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Bubbles formed by the introduction of gas into a liquid are a common phenomenon, known as gas 
bubbling in liquids. This process is widely utilized in various industries for aeration, mixing, and 
purification. An optimal system of Lie symmetry analysis is employed to investigate the generalized 
(3 + 1)-dimensional nonlinear wave equation (NLWE). Single, double, triple, and quadruple linear 
combinations are constructed to derive novel solutions that represent different dynamic and turbulent 
behaviors of the bubbles. This equation models a wide range of nonlinear phenomena occurring in 
liquids containing gas bubbles. The proposed methodology is used to obtain a diverse set of accurate 
soliton solutions to the equation. Furthermore, the resulting solutions are analyzed in terms of their 
physical interpretations.
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Gas bubbling in liquids is a common phenomenon that occurs when a gas is introduced into a liquid, resulting 
in the formation of bubbles. This process is widely employed across various industries for mixing, aeration, 
and purification purposes. The characteristics of the formed bubbles, such as their size and frequency, depend 
on several factors, including gas flow rate, liquid viscosity, and surface tension. Overall, gas bubbling in liquids 
plays a crucial role in many industrial processes, rendering it a subject of significant interest to researchers and 
engineers alike1. Understanding the nonlinear and shock wave dynamics involved in gas bubbling is essential 
for optimizing these industrial applications. Detecting and analyzing these phenomena can enhance the 
performance of mixing and aeration systems and improve the quality control of purified liquids. By gaining a 
deeper understanding of gas–liquid interactions under various conditions, researchers can devise more effective 
strategies for controlling and optimizing these processes. In essence, the investigation of nonlinear and shock 
wave dynamics in gas bubbling is fundamental to the advancement of industrial fluid dynamics.

Bubbles, regarded as inhomogeneities2, play a critical role in influencing the nonlinear properties of the 
medium. Consequently, significant efforts have been made from various perspectives to measure the distribution 
of bubble sizes3. These efforts involve the application of acoustic and optical techniques, often combined with 
extensive computational analysis. Inhomogeneities are also present in the ocean, occurring on a much larger 
scale than individual bubbles. Although they may not be as visually apparent, their impact on sound propagation 
is considerable due to the vast distances over which sound travels in the marine environment. Local variations 
in sound speed arise from the mixing of water masses with different temperatures and salinities. Additionally, 
oceanic features such as currents, tides, eddies, and internal waves further contribute to the presence of these 
inhomogeneities.

The (3 + 1)-dimensional nonlinear wave equation (NLWE) can be defined as4:

	 (ut + a2uxxx + a1uux + a3ux)x + a4uyy + a5uzz = 0.� (1)

This equation provides a framework for modeling the complex interactions between waves and gas bubbles in a 
liquid. By incorporating the nonlinear advection term, uux, the dispersion term, uxxx, and multidimensional 
effects, the equation can capture a wide range of nonlinear physical processes, such as wave–bubble interactions, 
bubble oscillations, sonoluminescence, and cavitation. As such, it serves as a powerful tool for investigating 
the rich and complex dynamics of bubbly liquids across various scientific and engineering applications5,6. The 
nonlinear wave equation (NLWE) described in Eq. (1) has been previously examined using various analytical 
techniques. Hirota’s bilinear method5 was applied to determine lump soliton and its interaction solutions for 
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Eq. (1) revealing two distinct dynamical behaviors: general lump–periodic and multi-kink soliton solutions. The 
stability of this model is examined by using the modulation instability analysis6, then the dynamical behavior and 
solutions are discussed through generalized exponential rational function method. Furthermore, Lie symmetry, 
multiplier, and simplest equation methods were employed on Eq. (1), leading to novel symmetry reductions, 
group-invariant solutions, and conservation laws7. Multi-soliton and periodic solutions for the NLWE with 
variable coefficients were reported in8. In addition, the linear superposition principle was used to explore 
special N-wave, resonant multiple wave, and complexion solutions for the generalized (3 + 1)-dimensional 
nonlinear wave equation describing gas bubbling in liquids, as presented in9. Generally, nonlinear wave 
equations in multiple dimensions have been extensively studied using a variety of analytical techniques. Sine–
Cosine10–14, tanh-coth12,15–19, inverse scattering20–22, Hirota bilinear23–28, extended homogenous method29–35, 
Exp-function36–39, Elliptic function40–46, Bäcklund transformation47, Darbaux Transformation48,49 symmetry 
transformations and singular manifolds methods50–61 have also been employed to investigate the behavior of 
nonlinear partial differential equations (PDEs).

