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Water-based graphene oxide inks
for inkjet-printed flexible moisture
energy generators

Katerina Anagnostou®, Massimo Urban?5, Evangelos Sotiropoulos?, Christos Polyzoidis?,
Katerina Kavalieraki®, Kyriakos Mouratis?, Giulio RosatiZ, Arben Merko¢i%3",
Konstantinos Rogdakis'*** & Emmanuel Kymakis***

With the need for clean sustainable energy and low-waste practices rising, battery-free technologies
that run on renewable ambient energy sources are an attractive solution to these environmental
concerns. Herein, Graphene oxide (GO) and GO-PEDOT: PSS water-based inks were formulated from
inexpensive precursor materials following user-friendly, up-scalable methods. GO-based moisture-
active films were deposited on flexible lightweight substrates using inkjet printing to fabricate
Moisture Energy Generators (MEG), devices that convert ambient moisture energy variation into

a voltage output. The performance of the fabricated MEGs was evaluated using a custom-made
automated humidity chamber, yielding an average voltage output of V_ =183 (+1.76) mV for pure GO
andV =194 (£0.97) mV for GO-PEDOT: PSS, in the relative humidity range of 45-95%. We support
that this study may provide fertile ground for the development of low-cost energy harvesters for
self-powered portable and wearable technologies, minimising the need for batteries and reducing
electronic waste.

Keywords Moisture energy generators, Graphene oxide, 2D nanomaterials, Printable inks, Inkjet printing,
Flexible

Main

One of the main environmental topics of the 21 st century is replacing conventional polluting fossil fuels with
clean, sustainable renewable energy sources. In the effort to meet this demand, novel technologies have risen that
harvest ambient environmental energy, such as solar and wind energy that would otherwise go unused. Another
important ecological concern is the electronic waste created by the dependence of portable devices on batteries,
creating a need for self-powered technologies. Ambient humidity is an abundant source of waste energy that
can be exploited through Moisture Energy Generators (MEGs). These devices exploit the energy harvested from
environmental humidity or other moisture sources and convert it into clean electrical power. The key element in
these harvesters is a functional, hydrophilic material that adsorbs water molecules, which triggers a mechanism
through which chemical energy induces an ion conductivity that is converted into electrical energy.

In this work, we developed a fully printed lightweight, flexible and portable MEG as a promising and
inexpensive avenue for self-powered, battery-free devices (Fig. 1). The moisture adsorbing layer is based on
Graphene Oxide (GO), which is rich in oxygen-containing groups making it highly hydrophilic and granting
it a high water uptake'. High-quality GO can be synthesised in large quantities, with good reproducibility,
following a simple chemical protocol and using inexpensive materials. GO is also readily dispersible in water,
meaning that non-toxic, environmentally friendly GO printable inks can be developed, with no need for toxic
and hazardous organic solvents. Printable GO-based inks are formulated through Liquid Phase Exfoliation
(LPE) of previously synthesised bulk graphite oxide; a user-friendly, economical and scalable ink production
method. The GO-based MEGs were manufactured on thin, flexible substrates using inkjet printing, which offers
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Fig. 1. Graphical representation summarising the operation of the inkjet-printed GO-based MEGs.

a streamlined and scalable fabrication technique as well as the ability for simultaneous printing of multiple
devices. The flexibility, minimal thickness, and near-weightless characteristics of these GO-based MEGs hold the
potential to generate energy for self-powered wearable electronics, such as biometric monitors, biosensors, and
skin patches?™>. GO-based MEGs have been fabricated and studied in recent research, with the GO moisture-
absorbing layer developed in the form of films, foams, aerogels, and through laser processing®'3. In this article,
the GO-based inks are deposited via inkjet printing, which offers a user-friendly, inexpensive and scalable
fabrication technique'.

The mechanism through which a GO-based MEG generates electricity has been studied recently and found
to be based on the release and diffusion of free-moving hydrogen cations or proton (H*) upon water molecule
adsorption®!>. When water is adsorbed, H* dissociate from the surface carboxyl groups (-COOH) within the GO
structure. These H* then migrate due to an oxygen content gradient while the -COO~ groups remain immobile.
This results in a voltage difference between the two electrodes and the generation of an electric field. Poly(3,4-
ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) was investigated as a second component in a GO-
polymer hybrid ink for enhanced MEG performance!'®~18. PEDOT: PSS was elected for (a) its hygroscopicity,
to enhance the moisture adsorbing ability of the active layer, and (b) its high conductivity and charge transfer
ability, to potentially increase the generated output voltage!*-2!.

