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To address the problem of low positioning accuracy for long-distance static targets, we propose an 
optimized algorithm for long-distance target localization (LTLO) based on single-robot moving path 
planning. The algorithm divides the robot’s movement area into hexagonal grids and introduces 
constraints on stopping position selection and non-redundant locations. Based on image parallelism, 
we propose a method for calculating the relative position of the target using sensing information from 
two positions. Additionally, an improved hierarchical density-Based spatial clustering of applications 
with noise (HDBSCAN) algorithm is developed to fuse the relative coordinates of multiple targets. 
Furthermore, we establish the corresponding constraints for long-distance target localization and 
construct a target localization optimization model based on single-robot path planning. To solve this 
model, we employ a double deep Q-network and propose a reward strategy based on coordinate 
fusion error. This approach solves the optimization model and obtains the optimal target positions and 
path trajectories, thereby improving the positioning accuracy for long-distance targets. Experimental 
results demonstrate that for static targets at distances ranging from 100 to 500 meters, LTLO 
outperforms traditional monocular visual localization (TMVL), monocular global geolocation (MGG) 
and long-range binocular vision target geolocation (LRBVTG) by obtaining an optimal path to identify 
target positions, maintaining a relative localization error within 4% and an absolute localization error 
within 6%.
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With rapid technological advancements, robotic target localization technology facilitates autonomous 
navigation and interaction, enabling robots to identify, locate, and reach specific targets in complex and 
dynamic environments. Long-distance target localization is crucial for enhancing the operational efficiency and 
responsiveness of robots in military, rescue, and industrial sectors1,2. For example, in military applications, long-
distance localization allows robots to accurately identify and locate enemy personnel, drones, tanks, and other 
targets from a safe distance, enabling reconnaissance and strike missions. This capability not only reduces the 
risk of injuries to friendly forces but also increases combat efficiency and safety. In rescue operations, long-
distance localization enables robots to quickly search and locate targets in disaster-stricken areas, especially 
in hazardous or inaccessible regions, providing essential support for rescue efforts. Moreover, this technology 
enhances the effectiveness of robots in industrial logistics and warehousing tasks, such as automated picking and 
sorting, which significantly increases both productivity and operational efficiency.

Long-distance target localization technology utilizes high-precision sensors and advanced algorithms to 
identify and track targets across extensive areas, enabling rapid responses and dynamic adaptation through 
real-time data processing. Currently, long-distance target localization algorithms are mainly categorized into 
two types: those that utilize multiple static sensing devices and those that employ a single mobile sensing device. 
Algorithms utilizing multiple static sensing devices involve deploying one or more static sensors at predetermined 
locations. These algorithms use data interactions or information gathered from multiple devices to pinpoint the 
target’s location. However, this method requires fixed installations at various sites, resulting in high costs, limited 
flexibility, and potential coverage gaps in large or complex environments. Conversely, algorithms that utilize 
a single mobile sensing device take advantage of sensor mobility to collect target information from various 
locations, offering high flexibility and extensive coverage in determining target coordinates. However, the 
following challenges still remain: 
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	(1)	 Difficulty in model construction: Constructing an accurate and reliable localization model poses significant 
challenges, as it must account for both mobility and localization constraints. Mobility constraints pertain to 
the device’s movement points and trajectories, while localization constraints involve factors such as camera 
tilt during movement and the correlation between moving paths and target positioning. Therefore, devel-
oping a precise target localization model with a mobile device is complex and demanding.

	(2)	 Low precision in long-distance localization: In the context of long-distance static target localization, various 
factors compromise precision. Uncertainties in device moving paths, inaccurate depth estimations, and 
challenges in model construction all contribute to reduced localization precision, ultimately diminishing 
the accuracy of target positioning.

To address these issues, this paper proposes a long-distance target localization optimization algorithm based on 
single robot moving path planning (LTLO). The contributions of this paper are as follows: 

	(1)	 To address the challenge of building an accurate localization model for a single mobile device, we have 
partitioned the robot’s movement area into uniform hexagonal grids, factoring in movement constraints 
like the selection of stopping positions and the avoidance of repetitive paths. Additionally, we consider con-
straints associated with parallel imaging and relative target positioning, proposing an optimization model 
for long-distance target localization that leverages the robot’s movement trajectory.

	(2)	 To address inaccuracies in the fusion of relative coordinates for multiple targets, we introduce a pruning 
operation and silhouette coefficient calculation based on multiple target relative coordinates. We propose a 
fusion algorithm employing an improved hierarchical density-based spatial clustering of applications with 
noise (HDBSCAN) to efficiently identify clusters near the true relative coordinates of the targets, thereby 
improving the effectiveness of coordinate fusion.

	(3)	 To enhance the precision of long-distance target localization, we have developed an experience replay buffer 
that includes state information such as grid centers and estimated target coordinates, utilizing a double deep 
Q-network (DDQN). We have constructed behavior and target networks, a loss function, and a reward 
strategy based on coordinate fusion. Through training the model during the robot’s movement and select-
ing the next direction, we aim to determine the optimal moving path, thereby significantly improving the 
accuracy of long-distance target localization.

Related work
In the field of long-distance target localization, some researchers fix static sensing devices, equipped with one 
or multiple sensors, at specific locations to investigate long-distance target localization algorithms using data 
gathered from multiple devices. For example, Wang et al.3 proposed a traditional monocular visual localization 
(TMVL) method that utilizes specific geometric shapes to mark the target and obtain its positional information 
through the similarity triangulation method. This type of monocular visual sensor localization technique 
requires prior knowledge of the target and shows diminishing localization performance as the detection distance 
increases. Mao et al.4 improved long-distance accuracy by optimizing the spatial layout of sensors and proposing 
a method that combines direction localization and time difference of arrival. Liu et al.5 achieved precise three-
dimensional localization by integrating intelligent metasurface technology, eliminating the need for additional 
altitude measurement devices or complex radar networks. Gao et al.6 proposed a novel global localization 
method by fusing data from monocular cameras, inertial measurement units (IMU), and global positioning 
systems (GPS). This algorithm corrects camera poses using pixel mapping and IMU data, detects long-distance 
targets using target detection algorithms, and calculates the relative and geographic positions of the target using a 
monocular vision model. Fang et al.7 proposed a long-distance target localization algorithm by fusing binocular 
cameras, IMU, and GPS. They extended the baseline length between the two cameras, aligned them parallel based 
on IMU data, and proposed a long-baseline parallel binocular model for localizing distant targets to obtain their 
geographic positions. Wen et al.8 constructed the online visual language map and waypoint prediction module, 
and proposed the approach for vision-and-language navigation. The approach can enable robots to better 
understand the environment and navigate according to natural language instructions, especially in complex or 
unknown environments. Wang et al.9 proposed an enhanced domain confrontation neural network model to 
solve the problem of accuracy degradation of UWB positioning technology in dynamic NLOS environments. By 
combining the manually extracted channel impulse response characteristics and domain-adversarial learning, 
the model maintains high performance in different environments, reduces the dependence on a large number of 
labeled data, and improves the practicability and robustness of the system. While these studies employ data from 
multiple static devices for stable and continuous monitoring, they require the installation of fixed equipment at 
various sites, leading to high costs and limited flexibility due to fixed layouts.