Previous research on gas bubbling dynamics has primarily concentrated on the behavior of bubbles in 
stagnant liquids, with relatively limited attention given to the effects of gas bubbling on fluid flow and mixing. This 
research paper builds upon existing knowledge by investigating how gas bubbling influences the flow patterns 
and turbulence levels within a liquid medium. A more comprehensive understanding of these dynamics can 
enable engineers to optimize process parameters, thereby improving mixing and aeration efficiency in industrial 
applications. The present research aims to explore the complex dynamics of gas bubbling in liquids and their 
implications for industrial processes. By examining the nonlinear and shock wave phenomena that arise during 
bubble–liquid interactions, engineers can develop more effective and energy-efficient systems for mixing and 
aeration. Ultimately, the goal is to enhance the overall performance, reliability, and scalability of industrial 
processes that rely on gas–liquid interactions. To this end, the generalized (3 + 1)-dimensional nonlinear wave 
equation (NLWE) is analyzed for exact solutions, including single and multiple solitons, periodic, logarithmic, 
exponential, and polynomial wave forms. Additionally, certain solutions are expressed in terms of arbitrary 
functions, which can be appropriately selected to model various physical scenarios. While the NLWE has been 
previously studied using different analytical techniques, the current approach, based on the Lie optimal system, 
yields new exact solutions that have not been reported in earlier works.

The structure of the paper is as follows. In Section “Lie transformations of NLWE”, the Lie symmetry vectors 
of the (3 + 1)-dimensional nonlinear wave equation (NLWE) are presented. Section “Optimal system of lie 
vectors” is dedicated to the reduction of the NLWE using the optimal Lie symmetry vectors. Finally, the paper 
concludes with a summary of the main findings in Section “Discussion of the results”.

Lie transformations of NLWE
The (3 + 1)-dimensional NLWE has the following Lie infinitesimals:
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Here, the (3 + 1)-dimensional nonlinear wave equation (NLWE) is considered, in which arbitrary functions 
appear within the Lie symmetry vectors. These functions are determined through an optimization process that 
aims to reduce the number of vectors involved in the commutator products. The commutator products of these 
vectors are given as follows:
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These commutative products51,53,62 leads to a system of ordinary differential equations (ODEs) in fi(t) in the 
following form:
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This system of differential equations has infinite number of solutions. One of the obtained results are given by 
the following eighteen vectors.
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Optimal system of lie vectors
Lie vectors are mathematically defined as the infinitesimal generators of a Lie group, enabling the precise 
characterization of small transformations within the group. They play a fundamental role in the study of Lie 
groups and their applications across various fields, including differential geometry, physics, and robotics. 
An appropriate selection of Lie vectors is essential for accurately describing group transformations and for 
simplifying computations in these areas. By carefully selecting suitable Lie vectors, one can significantly improve 
both the computational efficiency and the accuracy of algorithms that rely on Lie theory. To this end, systematic 
procedures based on the concepts of commutation relations, Eq. (10), and the adjoint representation, Eq. (11), 
are employed to identify the optimal system of vectors, including single, double, triple, and quadruple linear 
combinations.

	 [Xi, Xj ] = XiXj − XjXi.� (10)
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To avoid much mathematical analysis, more details about commutator tables, adjoint matrix, and optimal system 
representation can be found in51,53.

Reduction using single vectors
The optimization procedure leads to the following optimal single vectors: 
X6, X7, X9, X10, X12, X13, X16andX18. Moreover, the dual combinations were found to be 
X6 + X10, X7 + X10, X10 + X12, X7 + X16, X9 + X16, X13 + X16,X13 + X18, the triple combinations 
were defined as X6 + X7 + X10, X6 + X7 + X12, X6 + X10 + X12, + X7 + X10 + X12, X9 + X13 + X18, X13 + X16 
+ X18. Moreover, only one quadruple combination is obtained after considering the simplification of adjoint 
matrices51,53. This combination is X12 + X13 + X16 + X18. These vectors are used sequentially to detect exact 
solutions of NLWE63–66.

