approach a scalable and effective 
option for data augmentation in high-stakes domains.

Discussion and conclusion
This study addresses the challenge of class imbalance in datasets, a major issue in various fields facing imbalance 
data classification problems. Various techniques are investigated, including the Synthetic Minority Over-sampling 
Technique (SMOTE)9, Adaptive Synthetic Sampling Approach (ADASYN)11, Generative Adversarial Networks 
(GANs)71, Variational Autoencoders (VAEs)63 and Genetic Algorithms (GAs), to generate synthetic data and 
improve classification performance. Our findings reveal that while SMOTE, ADASYN, VAEs and GANs can balance 
datasets, they often fail to significantly enhance model performance metrics when the class ratio is high. These 
methods inadequately address severe imbalances, resulting in limited improvements in classification accuracy due 
to unwanted noise during synthetic data generation. Advanced variations like RN-SMOTE (with DBSCAN for noise 
reduction72) and ADASYN-LOF62 offer improvements but still face challenges in eliminating noise completely. 
These advanced variations of SMOTE and ADASYN present interesting avenues for future comparative studies 
against GA-based approaches. In contrast, our proposed approaches, Simple Genetic Algorithm (SGA), Elitist 
Genetic Algorithm (EGA) optimized through logistic regression, and Support Vector Machine-based Genetic 
Algorithm (SVMGA) demonstrate notable improvements across all performance metrics: accuracy, precision, 
recall, F1-score, ROC-AUC, and Precision-Recall curves. These GA-based models achieve significant results by 
generating high-quality synthetic data, thereby improving classification of minority class samples. Comparative 
analysis with all other techniques shows that the GA-based synthetic data generation approach significantly 
outperforms these traditional methods, particularly in scenarios with limited noise and extreme imbalance.

While GA-based methods are effective in generating high-quality synthetic data, their scalability to large 
datasets or real-time applications requires consideration. Due to their iterative nature and reliance on population-
wide fitness evaluations, GAs are best suited for offline preprocessing in moderate-sized datasets. However, 
scalability can be improved through parallelization, as fitness evaluations across individuals are independent and 
can be executed concurrently on modern multi-core or GPU architectures. For large-scale applications, the GA 
framework can be adapted using mini-batch processing or by limiting the population and number of generations 
based on available computational resources. In real-time scenarios where latency is critical, traditional methods 
like SMOTE or ADASYN may be preferable due to their low overhead. Nonetheless, the proposed GA-based 
approach remains a viable solution for high-stakes domains (e.g., fraud detection or medical diagnosis) where 
offline augmentation can substantially enhance model performance. Beyond binary classification, many real-
world problems involve multiclass imbalance, where one or more classes have significantly fewer instances. The 
proposed GA-based framework can be extended to such settings by evolving synthetic samples separately for each 
minority class, using one-vs-all strategies or class-specific fitness functions that target the boundaries between 
each minority class and all others. To preliminarily validate this extension, we propose an experiment using 
the UCI Letter Recognition dataset or CIFAR-10 with artificially induced class imbalance. For each minority 
class, the GA would generate synthetic data using a targeted fitness function (e.g., SVM trained in a one-vs-
rest fashion), and classifier performance would be compared to multiclass SMOTE and ADASYN baselines. 
Key metrics such as macro-averaged F1 score and per-class recall can be used to evaluate improvement. This 
experiment would offer early evidence of the method’s adaptability to more complex imbalanced scenarios and 
pave the way for future work on multiclass GA-guided augmentation.