The performance of the fabricated GO- and GO-PEDOT: PSS-based nanogenerators was evaluated using a
custom-made automated humidity testing chamber. This setup allows for the observation of moisture-induced
electrical responses under controllable and repeatable humidity conditions. The devices’ voltage output (V,) was
measured in the Relative Humidity (RH%) range of 45-95%, with results revealing an average of V =183 (+1.76)
mV for pure GO and V_=194 (+0.97) mV for GO-PEDOT: PSS. These results hold potential for developing
low-cost ambient energy harvesters for self-powered portable and wearable technologies, minimising the need
for batteries.

Results and discussion

Firstly, the quality and chemical composition of the synthesised graphite oxide were investigated, as a high
oxygen-group content of the GO layer is crucial to its moisture adsorption ability and its humidity-induced
voltage efficiency. For this purpose, Attenuated Total Reflectance Infrared (ATR-IR) spectroscopy, Raman
spectroscopy, X-ray Photoelectron spectroscopy (XPS) and X-ray Diffraction (XRD) were performed on the
graphite oxide powder to determine the degree of oxidation and the nature of the oxygen groups formed.

The recorded transmittance spectra of the synthesised graphite oxide and the graphite precursor are presented
and analysed in Fig. 2a?2. The graphite powder has no distinctive peaks, except for a low-intensity signal at
1587.3 cm™!, which corresponds to the stretching vibrations of the aromatic C=C bonds?. After oxidation,
the produced graphite oxide exhibits multiple peaks associated with C-O bonds, specifically at 1039.6 cm™,
1724.3 cm™ and 3168.9 cm™}, attributed to the C-O, C=0 and O-H stretching modes, respectively*’. The peak
at 1346.2 cm™! corresponds to the O-H bending vibrations of alcohol groups, while the low-intensity peak at
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Fig. 2. (a) ATR-IR spectra, (b) Raman spectra and (c) XRD patterns of graphite oxide powder synthesised
chemically via a modified Hummers’ method and its graphite precursor.

2796.6 cm-1 is attributed to the C-H stretching mode?>?¢. The peaks at 977.9 cm™! and 1213.2 cm™! coincide
with the C-O-C stretching vibrations of the epoxide groups®. These observations provide ample evidence of
successful chemical oxidation.

The Raman spectrum of graphite (Fig. 2b) exhibits the characteristic G and D bands at 1580.9 cm ™! and 1342.4
cm™}, respectively®®. The G peak arises due to the first-order scattering of the E,  phonons at the centre of the
Brillouin zone, which results from the in-plane vibrational mode of the sp?>-carbon atoms. The D peak is a result
of the breathing mode of the A, o Symmetry phonons around the K or K’ points of the Brillouin zone. The G peak
for the pure graphite powder i 1s Very intense and narrow, while the D peak is very weak and broad, which aligns
with the literature?®. The 2D and 2D’ bands, which appear due to second-order Raman scattering, are detected
at 2719.7 cm™! and 3246.1 cm™, respectively®’. The 2D peak in graphene-related materials is associated with
the number of layers, with the I, value decreasing and the peak becoming broader as we shift from monolayer
graphene to a bulk graphite structure®’. The asymmetrical shape of the 2D peak and its relatively low intensity
compared to that of monolayer graphene are characteristic of bulk graphite and agree with previous reports®®*2.
Two additional low-intensity peaks visible at 2448.8 cm™ and 2991.5 cm™! and attributed to the D+D” and
D +D’ Raman modes, respectively, occur due to combination scattering®>. For the as-prepared graphite oxide
powder, the G and D bands shift to higher wavenumbers, appearing at 1596.3 cm™! and 1347.9 cm™, respectively,
while the G peak becomes broader®*. The increased intensity of the D band is expected, as it is a Raman mode
induced by the disorder associated with structural imperfections and the disruption of the sp? system within the
graphite flakes™. As a result, the I /I, ratio increases from 0.10 for graphite to 0.9 for graphite oxide, which
reveals an increase in defect density, which is a well-accepted indication of successful oxidation®. The D+ D’
becomes broader upon oxidation, with its centre red-shifting from 2991.5 cm™! to 2922.5 cm™ L. Furthermore,
the 2D peak blueshifts from 2719.7 cm™! to 2741.1 cm™! and becomes broader and weaker compared to that for
pure graphite powder. The shift in position alongside the broadening of these peaks, constitutes further evidence
of functionalisation with oxygen groups®”3%.