Case 1: using X6
This vector is used to reduce the number of independent variables of Eq. (1) and transform it to be:
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Where, o = q, s = p, v (s, o) = w (p, q, r) − r
q . This equation has an exact solution in the form:
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where, F1 and F2 are arbitrary functions in their arguments.
Finally, the solution of Eq. (1) can be formulated in the form:
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The behavior of the gas bubbles is depicted in Fig. 1 for F1 (t) = e−t2
, F2 (t) = sin2(t)

t .
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Case 2: using X7
This vector is used to reduce the number of independent variables in Eq. (1), resulting in:
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The invariant transformation is defined by:
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p4 + 16p3 + 96p2 + 256p + 256 ,

	 v (s, o) = p2w (p, q, r) + p2 + 8pw (p, q, r) + 8p + 16w (p, q, r) .� (17)

This transformation transforms Eq. (16) into:

	

o4voooo + 16
3 o3svooos + 32

3 o2s2vooss + 256
27 os3vosss + 256

81 s4vssss + 32
3 o3vooo

+ 136
3 o2svoos + 64os2voss + 2432

81 s3vsss + o

9

(
ov + 276o − 1

3

)
voo

+ 8s

27

(
ov + 320o − 1

6

)
vos + 16s

81

(
sv + 367s + 1

4

)
vss + o2

9 v2
o +

(
− 5

81 + 4
9ov + 8os

27 vs + 712o

27

)
vo

+ 16s2

81 v2
s +

( 4
81 + 52s

81 v + 3736s

81

)
vs + 10

81 (28 + v) (16 + v) = 0.

� (18)

Equation (18) has a Lie vector in the form; (so
1
3 ) ∂

∂s
+

(
3
4 o

4
3

)
∂

∂o
−

(
1+o(6v+96)

12o
2
3

)
∂

∂v  which transforms the 

equation to:

	 81α4ϕαα + 189α3ϕα + 36α2ϕ − 8 = 0,� (19)

where, α = os− 3
4 , ϕ (α) =

√
s

(
− 1

3o
+ v (s, o) + 16

)
.

Fig. 1.  Illustration of u1 (x, y, z, t) for F1 (t) = e−t2
, F2 (t) = sin2(t)

t
, y = 1.

 

Scientific Reports |        (2025) 15:29179 6| https://doi.org/10.1038/s41598-025-09588-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Now, Eq. (19) could be solved analytically. Using Back substitutions, the solution of Eq. (1) is formulated in 
the form:

	

u2 (x, y, z, t) = 1
36t

8
3

(
36C1t2ln (t) − 27C1t2ln

(
y2 + z2 − 2y + 1

))

− 36t
8
3 + 12xt

5
3 + 2y2t

2
3 + 2z2t

2
3 + 36C2t2 + 48t

5
3 − 4yt

2
3 + 2t

2
3 .

� (20)

The bubble dynamics is illustrated in Fig. 2

Case 3: using X9
Similar procedures are being used to extract and create new families of solutions for NLWE in its three-
dimensional form. The vector X9 transforms Eq. (1) into:

	
wrrrr +

(
1 + w − q

4

)
wrr + w2

r + wpp + 4wqq = 0,� (21)

where, p = y, q = t2 − 2z, r = 1
6

(
3tz − t3)

+ x, w (p, q, r) = u (x, y, z, t) .

At this stage, Eq. (21) undergoes the Lie infinitesimal test, which yields a number of infinitesimal generators. 
These generators, along with their associated reduction procedures, are summarized in Table 1.

The solutions, u3, u4andu5 are illustrated in Figs. 3, 4 and 5.

Case 4: using X10
This vector transforms Eq. (1) to:

	 w2
p + wwpp − 2qwqq + wpr + wpppp + wpp + wqq − 2wq = 0,� (22)

where, p = x, q = −
(

z2+y2

2

)
− z, r = t, w = u.

Equation (22) has an infinitesimal vector, 
(

p
2 + 1

)
∂

∂p
+ (2q − 1) ∂

∂q
+ 3r

2
∂

∂r
− (w + 1) ∂

∂w .
Following the same procedures, the following solution can be obtained.

	

u6 = 1
36t

14
3

(
−27C1t4ln

(
−y2 − z2 − 2z − 1

)
+ t

8
3

(
2y2 + 2z2 + 4z + 2

)

+27C1ln (2) t4 + 36C1t4ln (t) − 36t
14
3 + 36C2t4 + t

11
3 (24 + 12x)

)
.

� (23)

Fig. 2.  Illustration of u2 (x, y, z, t) at x = 1, t = 1, C1 = C2 = 1.

 

Scientific Reports |        (2025) 15:29179 7| https://doi.org/10.1038/s41598-025-09588-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The behavior of the solution described by (23) is depicted hereafter in Fig. 6.

Case 5: using X12
Using the invariant variables, P = z − 2x, q = t, r = 4x (z−2x) +4tx + 4x2 + y2, w (p, q, r) = u (x, y, z, t).

the following solution is obtained.

Fig. 3.  Illustration of u3 at t = 0 For F1 = exp
(
t2 − 2z − 2Iy

)
, F2 = sin

(
t2 − 2z + 2Iy

)
.