To enhance flexibility and cover large areas, some researchers have considered using single devices, such as 
mobile robots and drones, for long-distance target localization. For example, Cai et al.10 tackled the localization 
issue in oblique remote sensing images by integrating deep learning with the you only look once (YOLO) 
algorithm to detect buildings and optimize three-dimensional positional data. Kan et al.11 improved localization 
accuracy by utilizing a combination of drone and satellite images, applying deep learning to address differences in 
viewpoint and orientation. Zhang et al.12 constructed three-dimensional maps from image sequences captured by 
drones and GPS data to quickly estimate target positions. Although these studies enhance localization flexibility, 
they primarily concentrate on target detection and tracking using single mobile devices, without addressing path 
planning. There remains significant potential for improving the accuracy of target localization.

To address the path planning problem, some researchers have begun optimizing it using traditional algorithms 
and machine learning techniques. For example, Zhang et al.13 improved the A* algorithm by incorporating radar 
threat assessment to optimize drone paths. Liu et al.14 employed a genetic algorithm combined with digital twin 
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technology to dynamically adjust preset trajectories of robots. Sun et al.15 proposed a strategy that combines 
an improved elastic potential field and particle swarm optimization to address the interception of moving 
underwater targets by drones, significantly enhancing interception efficiency and path planning performance in 
complex aquatic environments. Additionally, Ma et al.16 refined the particle swarm optimization algorithm by 
enabling particles to autonomously adjust dimensions according to real-world conditions, thus improving the 
algorithm’s flexibility and adaptability and implementing varied update strategies for different particle types to 
optimize localization outcomes. Wu et al.17 introduced a swarm-based 4D path planning method to optimize 
drone paths in urban environments, using an improved ant colony optimization algorithm combined with a 
genetic algorithm to develop a two-level framework for solving multi-path planning and task-related issues. 
Zhang et al.18 integrated path planning with schedule optimization, proposed the rapidly-exploring random tree 
star (RRT*) algorithm to generate near-optimal paths for each robot, and used a heuristic bias-based particle 
swarm optimization algorithm to optimize scheduling, adjusting each robot’s arrival time using a path-time-space 
approach to avoid congestion and collisions. However, these studies [11-16] mostly rely on global environmental 
data, posing challenges in meeting real-time and high-precision requirements. To solve this problem, some 
researchers have investigated deep learning and reinforcement learning techniques to dynamically adjust path 
planning strategies, achieving efficient localization in complex and dynamic scenarios. For example, Yang 
et al.19 adopted a prioritized double deep Q-network to improve learning efficiency and path optimization 
performance, selecting useful positive experiences from the experience buffer to enhance algorithm stability 
and reusability. Xi et al.20 optimized underwater drone path planning using the double dueling deep Q-network 
(D3QN) algorithm. They introduced real ocean data to build an accurate marine environment model and 
designed precise state transitions and reward functions to enhance the algorithm’s learning efficiency and path 
planning effectiveness. Li et al.21 proposed a path planning algorithm that combines deep Q-network (DQN) 
with the artificial potential field method for autonomous navigation and collision avoidance of unmanned 
surface vehicles in complex maritime environments. By improving the action space and reward function of DQN 
with the artificial potential field, they addressed the issue of sparse rewards in the traditional DQN algorithm, 
thereby enhancing its performance in practical applications. Salehizadeh et al.22 proposed a D3QN algorithm 
with an adaptive learning mechanism for path planning, integrating real-time oceanic environmental data. Chen 
et al.23 introduced the transformer structure into the multi-robot path planning problem, using contrastive 
learning and double deep Q-network to tackle challenges associated with training policy neural networks after 
introducing the transformer. While these studies combine swarm intelligence, machine learning, reinforcement 
learning, and complex mathematical models to design optimal paths for mobile robots, there is still room for 
improvement in terms of precise localization of long-distance visual targets.

Principle of LTLO
As shown in Fig. 1, a single mobile robot equipped with an IMU, camera, GPS, and other modules localizes 
a distant target within a movable area. To achieve efficient data acquisition, this paper divides the robot’s 
operational area into several identical hexagonal grids and encodes the hexagon matrix. And denote g(i, j) to 
be the j-th hexagon in the i-th row. Compared to traditional quadrilateral grid partitioning, hexagonal grids 
offer advantages in spatial coverage efficiency, directional consistency, and path smoothness. Specifically, the 
hexagonal grids provide higher directional symmetry, enabling the robot to sample uniformly in six equidistant 
directions during movement. This effectively mitigates issues such as path deflection and inconsistent cost 
estimation. Additionally, with the fewest edges per unit area, hexagonal grids reduce redundant movements. 
In terms of image acquisition, the more uniform angular variation of hexagon centers enhances disparity 
matching and relative position estimation. Therefore, we adopt hexagonal grids as the foundation for modeling 

Figure 1.  Positioning schematic diagram of LTLO.
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robotic movement paths, thereby improving path planning efficiency and enhancing adaptability to complex 
environments. Starting from the initial grid center, the robot captures images of the distant target, then moves 
to an unvisited grid center within its current grid to take additional images. As it moves, the robot acquires 
image and distance information, utilizing this data to calculate the coordinates of the distant target. However, 
the LTLO still needs to address two key challenges: First, how to integrate data from the IMU, camera, and other 
transmission sources into a set of mathematical expressions that describe constraints on the robot’s movement 
trajectory and distant target localization, and then establish an optimization model to minimize target position 
errors. Second, how to apply a reinforcement learning algorithm to solve the optimization model, which will 
enable the robot to determine the optimal movement trajectory and the most accurate coordinates for distant 
target localization. The specific solutions to these two challenges are detailed below.

Establishment of positioning optimization model
Constraints on robot movement
A robot is stationed at the center of a hexagonal grid, where it adjusts its camera angle to capture an image of 
the target. Subsequently, it relocates to the center of an adjacent hexagonal grid. Let P = (p0, ..., pk, ..., pn) 
represent the robot’s movement trajectory, where pi is the grid center where the robot is located at time i, and 
p0 is the robot’s initial position. Let n denote the number of grid centers visited by the robot. Considering that 
the robot can only select the next grid center among its neighboring locations, the constraint for selecting the 
staying position can be formulated as:

	 pk+1 ∈ Gk, k = 0, 2, ..., n − 1� (1)

where Gk  represents the neighboring grid centers of the current position pk ,  and can be defined as:

	

Gk =





{g (1, j + 1) , g (2, j) , g (2, j + 1)} pk = g (1, j) and j ̸= m
{g (1, m − 1) , g (2, m) , g (2, m + 1)} pk = g (1, m)
{g (n, j + 1) , g (n − 1, j) , g (n − 1, j + 1)} pk = g (n, j) and j ̸= m
{g (n, m − 1) , g (n − 1, j) , g (n − 1, j + 1)} pk = g (n, m)
{g (i − 1, 1) , g (i, 2) , g (i + 1, 1)} pk = g (i, 1) and i is even
{g (i − 1, 1) , g (i − 1, 2) g (i, 2) , g (i + 1, 1) , g (i + 1, 2)} pk = g (i, 1) and i is odd and i ̸= 1 or n
{g (i − 1, m − 1) , g (i, m − 1) , g (i + 1, m − 1)} pk = g (i, m) and i is even
{g (i − 1, m) , g (i − 1, m − 1) g (i, m − 2) , g (i + 1, m − 1) , g (i + 1, m)} pk = g (i, m − 1) and i is odd and i ̸= 1 or n
{g (i − 1, j) , g (i − 1, j + 1) , g (i, j − 1) , g (i, j + 1) , g (i + 1, j) , g (i + 1, j + 1)} pk = g (i, j) and i is odd
{g (i − 1, j − 1) , g (i − 1, j) , g (i, j − 1) , g (i, j + 1) , g (i + 1, j − 1) , g (i + 1, j)} other pk = g (i, j) and i is even