While the GA-based synthetic data generation method has demonstrated effectiveness, it is essential to 
recognize that any data augmentation technique, including those based on genetic algorithms, carries the 
potential for bias. Specifically, biases inherent in the original data or any models used for guiding the process–
such as classifiers like logistic regression or SVM–could be inadvertently transferred or even amplified in the 
synthetic data. In sensitive domains like healthcare or finance, such biases could lead to skewed decision-making 
or perpetuate existing disparities, raising concerns about fairness and equity. To address this, it’s crucial that 
synthetic data generation techniques, including those based on GAs, incorporate robust mechanisms to assess 

Method Runtime (s) Peak memory (MB)

SMOTE 4.1 84

ADASYN 4.4 96

GAN 5.6 106

VAE 7.4 112

GA (SGA) 12.3 147

Elitist GA (EGA) 12.9 155

SVM-based GA (SVMGA) 16.7 186

Table 13.  Runtime and memory usage comparison (Phoneme Dataset).
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and control for biases. This could involve the careful design of fitness functions that are sensitive to fairness 
considerations and the implementation of post-generation validation processes to check for disproportionate 
representation of subgroups. Additionally, integrating fairness-aware objectives or constraints could further 
enhance the ethical deployment of synthetic data, especially in high-risk applications. In addition to bias concerns, 
privacy is another critical aspect when using GA for synthetic data generation, particularly when augmenting 
real-world data. In applications involving sensitive personal information, such as healthcare or finance, the use 
of synthetic data must be carefully considered to avoid inadvertent leakage of private or identifiable information. 
While synthetic data is intended to reduce risks related to privacy by creating non-real data points, there remains 
the possibility that patterns in the synthetic data could be traced back to the original data. To mitigate these 
risks, it is crucial to implement privacy-preserving techniques, such as differential privacy, during the synthetic 
data generation process. This could include adding noise or ensuring that the generated data cannot be reverse-
engineered to reveal sensitive individual information.

While our GA-based approach demonstrates significant improvements in handling imbalanced datasets, it 
has certain limitations. The computational complexity of GAs may pose challenges for very large datasets, and 
the effectiveness of the method depends on the quality of the ML models used for initialization. Future work 
could explore optimizing the computational efficiency of the GA process, extending the approach to multi-class 
imbalance problems, and applying it to complex data types such as images or time-series data. Our current 
evaluation is based on three datasets: the Credit Card Fraud Detection dataset (a cyber-security application) 
and two medical datasets (PIMA Indian Diabetes and Phoneme). Expanding to more diverse domains and 
complex data types would improve generalization in future work. In conclusion, this research demonstrates the 
potential of genetic algorithms, particularly when optimized using SVM-based fitness functions and population 
initialization, to generate high-quality synthetic data that enhances classification performance. These findings 
open opportunities for further exploration of advanced GA techniques in various applications, ultimately 
contributing to more accurate and reliable predictive models in imbalanced datasets. The proposed GA-based 
methods provide a better alternative by ensuring greater diversity and variability in the generated synthetic data. 
The insights gained from this study are expected to benefit researchers and practitioners in domains where data 
imbalance is a critical challenge, offering a resilient solution for improving model performance on minority 
classes without compromising overall accuracy.

Data availability
The datasets utilized in this study are publicly available and sourced from established repositories. The Credit 
Card Fraud Detection dataset was obtained from59 (​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​d​​a​t​a​s​e​​t​s​/​m​l​g​​-​u​l​b​/​c​​r​e​d​i​t​c​​a​r​d​f​r​a​u​d), 
published on Kaggle. The Pima Indian Diabetes dataset60 (​h​t​t​p​s​:​​/​/​d​a​t​a​​v​e​r​s​e​.​​h​a​r​v​a​r​​d​.​e​d​u​​/​d​a​t​a​s​​e​t​.​x​h​t​​m​l​?​p​e​r​​s​i​s​t​
e​​n​t​I​d​=​d​​o​i​:​1​0​.​​7​9​1​0​/​D​​V​N​/​X​F​O​Z​Q​R) is accessible via Harvard Dataverse. Furthermore, the phoneme dataset61, 
originally collected for the European ESPRIT 5516 project (ROARS) for French and Spanish speech recogni-
tion, was retrieved from Kaggle (https://www.kaggle.com/datasets/timrie/phoneme). All datasets are available 
through their respective original sources, ensuring full reproducibility of our research findings.
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