 

Case 3.1

Vector ∂
∂r

Reduced Form vss + 4voo = 0,
Where,o = q, s = p, v (s, o) = w (p, q, r) .

Solution v (s, o) = F1 (o − 2Is) + F2 (o + 2Is)

Final Solution of (1) u3 = F1
(

t2 − 2z − 2Iy
)

+ F2
(

t2 − 2z + 2Iy
)

.

Case 3.2

Vector ∂
∂q + 1

4
∂

∂w

Reduced Form v2
o + vss + (1 + v) voo + voooo = 0,

Where,o = r, s = p, v (s, o) = w (p, q, r) − q
4 .

Solution v (s, o) = −12C2
3 tanh2 (C2s + C3o + C1) −

C2
2 +C2

3 −8C4
3

C2
3

Final Solution of (1) u4 = t2 − z
2 − 12C2

3 tanh2
(

C1 + C2y + C3
(

x + 3tz−t3
6

))
−

C2
2 +C2

3 −8C4
3

C2
3

.

Case 3.3

Vector q ∂
∂p − 4p ∂

∂q − p ∂
∂w .

Reduced Form 1 vvoo + v2
o + 16svss + voooo + voo + 16vs = 0,

Where, o = r, s = 4p2 + q2, v = w − q
4

New level vector ∂
∂o

Reduced Form 2 αϕαα + ϕα = 0,
Where, α = s, ϕ = v

Solution ϕ = C1 + C2ln (α) .

Final Solution of (1) u5 = C1 + t2
4 − z

2 + C2ln
(

4y2 +
(

t2 − 2z
)2

)
.

Table 1.  Lie Infinitesimal Vectors of Eq. (21) Using X9.
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Fig. 5.  Illustration of u5 at C1 = 0, C2 = −1, t = 0.

 

Fig. 4.  Illustration of u4 at C1 = C2 = C3 = 1, x = 0, t = 1.
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u7 = C1 − t

2 + C2ln
(
t2 + 2tz + y2 + z2)

.� (24)

The behavior of the gas bubble due to the case in Eq. (24) is illustrated in Fig. 7

Case 6: using X13
The invariant variables of X13 are p = z

y
, q = ty− 3

2 , r = x−t√
y

, w = yu. The transformed equation is given by:

	

6rqwqr + r2wrr + 9q2wqq + 12pqwpq + 4rpwpr

+ 4p2wpp + 4w2
r + 7rwr + 4wwrr + 27qwq

+ 16pwp + 4wqr + 4wrrrr + 8w + 4wpp = 0.

� (25)

The new equation admits three infinitesimal Lie generators. The following subcases are derived and presented in 
Table 2. The solution, u8​, is depicted in Fig. 8.

Case 7: using X16
This vector results in three distinct solutions that are given in the following forms:

	
u11 = C1t

−2
3 ln (t) − 3

4C1t
−2
3 ln

(
y2 + z2 + 2z + 1

)
+ x

3t
+ y2 + z2

18t2 + C2t
−2
3 + 2z + 1

18t2 − 1.� (26)

	
u12 =

(
−y2 + y

(
C1 − C0

2

)
− (z + 1) (z + 1 − C2)

)
(
y2 + (z + 1)2) + t

−7
3

(
C2ty + 1

9 t
1
3 y2 + x

3 t
4
3 + C1t

5
3

)
.� (27)

	
u13 = x

3t
+ C2t

−2
3 + y2

9t2 + C1t
−4
3 (z + 1) − 1.� (28)

Case 8: using X18
Another three exact solutions can be obtained as follows:

Fig. 6.  Illustration of u6 at C1 = C2 = 1, x = 0, t = 1.
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Case 6.1

Vector q
1
3 ∂

∂r + 1
3 q

−2
3 ∂

∂w .

Reduced Form 36o2
(

s2 + 1
)

vss + 81o4voo + 108so3vos + 243o3vo + 144so2vs + 72o2v− = 0.

Solution v (s, o) = C0s2+2C2s+2C1
2(s2+1) + 2−9C0o2

18o2 + C1o
−2
3 + C2o

−4
3 .

Final Solution of (1) u8 = 1

t
7
3 (y2+z2)

(
t

7
3

(
− y2

3 + y
(

C1 − C0
2

)
− z(z−3C2)

3

)
+

(
y2 + z2

)(
C2ty + 1

9 t
1
3 y2 + 1

3 xt
4
3 + C1t

5
3

))
.