� (2)

 where m represents the number of grids in the first row, and n represents the total number of rows in the grid, 
which is an odd number. The robot aims to move to unvisited grid centers whenever possible, so the movement 
trajectory P avoids including any repeated grid centers. This implies that:

	 pg ̸= pv, ∀pg, pv ∈ P g ̸= v� (3)

Constraints on long-distance target localization
Image parallelism   In binocular stereo vision positioning technology, two cameras capture stereo image pairs of 
the same scene, utilizing the disparity between these images to achieve 3D spatial localization. A standard stereo 
vision setup requires that the two cameras remain parallel at all times. However, maintaining this alignment 
consistently over extended periods can be challenging in practical applications. This paper employs a single-
camera motion strategy to simulate the effects of binocular vision by changing the observation position. During 
movement, the camera may undergo significant angular deviation at different observation positions, resulting 
in non-parallel images that reduce localization accuracy. Therefore, the Bouguet algorithm is used for image 
rectification. By leveraging the camera’s rotation matrix and translation vector, the algorithm achieves rotational 
transformations for both images, mapping them onto a common imaging plane and ensuring epipolar line 
parallelism. In order to improve the estimation accuracy of the rotation matrix and translation vector, this 
paper uses IMU sensor to obtain camera pose information. Since the IMU accumulates errors over time, its 
bias continually increases with prolonged use. To mitigate this effect, this paper resets the IMU error after each 
camera movement and employs Kalman filtering to fuse the camera, IMU, and GPS data, thereby optimizing 
the camera pose estimation and enhancing the accuracy of the rotation matrix and translation vector. Namely, 
using equation (4), the rectification rotation matrices Rl and Rr  are constructed, and both original images 
are reprojected to obtain two rectified images, effectively mitigating the non-parallel issue caused by camera 
deviations.

	
Rl =

[
e⊤

1
e⊤

2
e⊤

3

]
R

1
2 , Rr =

[
e⊤

1
e⊤

2
e⊤

3

]
R− 1

2 � (4)

where, e1 = T
∥T∥ , e2 = T×(0,0,−1)

∥T×(0,0,−1)∥ , e3 = e1×e2
∥e1×e2∥ . R represents the rotation matrix, which is 

derived from the camera’s rotation angles measured by an IMU. T represents the translation vector, which can be 
calculated from the distances between the central points of hexagonal grids.

Target relative position calculation based on two position sensing information     Based on the rectified 
images, the relative position of the target can be calculated using the principle of parallel stereo vision. However, 
in the hexagonal grid pattern, as shown in Figure 1, the robot’s ability to move both laterally and diagonally 
renders the traditional parallel binocular disparity method unsuitable for calculating depth distance. Therefore, 
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this paper introduces a method for calculating relative position based on information from two positional 
sensors. The specific approach is outlined as follows:

When the robot moves laterally, as shown in Fig. 2, two parallel cameras with the same parameters 
simultaneously capture images of the same object from differing positions. The speeded-up robust features 
(SURF) algorithm matches feature points across consecutive images, determining the pixel coordinates of these 
points on each camera’s imaging plane. Let the horizontal pixel coordinates of the two imaging points be denoted 
as uf  and ub, respectively. The disparity, defined as the difference between the horizontal pixel coordinates uf  and 
ub, is used to compute the i-th relative coordinate Li = (xc

i , yc
i , zc

i ) of the target object through triangulation.

	
xc

i = (xl − cx) b

uf − ub
, yc

i = (yl−cy)b

uf −ub
, zc

i = fb
uf −ub

� (5)

where, b represents the distance between the two camera positions, which also corresponds to the distance 
between the centers of adjacent hexagonal grid cells. f represents the camera’s focal length. xl and yl represent 
the pixel coordinates. cx and cy  represent the offsets of the camera imaging plane’s origin in the horizontal and 
vertical directions, respectively.

When the robot moves diagonally, as shown in Fig. 3, the relative positions of the two cameras change, resulting 
in variations in the size of the target object’s image. In this scenario, the traditional parallel binocular disparity 
method is ineffective in calculating the depth distance. Therefore, this paper proposes a diagonal binocular 
vision model. As shown in Fig. 4, the relative coordinate Lj = (xc

j , yc
j , zc

j ) of the j-th target is calculated by 
determining the difference in image width of the target object as captured by the cameras, as follows:

	
xc

j =
(xl − cx) zc

j

f
, yc

j =
(xl − cx) zc

j

f
, zc

j = wf ∗ bsinθ

wb − wf
� (6)

where, wf  and wb are the image widths on the camera Of  and Ob imaging planes, respectively. θ is the angle 
between the two camera positions.

Target relative coordinate fusion based on improved HDBSCAN   Through the movement of the camera 
and the computation of relative target coordinates, multiple sets of coordinate data are generated. The HDBSCAN 
algorithm, known for automatically determining the number of clusters and its tolerance to varying data shapes 
and noise, however, the relative coordinate data tend to be sparse. During localization, they are susceptible to 
environmental disturbances, which can lead to outliers. Therefore, we propose an enhanced HDBSCAN-based 

Figure 3.  In the case of oblique movement.

 

Figure 2.  Parallel binocular model.
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relative coordinate fusion algorithm that incorporates pruning operations and silhouette coefficient calculations. 
This enhancement effectively identifies a cluster of points around the true relative target coordinates, significantly 
reducing the error in relative target localization. The specific methodology is detailed as follows:

First, we define the core distance of each coordinate Li as the Euclidean distance to its k -nearest neighbor:

	 core (Li) = d (Li, Lk)� (7)

where, Lk  is the k-nearest neighbor of point Li.  Based on this distance, we further define the mutual reachability 
distance between any two points as:

	 d (Li, Lj) = max {core (Li) , core (Lj) , d (Li, Lj)}� (8)

where, d (Li, Lj) represents the original distance among the two points Li and Lj .  Using the mutual reachability 
distance as the edge weight, we apply Prim’s algorithm to construct the minimum spanning tree between points. 
Next, we sort the edges of the minimum spanning tree incrementally, starting with the smallest weight, and 
merge the two nodes or clusters connected by the selected edge into a new cluster. This process is continued 
by selecting the next edge with the smallest weight until all nodes are merged into a single cluster, forming a 
hierarchical tree structure. Subsequently, pruning operations are performed by iteratively selecting the mutual 
reachability distances, sorted in ascending order, as pruning thresholds to yield different clustering schemes. The 
silhouette coefficient for each clustering scheme is then calculated using the following equation (9):

	
SC = 1

N

N∑
i=1

b (i) − a (i)
max {a (i) , b (i)} � (9)

where, SC represents the silhouette coefficient of the points, N represents the number of clustering schemes, 
a (i) is the average distance from point i to other points within the same cluster, and b (i) is the average distance 
from point i to all points in the nearest neighboring cluster. After calculating the silhouette coefficients for each 
scheme, we select the scheme with the most significant change in silhouette coefficient as the final clustering 
scheme. This is achieved by interpreting the silhouette coefficients as a curve and selecting the clustering scheme 
corresponding to the point where the maximum perpendicular distance to the line connecting the start and 
end points of the curve is. Finally, the centroid of the cluster with the largest number of points from the selected 
clustering scheme is chosen as the fused relative coordinate L̂ = (xc, yc, zc) of the target.