Case 6.2

Vector q
2
3 ∂

∂p −
(

p

3q
1
3

)
∂

∂r +
(

p

9q
4
3

)
∂

∂w .

Reduced Form 1 36s2voooo + 9s2
(

o2 + 4v
)

voo +
(

54os3 + 36s2
)

vos + 81s4vss + 36s2v2
o +

(
63os2 + 12s

)
vo + 243s3vs + 72s2v + 4 = 0.

New level vector s
1
3 ∂

∂o + 1
3 s

−2
3 ∂

∂v .

Reduced Form 2 9α2ϕαα + 27αϕα + 8ϕ = 0

Solution ϕ (α) = C1α
−2
3 + C2α

−4
3 .

Final Solution of (1) u9 = 9C1t
−2
3 + 9C2yt

−4
3 − 1

3 + x
3t + 1

9 t−2z2.

Case 6.3

Vector
(

p2 + 1
)

∂
∂p +

(
3pq

2

)
∂

∂q +
(

pr
2

)
∂

∂r − (pw) ∂
∂w .

Reduced Form 1 4voooo +
(

o2 + 4v
)

voo + 6osvos + 9s2vss + 5ovo + 21svs + 4v2
o + 4v = 0.

New level vector s
1
3 ∂

∂o + 1
3 s

−2
3 ∂

∂v .

Reduced Form 2 81α4ϕαα + 189α3ϕα + 36α2ϕ − 8 = 0.

Solution ϕ (α) = C1α
−2
3 ln (α) + C2α

−2
3 + 1

18α2 .

Final Solution of (1) u10 = 1

36t
8
3

(
−12t

8
3 + 12xt

5
3 + 36C1t2ln (t) − 27C1t2ln

(
y2 + z2

)
+ 2t

2
3 y2 + 2t

2
3 z2 + 36C2t2

)
.

Table 2.  Infinitesimal Vectors of Eq. (21) Using X13.

 

Fig. 7.  Illustration of u7 at C1 = 0, C2 = −1, t = 1.
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u14 = 4
t

7
3 (4t2 − 4tz + y2 + z2)

(
t

7
3

(
−2z2

3 + z
(

C2

4 − x

3

)
− 2y

9

(
y − 9

8C1 − C0

64

))

+ t
4
3

(
xy2 + xz2

12 − zy2

36 + z3

12

)
+ t

10
3

(
x

3 + 5z

3 − C2

2

)
+ C1

4 t
5
3

(
y2 + z2)

+ C1t
11
3 − 4

3 t
13
3 + C1zt

8
3 + t

1
3

(
y2z2 + y4

36

)
+ C2yt3 − C2yt2z + C2yt

4
(
y3 + yz2)

� (29)

	
u15 = C1t

−2
3 ln

(
4t2 − 4tz + y2 + z2)

− 4C1

3 t
−2
3 ln (t) + C2t

−2
3 + x

3t
+ z

9t
+ y2 + z2

18t2 − 10
9 .� (30)

	
u16 = C2t

−2
3 + C1yt

−4
3 + x

3t
− z

9t
+ z2

9t2 − 8
9 .� (31)

Reduction using dual linear combinations of the vectors
Linear combinations of two vectors are used to create more solutions. The optimal combinations are 
X6 + X10, X7 + X10, X10 + X12, X7 + X16, X9 + X16, X13 + X16 and X13 + X18. The reductions and 
solutions are discussed below.

Case 1: using X6 + X10
The combined vectors result in the following invariant variables:

	
p = t, q = −z + z2 + y2

2 , r = x + t

2arctan
( 2y

−2z − 1

)
, w (p, q, r) = u (x, y, z, t) + 1

2arctan
( 2y

−2z − 1

)
.� (32)

Equation (1) is now transformed to:

	
(32q − 4) wrrrr +

(
(32q − 4) w − 4p2 + 32q − 4

)
wrr − (64q − 8)

((
q − 1

8

)
(wqq) − 1

2w2
r + wq − 1

2wpr

)
= 0.� (33)

Now, Eq. (33) is transformed to:

	 −8ovoo + voo − 8vo = 0,� (34)

Where, o = q, s = p, v (s, o) = w (p, q, r) − r
p .

Finally, Eq. (34) has the following exact solution:

Fig. 8.  Illustration of u8 at C0 = 1, C1 = 1, C2 = −1, x = 1, t = 1.
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v (s, o) = F1 (s) + ln

(
o − 1

8

)
F2(o).� (35)

The final exact solution of Eq. (1) can be formulated as:

	
u17 = x

t
+ F1 (t) − 3ln (2) F2 (t) + F2 (t) ln(−4y2 − 4z2 − 4z − 1).� (36)

Where, F1 (t) andF2(t) are arbitrary functions in their argument.
The solution described by Eq. (36) is depicted in Fig. 9.

Case 2: using X7 + X10
The following solution is obtained.

	 u18 =
((3

4C1t
−2
3 + 1

36t2

) (
1 + 2z − 2y + 2z2 + 2yy2)

+ 1
3t

(1 + x) + 3
4C1ln (2) t

−2
3 + C1t

−2
3 ln (t) + 36C2t2 − 1

)
.� (37)

Case 3: using X10 + X12
The following solutions are obtained.

	
u19 = t2

4 − z

2 + C1ln
(

4y2 +
(
t2 − 2z

)2
)

+ C2.� (38)

	
u20 = C1 − 2C2ln (2) − t

4 + C2ln
(
t2 + t (2 + 4z) + 4y2 + 4z2 + 4z + 1

)
.� (39)

The solution, u19, is illustrated in Fig. 10.

Case 4: using X7 + X16
The following solution has been created.

Fig. 9.  Illustration of u17 at z = 0, x = 0, F1 (t) = sin(t)
t

, F2 (t) = e−t2
.
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u21 = 864
(3t + 2)

7
3 (288t2 + t (288 − 288z) + 72y2 + 72 (z2 − 1))

(
−4t4 + t3

(
x + 5z − 26

3 − 3
2C2

)

+ t2
(

−2
3y2 + y

(
C0

96 + 3
4C1

)
+ x

(5
3 − z

)
+ C2

(3
4z − 11

4

)
− 2z2 − 7 + 25

3 z
)

+ t

(
y2

(
x

4 − z

12 − 5
6

)
+ y

(
C1 + C0

72

)
+ x

(
11
12 + z2

4 − 7z

6

)
+ C2

(
z − 5

3

)
+ 0.25 (z − 1)

(
z2 − 25

3 z + 10
))

+ y4

12 + y2
(

z2

12 + x

6 − 1
4

)
+ y

(
C0

216 + C1

3

)
+ 1

6 (z − 1)
(
2 + 2C2 − 3z + z2 + x (z − 1)

)

+ (3t + 2)
1
3 +

(
t + 2

3

) (
3

2
3 C2 (3t + 2)

2
3 + 3

4
3 C1y

) (
t2 + t (1 − z) + y2 + (z − 1)2

4

))
.

� (40)

This solution is depicted in Fig. 11 at C0 = 0, C1 = C2 = 1, x = 0, t = 0.

Case 5: using X13 + X16
Employing the same reduction procedures, the following solution is created.

	

u21 = 1

t
7
3

(
y2 +

(
z + 1

2

)2
)

(
t

7
3

(
−2

3y2 + y
(

C1 − C0

2

)
− 2

3

(
z + 1

2

) (
z − 3

2C2 + 1
2

))

+
(

y2 +
(

z + 1
2

)2
) (

C1ty + 1
9y2t

1
3 + x

3 t
4
3 + C2t

5
3

))
.

� (41)

This solution is illustrated in Fig. 12 at t = 1, x = 1, C0 = 0, C1 = C2 = 1.

Case 6: using X13 + X18
Another exact solution is formulated after the similarity transformation using the combined vectors, X13 + X18.

	

u22 = 27
t

7
3 (72t2 − 144tz + 72y2 + 72z2)

((
−13

12z2 + z
(

C2 − 2x

3

)
− 23y

36

(
y − 36

23C1 − C0

46

))
t

7
3

+ t
4
3

(1
3xy2 + 1

3xz2 − 1
18y2z + 1

6z3
)

+ t
10
3

(
x

3 + 5z

3 − C2

)
+ t

5
3

(
y2 + z2)

+C1t
11
3 − 3

4 t
13
3 − 2C1zt

8
3 + t

1
3

(1
9y4 + 1

9y2z2 + C2yt3 − 2C2yt2z + C2ty3 + C2tyz2
))

.

� (42)

Now, this solution is depicted in Fig. 13.

Fig. 10.  Illustration of u19 at y = 0, x = 0, C1 = 0, C2 = −1.
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Reduction using triple linear combinations of vectors
Linear combinations of three vectors are used to create more solutions. The optimal combinations are 
X6 + X7 + X10, X6 + X7 + X12, X6 + X10 + X12, X7 + X10 + X12, X9 + X13 + X18, X13 + X16 + X18. 
The reductions and solutions are described hereafter.