Optimization model establishment
The robot follows the trajectory P, stopping at the center of each grid cell to acquire images and other data 
related to the long-distance target. Using the target relative position calculation method, the coordinates of the 
distant target are determined. Considering movement constraints and those associated with long-distance target 
localization, the objective is to identify an optimal movement strategy P ∗, that minimizes both the path length 
and the target coordinate error. The optimization model is established as follows:

	

min
P

(∥∥L̂ − LR

∥∥ /DP

)
s.t.P = (p0, ..., pk, ..., pn)

pk+1 ∈ Gk, k = 0, 2, ..., n − 1
pg ̸= pv, ∀pg, pv ∈ P g ̸= v

L̂ = IH(Li)
equation(5) − (6)

� (10)

Figure 4.  Diagonal binocular model.
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where, L̂ represents the estimated coordinates of the target node following fusion, LR represents the true 
coordinates of the target node, DP  represents the length of the moving path, and IH(Li) represents the final 
relative coordinates obtained using the improved HDBSCAN for target relative coordinate fusion, based on all 
acquired Li. 

Approximate solution of the optimization model
Swarm intelligence algorithms are optimization methods inspired by the collective behaviors observed in nature. 
These algorithms aim to find global optimal solutions by simulating the interactions among individuals within 
a group. However, they are sensitive to parameter settings and prone to premature convergence, which often 
results in suboptimal solutions. Reinforcement learning, on the other hand, is a machine learning approach 
where an agent learns an optimal policy through interacting with the environment. During this process, 
the agent takes actions based on its current state, calculates the Q-value for each action, and selects actions 
based on these values. By evaluating the outcome through rewards, the agent iteratively improves its policy 
to maximize cumulative rewards. Deep reinforcement learning enhances this process by utilizing neural 
networks to approximate Q-values, effectively addressing the challenge of high-dimensional state-action spaces 
and improving generalization capabilities. The DDQN algorithm, in particular, separates the target Q-value 
estimation from the action selection process, reducing Q-value overestimation and providing a more stable and 
reliable learning process. Compared to other deep reinforcement learning algorithms, DDQN features lower 
complexity, faster convergence, and is easier to implement, especially for problems involving discrete action 
spaces.

Therefore, this paper proposes the use of DDQN as the foundational framework. It incorporates a reward 
strategy based on coordinate fusion errors to address the optimization model described in equation (10). This 
approach aims to determine the optimal target locations and path trajectories. The specific details are presented 
below.

Solving network model construction   In the model, the state st of the robot is defined as the state information 
at time t, which is st = [pt−1, pt, x, y, z],  where pt represents the two-dimensional index of the grid center in 
the hexagonal grid at time t. x, y and z represent the image data obtained from pt−1 and pt. The estimated 
coordinates of the target are obtained using a relative position algorithm based on these two sensor inputs, 
subject to the constraints of equations (5)-(6) and the constraints in model (10). The robot can move in six 
possible directions in the hexagonal grid, denoted as A = {a1, a2, a3, a4, a5, a6}, where a1 represents moving 
to the right, a2 represents moving to the upper right, a3 represents moving to the lower right, a4 represents 
moving to the left, a5 represents moving to the upper left, a6 and represents moving to the lower left. However, 
the movement directions are constrained in boundary regions of the grid. Thus, the set of feasible movement 
directions for each state is determined by the movement constraints given in equations (1)-(3).

The reward function decisively influences the algorithm’s optimization performance and network convergence 
by guiding the robot to learn the optimal movement strategy. Specifically, if a particular movement direction 
brings the estimated target coordinates closer to the optimal solution, it deserves a higher reward; conversely, it 
gains a lower reward or even a negative reward. Thereby, this setting of the reward function encourages the robot 
to progressively choose paths that facilitate target localization. However, according to the optimization objective 
in model (10), the robot does not have access to the true target coordinate LR during movement. Therefore, the 
approach continuously updates the estimated coordinate using a relative position computation algorithm and 
leverages the trend in the estimated coordinate change as the basis for optimization, enabling the algorithm to 
locate the optimal target coordinate. Based on these considerations of both movement strategy and localization 
error, the following reward function is proposed:

	 rt = rt
error + rt

goal� (11)

where, rt represents the total reward at time t, and rt
error  represents the target localization reward at time t. 

rt
error  is obtained as follows. Firstly, obtain the estimated coordinates IH(Lt−1) and IH(Lt) by the target 

relative position calculation algorithm at time t − 1 and t, respectively. And then calculate the change of the 
reference coordinates as the reward value. The process is expressed as:

	 rt
error = −

(∥∥IH(Lt) − Lt
ref

∥∥
2

−
∥∥IH(Lt−1) − Lt

ref

∥∥
2

)
� (12)

where, Lt
ref  represents the current reference coordinates, which can be represented as:

	 Lt
ref = αIH (Lt) + (1 − α) Lt−1

ref � (13)

where, α is a weight coefficient used to balance the influence of the currently computed coordinate and the 
historical reference coordinate. If IH(Lt) is closer to the reference coordinate than IH(Lt−1), meaning the 
movement contributes to convergence. As a result, a positive reward is given to encourage the robot to continue 
moving in that direction. Conversely, if the movement leads to divergence, a negative reward is assigned to 
penalize the robot and discourage further movement in that direction. Denote rt

goal to be the reward obtained 
when the difference between the target’s estimated coordinate, which is acquired through the improved 
HDBSCAN-based target relative coordinate fusion algorithm, and the reference coordinate reaches a specified 
threshold ε. The process can be expressed as:
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rt

goal =
{

100 − k ·
∥∥IH(Lt) − Lt

ref

∥∥
2
,
∥∥IH(Lt) − Lt

ref

∥∥
2

≤ ε

0,
∥∥IH(Lt) − Lt

ref

∥∥
2

> ε
� (14)

To further balance exploration and exploitation, the method employs a Softmax strategy to select movement 
directions. This strategy uses a probability distribution to choose an action, where the distribution is based on 
the Q-value of each action, and can be expressed as:

	

P (st−1|ak) = eQbehavior(st−1,ak,ω)
MA∑
m=1

eQbehavior(st−1,am,ω) � (15)

where, P (st−1|ak) represents the probability of selecting movement direction ak  in state st−1, and 
Qbehavior (st−1, ak, ω) represents the Q-value of ak  in state st−1. Qbehavior (st−1, ak, ω) is the total number 
of available movement directions determining the range of possible actions. Compared to the greedy strategy, 
the Softmax strategy assigns higher selection probabilities to actions with higher Q-values, while still allowing 
actions with lower Q-values to be chosen with non-zero probability, thereby enabling better exploration.