Case 1: using X6 + X7 + X10
This linear combination leads to the following exact solution.

	
u23 = F2 (t) ln

(
−3

2z2 − 3
2y2 − z + y − 1

3

)
+ F1 (t) − 1

3arctan
( 3y − 1

−3z − 1

)
.� (43)

The solution is depicted in Fig. 14 considering F1 (t) = sech2(t), F2 (t) = e−t2
 at y = 0.

Case 2: using X6 + X7 + X12
This linear combination leads to the following exact solution.

	
u24 = F2 (t) ln

(
−1

6 t2 − 3
2z2 − zt − 3

2y2 + y − 1
6

)
+ F1 (t) − 1

3arctan
( 3y − 1

−3z − t

)
.� (44)

The solution is depicted in Fig. 15 cosideringing F1 (t) = sech2(t), F2 (t) = sin(t)
t  at z = 0.

Case 3: using X6 + X10 + X12
This linear combination leads to the following exact solution.

	
u25 = F2 (t) ln

(
− 1

18 t2 − 1
2z2 − 1

3zt − 1
2y2 − 1

3z − 1
9 t − 1

18

)
+ F1 (t) − 1

3arctan
( 3y

−3z − t − 1

)
.� (45)

Fig. 11.  Illustration of u20 at t = 0, x = 0, C0 = 0, C1 = C2 = 1.
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Case 4: using X7 + X10 + X12
Once again, this linear combination leads to the following exact solution.

	
u26 = C1 + C2ln

(
−1

6 t2 − 1
3 t − 3

2z2 − zt − 3
2y2 − z + y − 1

3

)
.� (46)

Case 5: using X9 + X8 + X13
The following solution is obtained.

Fig. 13.  Illustration of u22 at t = 1, x = 5, C0 = 0, C1 = C2 = 1.

 

Fig. 12.  Illustration of u21 at t = 1, x = 1, C0 = 0, C1 = C2 = 1.
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Fig. 15.  Illustration of u24 at F1 (t) = sech2(t), F2 (t) = sin(t)
t  and z = 0.

 

Fig. 14.  Illustration of u23 at F1 (t) = sech2(t), F2 (t) = e−t2
 and y = 0.
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u27 = 1
6 (3t + 1)2

(
6

(
3

2
3

)
C1 (3t + 1)

4
3 ln

(
4t2 + t (4 − 4z) + y2 + z2 − 2z + 1

)

+8
(

3
2
3

)
(3t + 1)

4
3

(
C1ln (3) − C1ln (3t + 1) + 3

4C2

)
− 42t2 + t (18x + 6z − 42) + 3y2 + 3z2 + 6x − 9

)
.

� (47)

	
u28 = 3

(3t + 1)
7
3

(
(3t + 1)

1
3

(
−5

3 t2 + t
(

x − z

3 − 5
3

)
+ z2

3 + x − z + 1
3

)
+

(
t + 1

3

) (
C2(3)

2
3 (3t + 1)

2
3 + 3

4
3 C1y

))
.� (48)

Case 6: X13 + X16 + X18
This last triple combination leads to the following result.

	

29 = 1
162t2

(
162C1t

4
3 ln

(
4t2 + t (−4 − 12z) + 9y2 + 9z2 + 6z + 1

)

+t
4
3 (−324ln (3) C1 − 216C1ln (t) + 162C2) − 128t2 + t (54x + 6z + 8) + 9y2 + 9z2 + 6z + 1

)
.
� (49)

Reduction using quadruple linear combination vectors
A linear combination of four vectors is used to create more solutions. The optimal set of combinations consists 
of only one combination, X12 + X13 + X16 + X18. The solution resulting from using this combination is 
formulated as:

	

u30 = F2 (t) ln
(
−t2 − t (2 + 8z) − 16y2 − 16z2 + 8y − 8z − 2

)

− 3ln (2) F2 (t) + F1 (t) + 1
32t

arctan
( 4y − 1

t + 4z + 1

)
+ x

t
− z

8t
− 1

32t
− 1

32 .
� (50)

This solution is depicted hereafter in Fig. 16.