Algorithm 1.  Solution process of LTLO

Based on the definitions above, we propose the network model to select the next movement position, as 
shown in Fig. 5. This network model includes an experience replay buffer, two networks with identical structures: 
the behavior network and the target network , and a loss function. The experience replay buffer is used to collect 
and store experience tuples (state st−1,  direction of movement at−1,  reward rt−1, state st). The behavior 
network and target network both take a 7-dimensional state representation, st,  as input, hence their input 
layers consist of 7 neurons. The network features two fully connected hidden layers, each containing λ neurons. 
Considering the robot’s six possible movement directions, the output layer comprises 6 neurons. The hidden 
layers use the rectified linear unit (ReLU) activation function, enhancing the network’s capability to manage 
nonlinear problems.

During training, the robot first moves from the starting position, sequentially placing state st−1 information 
and others into the experience replay buffer. The network uses the experience replay buffer to input the current 
data samples into the behavior network Qbehavior , where it computes the Q-values for each possible movement 
direction in the given state , and selects the Q-value corresponding to the chosen movement direction st−1 as 
the predicted value yeval. Next, the robot calculates the movement direction at with the maximum Q-value 
for state in the behavior network Qbehavior . The Q-value of state st in the target network Qtarget for each 
movement direction at is computed, and the Q-value corresponding to movement direction is selected and 
substituted into equation (16) to compute the target value ytarget:

	 ytarget = rt−1 + γQtarget

(
st, at, ω′)� (16)
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where, γ represents the reward discount factor, used to measure the importance of future rewards, and ω′ 
represents the parameters of the target network. Based on the predicted value yeval and the target value ytarget, 
the loss function Loss is calculated using the mean squared error:

	 Loss = E
[
(ytarget − yeval)2]

� (17)

where, E represents the expectation. Finally, the parameters ω of the behavior network are optimized using the 
gradient descent method. At the fixed training frequency τ ,  the parameters ω of the behavior network are copied 
to the parameters ω′ of the target network, ensuring stable network updates and achieving iterative training.

Implementation of model solution    Based on Algorithm 1, the robot moves while searching for the optimal 
solution of model (10). The detailed steps are as follows:

Step 1: Randomly initialize the behavior network and the target network . Set the experience replay buffer 
with a capacity of 10,000, the sample batch size of 64, the update frequency of 10, the reward discount factor of 
0.95, the error threshold of 0.3, and the maximum number of iterations Y of 50.

Step 2: Let t = 1, and the robot initializes the initial position st−1 and visited path Py .
Step 3: The robot calculates the set of movement directions A (st−1) in the current state st−1 using equation 

(2), and excludes the directions that lead to already visited positions. If the set of movement directions is empty, it 
performs the following operations until A (st−1) is non-empty: it backtracks along the robot’s path to previously 
visited grid centers, identifies unvisited neighboring grid centers, and adds them to A (st−1).

Step 4: The robot uses the behavior network Qbehavior  to calculate the movement probabilities for the 
directions at−1 in set A (st−1) using equation (15), and selects the direction with the highest probability.

Step 5: The robot moves to the corresponding grid center based on the selected direction. It photographs the 
target, uses Yolo and other target detection algorithms to detect the distant target and processes the captured 
image in parallel with the image taken at time t − 1. Then it uses the SURF algorithm for feature matching of 
the target in the images. If the movement direction is parallel, the robot calculates the target coordinates using 
equation (5). If the movement direction is diagonal, it uses the equation (6) to calculate the target’s relative 
position, thus obtaining state st. Using the relative position data at each point along the robot’s path, it clusters 
the obtained coordinate data using the improved HDBSCAN-based relative coordinate fusion algorithm to 
acquire the target coordinates at time t. Then the robot calculates the immediate reward rt1  using equation (11).

Step 6: The robot stores the generated data tuple (st−1, at−1, rt−1, st) into the experience replay buffer D. If 
the number of tuples is less than χ, it selects all tuples as the incremental training set for the behavior network. 
Otherwise, it samples the latest χ tuples as the incremental training set.

Step 7: The robot sequentially inputs the tuples (sk, ak) from the training set into the behavior network 
Qbehavior  for training, and calculates the predicted values to obtain set yeval. It sequentially inputs sk+1 into 
the target network Qtarget to calculate the target values, obtaining set ytarget. Then, it calculates the loss 
function using equation (16) and updates the parameters ω of the behavior network through gradient descent. 
If t%τ == 0,  it copies the parameters ω of the behavior network to the parameters ω′ of the target network.

Figure 5.  Network model for moving location selection at the next time instant.
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Step 8: The strategy’s effectiveness is evaluated by checking whether the absolute difference between the 
estimated clustered coordinates obtained after the robot’s movement and the reference clustered coordinates 
fall below a predefined threshold. If this condition is satisfied, it indicates that the estimated target coordinates 
have stabilized, and the path planning process is terminated. Otherwise, t = t + 1, set and go back to Step 3 
to continue searching. If the maximum number of iterations Y is not reached, go back to Step 2 for the next 
iteration. Otherwise, the robot obtains the estimated coordinates IH(Lt).

According to algorithm 1, we analyze the time complexity of LTLO. The LTLO primarily involves calculating 
the position of a distant target and training the network. During each movement, the robot uses an improved 
HDBSCAN-based relative coordinate fusion method to compute the position of the distant target, which 
requires clustering the obtained coordinate points L. Thus, the time complexity of this part is Θ

(
L2)

. The time 
complexity of the network training part mainly depends on the total number of neural network parameters and 
the number of tuples in the training set, resulting in a complexity of Θ (λρ).  Therefore, the total time complexity 
of LTLO is Θ

(
K ∗

(
L2 + λρ

))
,  where K is the number of grid cells along the robot’s path.

Experimental results
Experimental environment and parameter settings
The experimental mobile robot is shown in Fig. 6. The robot adopts a four-wheel differential drive structure, 
providing stable mobility with a motion control accuracy of ±0.1 meters. The robot is equipped with a 
high-performance ten-axis IMU sensor (WTGAHRS2) based on micro-electro-mechanical system (MEMS) 
technology, integrating a three-axis gyroscope, a three-axis accelerometer, and a three-axis electronic compass 
for real-time attitude measurement and positioning support. For image acquisition, the system uses a high-
precision camera with a resolution of 3472 × 3472 and a frame rate of 30 fps to capture long-range target 
images. The robot also includes a GPS-enabled positioning module, which works in conjunction with the IMU 
sensor to achieve multi-source fused localization. All sensor data is processed by an integrated computing unit 
powered by an Intel i7-12700H processor, 16 GB of RAM, and an NVIDIA GeForce GTX 4060 GPU, which 
handles both image processing and DDQN-based path planning computations.

To validate the effectiveness of the proposed algorithm, experiments were conducted on an outdoor 
playground under clear weather conditions. During the experiment, the IMU sensor provided real-time data 
from GPS, gyroscope, and electronic compass, while the internal parameters of the camera were calibrated using 
Zhang’s calibration method. Fig. 7 shows the mobile range of the robot grid and the experimental environment 
for the target region of interest (ROI) 1. The mobile robot moved within a specified grid range, collecting data 

Figure 7.  Experimental environment.

 

Figure 6.  Experimental equipment.
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with each grid center spaced 10 meters apart. The experimental parameters used for target localization are 
listed in Table 1. The mobile robot started from grid coordinates g(3, 3) and performed target localization using 
relative coordinates with g(0,0) as the reference point. The experiment targeted five accessible ROIs for testing, 
specifically windows on buildings at distances ranging from 100 meters to 500 meters. The targets for each ROI 
were imaged from multiple locations. ROI 1 was located at a distance of 104.49 meters, ROI 2 at 193.75 meters, 
ROI 3 at 316.80 meters, ROI 4 at 379.53 meters, and ROI 5 at 494.21 meters. These distance settings ensured 
that the equipment captured high-quality images and allowed evaluation of the algorithm’s performance in mid-
to-long-distance localization, applicable to various real-world scenarios such as drone surveillance and rescue 
operations.

Analysis of simulation results
Analysis of parameter selection
This paper discusses the cases under hexagonal grid widths of 5m, 8m, 10m, 12m, and 15m, and analyzes the 
impact of grid width on the relative localization error of LTLO based on the parameters listed in Table 1. It 
calculates the relative localization error for five target positions under each specific grid width. As shown in Fig. 
8, the overall relative localization error of LTLO exhibits a clear decreasing trend as the hexagonal grid width 
increases. When the grid is overly dense, although the data sampling density improves significantly, frequent 
short-distance movements intensify the accumulation of sensor noise. This effect becomes especially problematic 
when addressing pose angle errors for nearby targets, as the accumulated noise directly degrades the accuracy 
of image correction, potentially increasing the overall error rate. In addition, dense path planning introduces 
substantial computational redundancy, which severely impacts the stability of the clustering algorithm. As the 
grid width increases, the baseline distance between stereo cameras also increases. This not only enhances the 
resolution for depth estimation of distant objects but also significantly increases the disparity in the stereo 
imaging system, thereby improving localization accuracy to a certain extent. However, it is worth noting that 
after the grid width reaches a certain threshold, further improvements in localization accuracy come at the cost 
of reduced path planning efficiency. Considering the trade-off between path efficiency and localization accuracy, 
the subsequent experiments adopt a grid width of 20 meters. This configuration effectively reduces localization 
errors while mitigating excessive losses in path planning efficiency.

Figure 8.  Target relative positioning error of LTLO.

 

ROI 1 ROI 2 ROI 3 ROI 4 ROI 5

Focal length (piexls) 2883 2883 2883 5814 5814

Photo size (piexls) 3472*3472 3472*3472 3472*3472 3472*3472 3472*3472

Hexagonal grid width (m) 10 10 10 10 10

Number of iterations 100 100 100 100 100

Starting position grid(3,3) grid(3,3) grid(3,3) grid(3,3) grid(3,3)

GPS of g(0,0) 30◦19’22.82"N
120◦9’16.84"E

30◦19’20.36"N
120◦9’17.08"E

30◦19’20.36"N
120◦9’17.08"E

30◦19’20.36"N
120◦9’17.08"E

30◦19’20.36"N
120◦9’17.08"E

GPS of the actual target 30◦19’23.56"N
120◦9’20.76"E

30◦19’26.63"N
120◦9’16.68"E

30◦19’30.61"N
120◦9’19.88"E

30◦19’32.64"N
120◦9’17.33"E

30◦19’36.36"N
120◦9’21.79"E

Height of target (m) 1.87 4.35 8.36 10.58 3.84

Actual distance (m) 104.49 193.75 316.80 379.53 494.21

Table 1.  Experimental parameters.
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This paper analyzes the impact of convergence threshold on the relative localization error of LMDTL. It 
selects convergence thresholds of 0.1, 0.2, 0.3, 0.4, and 0.5, and computes the relative localization error for five 
target positions under each threshold based on the parameters listed in Table 1. As shown in Fig. 9, the relative 
localization error tends to increase overall as the convergence threshold gradually increases. This trend occurs 
because a larger convergence threshold often causes the training process to converge prematurely, significantly 
reducing the efficiency of feature fusion. This process can be illustrated through a comparison of the cases 
under thresholds of 0.1 and 0.5. With a threshold of 0.1, the algorithm achieves the minimum localization error; 
however, such a small threshold forces the model to train for a longer duration, which increases the length 
of the exploration path. In contrast, when the threshold increases to 0.5, the algorithm converges too early 
during the initial training phase, leading to insufficient feature fusion and a substantial decline in localization 
accuracy. Considering the trade-off between localization accuracy and average path length, the method adopts a 
convergence threshold of 0.3 for subsequent experiments. This setting effectively reduces localization error while 
avoiding excessive increases in path length, thereby achieving a balanced performance between localization 
precision and movement efficiency.

Ablation experiment
To validate the contribution of the path planning module (DDQN optimization strategy) to long-range target 
localization accuracy and path efficiency, this paper conducts an ablation study based on LTLO. Three approaches 
are compared: Method A (removing DDQN path planning and using a fixed route), Method B (removing the 
HDBSCAN-based relative coordinate fusion algorithm and instead applying simple coordinate averaging), and 
Method C (the complete LTLO algorithm). These methods are tested across five ROIs, and the experimental 
results are shown in Table 2. The results indicate that Method A yields higher localization errors compared to 
Method C. This is because Method A relies on a fixed path, which leads to target image data being collected from 

Method Relative error(%) Absolute error(%)

ROI 1 (104.49m)

A 2.14 2.64

B 2.64 3.23

C 0.75 2.10

ROI 2 (193.75m)

A 3.21 3.97

B 2.15 3.43

C 1.5 3.04

ROI 3 (316.80m)

A 3.93 6.32

B 3.84 5.98

C 2.73 4.74

ROI 4 (379.53m)

A 7.37 8.59

B 5.86 6.07

C 3.17 3.76

ROI 5 (494.21m)

A 8.87 9.33

B 5.69 6.84

C 3.26 5.54

Table 2.  Target positioning ablation experiment.

 

Figure 9.  Target relative positioning error of LTLO.
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suboptimal positions. These less accurate observations, when fused, result in increased relative and absolute 
errors in the estimated target coordinates. This demonstrates the critical role of dynamic path optimization in 
improving data quality. Method B shows lower error rates than Method A but higher than Method C. Although 
Method B eliminates the HDBSCAN-based relative coordinate fusion and replaces it with coordinate averaging, 
the independent optimization of path planning still improves the spatial distribution of observation points to 
some extent. However, due to its inability to effectively identify and differentiate dense coordinate clusters, its 
localization accuracy remains limited. In contrast, Method C achieves the lowest error rates across all ROIs. 
This confirms that the full LTLO algorithm, which integrates path planning with relative coordinate fusion, can 
generate more optimal fusion paths, thereby improving the accuracy of the final target localization. As a result, 
Method C consistently delivers the lowest relative and absolute errors, demonstrating the effectiveness of the 
proposed path planning algorithm in enhancing long-range target localization accuracy.