Discussion of the results
Bubble creation in liquids is a widespread phenomenon with extensive influence on natural and industrial 
systems. It facilitates mixing, heat, and mass transport and is therefore essential in processes like chemical 
reactions, wastewater treatment, and fermentation. In nature, bubbling occurs as submarine volcanism and as 
part of aquatic life activity. Its dynamics also enable sophisticated applications like ultrasound imaging and 
drug targeting. Phenomena of gas bubbling need to be mastered to enhance efficiency, safety, and innovation 
in a multitude of scientific and engineering processes. The optimal system emphasizes obtaing nonrepeated 
exact solutions67,68. The obtained illustrations, Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16, introduce 

Fig. 16.  Illustration of u30 at F1 (t) = sech2(t), F2 (t) = sech(t) and x = 0, z = 0.
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many scenarios of bubble formation in fluids. Figure 1 illustrates gas bubbling through a liquid, with increasing 
wave-like tendencies in velocity over time and space due to rising gas bubbles that agitate the surrounding 
liquid. These are typical situations in chemical reactors, bubble columns, and bioreactors, where gas–liquid 
interaction is a significant factor. Such knowledge can optimize mixing, mass transfer, and reaction rates in 
industrial processes. Figure 2 presents a pressure or velocity wave propagating in a fluid medium and peaking 
abruptly. In such cases, a gas bubble rising in a fluid generates oscillatory pressure fields through displacement 
and buoyant forces. Applications include chemical reactors, underwater acoustics, and medical diagnostics 
involving microbubbles. Figures 3, 5, 6 and 7 depict several high-frequency oscillating waves with clear peaks 
and troughs, which are characteristic of complex wave interactions. In gas bubbling in liquids, for instance, such 
graphs may model turbulence or stochastic waveforms resulting from large numbers of bubbles interacting in a 
confined area. Sonar and medical ultrasound devices are common applications. Figure 4 displays a single wave 
representing pressure or velocity distribution caused by the expansion and distortion of a single gas bubble in 
a viscous liquid. Such waveforms are used to model the initial burst or implosion of bubbles and play a critical 
role in heat and mass transfer. Fluidized beds, microfluidic devices, and safety analysis in pressurized gas–liquid 
systems are just a few relevant application areas. Figures 8, 11, and 13 show waves that are likely singularities or 
steep gradients in fluid behavior, possibly mimicking the pressure or velocity fields around a gas bubble in a fluid. 
Such dynamics are significant in chemical reactors, underwater acoustics, and biomedical ultrasound. Figure 9 
illustrates wave decay with energy loss over time. Applications range from improving aeration in wastewater 
treatment to optimizing gas delivery in biomedical therapies. Figure 10 shows a localized spike, as observed in gas 
bubble collapse or microbubble cavitation within a fluid. The transient spike in amplitude suggests concentrated 
energy over a short timescale, relevant in high-pressure or ultrasonic systems. This is crucial in applications 
such as medical ultrasound therapy, inkjet printing, and fuel injection systems, where precise bubble dynamics 
determine performance. In Fig. 11, peaks and steep slopes indicate regions of high intensity—for example, where 
bubbles rise and create local disturbances. Such wave-like structures can be used to study gas–liquid interactions, 
mixing efficiency, and bubble plume dynamics. Applications include chemical reactors, wastewater treatment, 
and bubble column reactor design. Figure 14 reveals oscillations or perturbations at the gas–liquid interface 
during gas bubbling. The sharp vertical ridges and oscillating surface represent nonlinear wave dynamics or 
shock-like structures, typically resulting from abrupt gas injection into a viscous fluid. Applications include 
design optimization of gas sparging in bioreactors and efficiency improvements in fluidized beds and chemical 
mixing systems. Figures 15 and 16 present dynamic wave profiles, likely modeling fluid surface deformation 
over time due to gas bubbles rising through a liquid. The steep peaks and troughs indicate local, nonlinear 
disturbances such as bubble bursts or high-speed jets. Applications include the design of optimized bubble 
columns, aeration systems, and enhancement of gas–liquid reaction efficiency.

Conclusion
The results obtained by the optimal Lie infinitesimals are divided into four main categories. The reductions 
and solutions are obtained using single, double, triple, and quadruple linear combinations of the vectors. The 
resulting closed-form solutions were verified symbolically using the MAPLE package to satisfy the NLWE. 
These solutions are numerous and diverse in form. Some are expressed as single and multiple solitons, while 
others appear as singular solitons, or as periodic, logarithmic, exponential, and polynomial waves. Moreover, 
some solutions are formulated in terms of arbitrary functions, which can be appropriately selected to represent 
various physical cases. These solutions are particularly important for understanding the behavior of bubbles in 
gaseous media under different conditions. The chaotic nature of the gaseous medium is the primary reason for 
the emergence of such varied solutions. The optimal system used is crucial for generating new exact solutions. 
Higher-order linear combinations lead to more complex solutions of the nonlinear wave equations. However, 
the number of optimal system members decreases as the order of the linear combination increases, that is, 
quadruple-vector combinations are fewer than triple, double, or single ones.
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