Analysis of algorithm performance
As shown in Fig. 10, during the robot’s path-searching process, the relative positioning error of the target 
gradually decreases with each movement step. Initially, due to uncertainty in the fused coordinates of the 
target, the relative positioning error is relatively large. However, as the robot continues to move and gather new 
observation data, the relative positioning errors of all targets decrease significantly. Specifically, the error for ROI 
1 reduces rapidly within the first 5 steps, for ROI 2 within the first 9 steps, for ROI 3 within the first 10 steps, for 
ROI 4 within the first 7 steps, and for ROI 5 within the first 11 steps, indicating that the algorithm can effectively 
adjust the initial state in the early phase. After the 10th step, the relative positioning errors of all targets gradually 
converge, suggesting that the estimated coordinates are approaching the actual target positions, with the final 
relative errors of each target fluctuating within a small range. Therefore, LTLO demonstrates good convergence 
properties.

Figure 11 shows the path planning results for the robot targeting different ROIs. Considering the obstacle-
free scenarios, the moving path for localizing ROI 1 is shown as the blue path in Fig. 11(a), the path for localizing 
ROI 2 is represented by the yellow path in Fig. 11(a), and the path for ROI 3 by the red path in Fig. 11(a). In Fig. 
11(b), the path for localizing ROI 4 is the blue path, and the path for ROI 5 is the red path. Consider the obstacle 
scenarios, as shown in Fig. 11(c), the robot successfully plans the paths to ROI1, ROI2, and ROI3, avoiding the 
gray regions that represent impassable areas. Similarly, Fig. 11(d) illustrates the robot’s path planning to ROI4 
and ROI5, where the robot effectively bypasses obstacles while still selecting near-optimal paths and achieving 
accurate target localization. As shown in Fig. 11, the robot not only adapts its path flexibly based on the target 
locations but also demonstrates the capability to autonomously avoid interference in complex environments and 
complete its tasks, ensuring that it can identify optimal paths and estimate the target’s optimal coordinates across 
varying distances. The proposed LTLO algorithm inherently incorporates traversability constraints within the 
hexagonal grid during path planning. As a result, the path planning process in the presence of obstacles does 
not differ significantly from that in obstacle-free scenarios. Experimental results indicate that the presence of 
obstacles has minimal impact on the outcome analysis. Therefore, we only show the experimental results in the 
obstacle-free scenarios in the following.

Positioning comparison under different moving paths
To assess the impact of different moving paths on target localization, Fig. 12 presents four different moving path 
schemes. Fig. 12(a) shows a path where the mobile robot starts from g(0,0), moves around the perimeter of the 
grid, and locates the target through image capture. Fig. 12(b) depicts a spiral outward path where the robot starts 
from g(3,3) and spirals outward, capturing images to locate the target. Fig. 12(c) shows the robot starting from 
g(0,0) and moving along each row of the grid to capture images for target localization. Fig. 12(d) illustrates the 
moving path of LTLO, using ROI 1 as an example. Using the parameters listed in Table 1, the relative and absolute 
errors between the estimated coordinates and the true coordinates of the same ROI target were calculated for 
different moving paths. As shown in Table 3, LTLO has the lowest relative and absolute errors for all ROIs. 
This is because LTLO dynamically adjusts the path based on real-time observation data and estimation results, 

Figure 10.  Target relative positioning error of LTLO.
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Figure 12.  Different moving path schemes.

 

Figure 11.  Moving paths for different targets.
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selecting an optimal route. During clustering fusion, the collected coordinate points are more concentrated and 
highly correlated, effectively reducing unnecessary noise, resulting in more accurate clustering outcomes. Since 
LTLO avoids redundant movements and minimizes accumulated errors, it achieves high-precision localization 
within shorter paths. In contrast, the other three fixed-path schemes have longer paths, leading to resource 
waste and extended localization times. The robot needs to cover a larger area, which results in longer paths 
generating accumulated errors in IMU data and producing a large amount of irrelevant target image data. These 
higher-error data points lead to multiple inaccurate target coordinates, which, after clustering fusion, increase 
the relative and absolute errors of the target coordinates.

Comparison of target positioning errors
According to the parameters in Table 1, this paper compares the relative coordinates, relative errors, LLA 
coordinates, and absolute errors of LTLO, TMVL3, MGG6, and LRBVTG7 across ROI 1 to ROI 5. As shown 
in Table 4, Figs. 13, and 14, due to factors such as image quality, the degree of path optimization, clustering 
stability, and sensor noise, LTLO exhibits slight fluctuations across different ROIs. However, for localization 
targets ranging from 100m to 500m, LTLO identifies near-optimal paths consistently. It effectively maintains 
the relative localization error within 4% and the absolute error within 6%, which are significantly lower than 
those of TMVL, MGG, and LRBVTG. It is reasoned that in long-distance target localization, LTLO considers 
movement constraints such as stay position selection and non-repetitive positioning, as well as long-distance 
target localization constraints such as image parallelism and relative position calculation. It constructs an 
optimization model for long-distance target localization based on the robot’s movement trajectory. For this 
optimization model, LTLO employs a reward strategy based on coordinate fusion in the improved Double 
Deep Q-Network, determining the optimal moving path through model training during the movement process 
and selecting the next movement direction. LTLO also introduces an improved HDBSCAN-based algorithm 
for fusing the relative coordinates of the target, effectively identifying the set of points surrounding the true 
relative coordinates and enhancing the effectiveness of coordinate fusion, thereby improving the accuracy of 
long-distance target localization. In contrast, TMVL has significant limitations in practical applications, as it 
requires manually providing target height information. Accurately measuring the height of long-distance targets 
manually is often challenging. Therefore, TMVL has considerable errors and impacts localization accuracy. The 
MGG algorithm relies on IMU data for camera pose correction, but angular drift errors in the IMU cause the 
lateral localization error to increase linearly with distance. Additionally, the depth estimation model based on 
pixel height introduces increasing errors as the target distance grows. LRBVTG requires manual adjustment of 
the camera angle to maintain parallelism between images. However, due to the long baseline between cameras, 
maintaining consistent camera orientation at two positions during movement is challenging, especially in 
complex terrain, which results in tilting and non-parallelism. Therefore, LRBVTG reduces the accuracy of image 
matching, further affecting localization accuracy.

Path mode

Relative coordinates

Relative error (m)

LLA coordinates

Absolute error (m)X (m) Y (m) Z (m) ϕ λ h

ROI 1 (104.49m)

Surround -25.68 -19.04 103.06 1.43 30◦19’21.99"N 120◦9’20.70"E 24.12 3.45

Spiral -25.72 -20.12 100.74 3.75 30◦19’23.66"N 120◦9’20.61"E 22.16 5.01

Lateral -23.22 -19.79 101.21 3.28 30◦19’23.58"N 120◦9’20.63"E 28.39 3.53

LTLO -24.61 -20.23 103.71 0.78 30◦19’23.62"N 120◦9’20.72"E 23.46 2.19

ROI 2 (193.75m)

Surround -5.19 -50.13 187.56 6.19 30◦19’26.40"N 120◦9’16.91"E 56.43 9.21

Spiral -4.30 -52.43 202.44 8.69 30◦19’26.90"N 120◦9’16.45"E 53.33 10.34

Lateral -5.57 -49.57 185.27 4.53 30◦19’26.34"N 120◦9’16.49"E 52.47 10.10

LTLO -5.23 -50.88 190.84 2.91 30◦19’26.52"N 120◦9’16.48"E 52.56 6.25

ROI 3 (316.80m)

Surround 60.55 -43.93 304.22 12.58 30◦19’30.23"N 120◦9’13.35"E 46.74 18.37

Spiral 62.03 -40.01 312.42 9.32 30◦19’30.18"N 120◦9’13.09"E 42.42 18.49

Lateral 63.23 -43.11 329.76 12.96 30◦19’31.06"N 120◦9’14.54"E 45.52 18.09

LTLO 63.44 -42.58 325.45 8.65 30◦19’30.93"N 120◦9’19.45"E 43.56 15.04

ROI 4 (379.53m)

Surround 12.16 -22.53 364.31 15.22 30◦19’32.19"N 120◦9’17.53"E 24.94 14.89

Spiral 11.60 -25.42 363.05 16.48 30◦19’32.15"N 120◦9’17.51"E 22.83 15.89

Lateral 13.15 -21.87 396.39 16.86 30◦19’33.23"N 120◦9’17.57"E 24.28 19.39

LTLO 11.44 -21.56 391.56 12.03 30◦19’33.07"N 120◦9’17.51"E 23.67 14.26

ROI 5 (494.21m)

Surround 102.32 -40.84 475.18 19.03 30◦19’35.79"N 120◦9’20.91"E 43.26 29.40

Spiral 101.04 -46.05 511.80 17.59 30◦19’36.98"N 120◦9’20.86"E 48.47 31.29

Lateral 99.21 -43.73 513.43 19.22 30◦19’37.03"N 120◦9’20.79"E 44.15 33.76

LTLO 104.88 -44.35 510.33 16.12 30◦19’36.93"N 120◦9’21.00"E 43.98 27.38

Table 3.  Target Localization results under different moving paths.
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Figure 14.  Absolute positioning error rate comparison.

 

Figure 13.  Relative positioning error rate comparison.

 

Algorithm

Relative coordinates

Relative error (m)

LLA coordinates

Absolute error (m)X (m) Y (m) Z (m) ϕ λ h

ROI 1 (104.49 m)

TMVL -23.71 -30.06 100.61 3.88 30◦19’23.59"N 120◦9’20.61"E 22.16 4.23

MGG -25.11 -23.55 102.74 1.75 30◦19’23.64"N 120◦9’20.69"E 22.45 3.11

LRBVTG -24.69 -36.29 101.54 2.95 30◦19’23.62"N 120◦9’20.64"E 21.39 3.76

LTLO -24.61 -20.23 103.71 0.78 30◦19’23.62"N 120◦9’20.72"E 23.46 2.19

ROI 2 (193.75 m)

TMVL -5.36 -49.43 200.44 6.69 30◦19’26.86"N 120◦9’16.88"E 53.33 9.00

MGG -5.65 -51.62 197.42 3.67 30◦19’26.77"N 120◦9’16.87"E 55.21 6.61

LRBVTG -5.67 -52.57 189.27 4.48 30◦19’26.51"N 120◦9’16.87"E 56.47 6.31

LTLO -5.23 -50.88 190.84 2.91 30◦19’26.55"N 120◦9’16.88"E 52.56 5.89

ROI 3 (316.80 m)

TMVL 62.03 -42.01 334.48 17.68 30◦19’31.22"N 120◦9’19.40"E 42.42 22.82

MGG 64.62 -42.61 331.51 14.71 30◦19’31.12"N 120◦9’19.50"E 44.61 18.91

LRBVTG 64.23 -43.11 329.76 12.95 30◦19’31.06"N 120◦9’18.48"E 45.52 17.47

LTLO 63.44 -42.58 325.45 8.65 30◦19’30.93"N 120◦9’19.45"E 43.56 15.04

ROI 4 (379.53 m)

TMVL 9.60 -48.26 396.25 16.72 30◦19’33.22"N 120◦9’17.44"E 22.38 18.16

MGG 11.41 -24.51 392.51 12.98 30◦19’33.11"N 120◦9’17.51"E 24.11 15.15

LRBVTG 10.85 -21.12 393.19 13.66 30◦19’33.13"N 120◦9’17.48"E 24.28 15.64

LTLO 11.44 -21.56 391.56 12.03 30◦19’33.07"N 120◦9’17.51"E 23.67 14.26

ROI 5 (494.21 m)

TMVL 105.04 -46.43 524.80 30.59 30◦19’37.40"N 120◦9’21.01"E 48.41 38.27

MGG 104.78 -46.21 516.91 22.70 30◦19’37.15N 120◦9’21.00"E 45.21 32.09

LRBVTG 105.21 -42.49 513.43 19.22 30◦19’37.03"N 120◦9’21.02"E 44.62 29.24

LTLO 104.88 -44.35 510.33 16.12 30◦19’36.93"N 120◦9’21.00"E 43.98 27.38

Table 4.  Target localization results under different algorithms.
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Discussion and conclusion
This paper presents an optimization algorithm for long-distance target localization (LTLO) that leverages the 
path planning of a single mobile robot. First, we construct an optimization model for long-distance targets, using 
the robot’s movement trajectory and dividing the operational area into hexagonal grids of equal size. Multiple 
movement constraints are introduced, including stay position selection and non-repetitive positioning. Then, 
by incorporating image parallel constraints and relative position calculations, we propose a target coordinate 
fusion algorithm based on the improved HDBSCAN. This algorithm effectively identifies clusters around the 
target’s true relative coordinates and fuses multiple target coordinate datasets to minimize positioning errors, 
thereby establishing long-distance localization constraints and constructing a target optimization model. Next, 
we propose an approximate solution for the optimization model, based on the improved double deep Q-network 
for training. We introduce a reward strategy based on coordinate fusion, which selects the next movement 
direction during the training process to find the robot’s optimal moving path, thereby improving localization 
accuracy for long-distance targets. Finally, we demonstrate the experimental environment, analyze the impact 
of different paths on target localization, and evaluate the performance of LTLO by comparing localization errors 
under different moving paths and algorithms. Experimental results show that, for static targets within distances 
of 100m to 500m, LTLO can identify effective moving paths to determine the target’s location, keeping relative 
positioning errors below 4% and absolute positioning errors below 6%, outperforming TMVL, MGG and 
LRBVTG.

The current LTLO framework primarily operates based on a single robot and targets long-range object 
localization under clear weather conditions, where objects can be detected using object recognition algorithms 
such as YOLO. In such scenarios, the image data is of high quality, and sensor outputs remain stable, supporting 
efficient image processing and data fusion. However, under adverse conditions such as rain, fog, and uneven 
lighting, as well as other complex environments, the performance of vision sensors faces greater challenges. 
Enhancing the feature extraction capability of vision sensors in low-light or high-noise environments and 
improving the robustness of target localization remain critical open problems. Future research can focus on 
developing more efficient image processing algorithms to improve feature extraction under low-light and high-
noise conditions. Moreover, integrating multi-modal sensor fusion–combining data from visual, infrared, 
radar, and other types of sensors–can further enhance system perception in complex environments, thereby 
improving object recognition and localization accuracy. In addition, while LTLO improves localization accuracy 
by integrating multiple algorithms and incorporating neural network-based training, it also slightly increases 
algorithmic complexity. Therefore, future work will focus on optimizing the algorithm structure to maintain 
high localization accuracy while reducing computational overhead, thus enhancing the method’s applicability in 
a broader range of scenarios.

Data Availability
The data used in this paper were collected throughout the experimental process and are available from the cor-
responding author upon reasonable request.
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