The recorded XRD patterns of the graphite oxide and graphite reference are presented in Fig. 2¢c. The strong,
sharp diffraction peak at 26.4° corresponds to the (002) Bragg’s plane, while those at 44.5° (101), 54.5° (004) and
59.9° are attributed to the (101), (004) and (110) orientations, respectively*. The interplanar spacing of the (002)
is dy,,=0.34, according to Bragg’s equation (Eq. 1), which is indicative of a highly ordered carbon structure?
For graphlte oxide, the (002) diffraction peak disappears, while a broad and low-intensity peak appears at 10. 5°
This peak corresponds to the (001) orientation and is characteristic of graphite oxide structures*!. The d-spacing

increases to d 4, =0.84 due to the introduction of oxygen functional groups between the GO layers***042,

n

= 1
2 sinf W

Where:

n=diffraction order Positive integer, the order.

A=XRD radiation wavelength A).

d=interplanar distance (A).

0=Bragg angle (°).

XPS was employed to investigate the level of oxidation and the purity of the synthesised graphite oxide. The
resulting XPS survey spectrum is featured in Fig. 3a, wherein the C1s peak (286.5 eV), Ols peak (532.5 eV), and
the O-KVV Auger peak (976 V) are indicated observed***4. No signals from other elements were detected. The
atomic concentration (%) of carbon and oxygen was calculated from the Cls and O1s peaks and was found to be
61.1% and 38.9%, respectively, while the C/O ratio is 1.57. These results are on par with XPS results for similarly
synthesised graphite oxide samples, and confirm a high level of oxidation, while also verifying the purity of the
synthesised graphite oxide*!"*>6. Deconvolution of the C1s peak (Fig. 3b) reveals five carbon components: sp?
C-C (284.6 eV), sp> C-C (285.5 eV), C-OH (286.8 eV), C=0 (288.4 eV), and -COOH (289.5 eV), the %content
of which are listed in Table 1478, Results show that the synthesised graphite oxide is rich in hydroxyl groups,
while a significant amount of carbonyl and carboxyl groups are also present within its chemical structure.
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Fig. 3. (a) XPS survey spectrum and (b) deconvolution of C1s peak of as-prepared graphite oxide powder.
Carbon component | Concentration (%)
sp? C-C 343
sp> C-C 5.5
C-OH 48.8
Cc=0 8.2
-COOH 32
Table 1. Concentration (%) of the five carbon components found in the synthesised graphite oxide powder.
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Fig. 4. (a) Chemical structures of GO and PEDOT: PSS. (b) UV-Vis absorption spectra of GO and GO-
PEDOT: PSS dispersions (c) Flake size distribution of GO flakes in pure GO ink and GO-PEDOT: PSS ink, as
measured by DLS.

The graphite oxide powder was exfoliated via ultrasonication in ultrapure water (LPE) to prepare an
aqueous GO dispersion. A GO-PEDOT: PSS blend was then formulated from this aqueous GO dispersion. Both
processes are described in the “Experimental Procedures” section. The chemical structures of GO and PEDOT:
PSS are featured in Fig. 4a. The UV-Visible (UV-Vis) absorption spectra of both the pure GO aqueous dispersion
and the GO-PEDOT: PSS blend are displayed in Fig. 4b. GO exhibits a maximum absorption peak at 229 nm,
which arises from the n>7* electronic transitions of the remaining aromatic C=C bonds®. This is essentially a
characteristic peak which appears at ~270 nm for pure graphene and blueshifts for graphene oxide as the degree
of oxidation increases®. A shoulder is visible at 300 nm, which is also characteristic of GO and appears due to
n-> 7* transitions of the oxygen functional groups®!. The sharp peak at 224 nm in the GO-PEDOT: PSS spectrum
is a characteristic PEDOT: PSS absorption peak®2.

The GO flake sizes were measured by Dynamic Light Scattering (DLS) to ensure that they are within the
acceptable range for the inkjet-printer nozzles, with results presented in Fig. 4c. The graphs are the result of the
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Fig. 5. (a) ATR-IR and (b) Raman spectra of exfoliated GO flakes and GO-PEDOT: PSS blend (c) Detailed
Raman spectrum of GO-PEDOT: PSS wherein the peaks that arise from the PEDOT: PSS component are

indicated.
Sample D G 2D D+D’ | I/1;
Graphite 1342.4 | 1580.9 | 2719.7 | 2991.5 | 0.10
Graphite Oxide 1347.2 | 1593.3 | 2741.1 | 2922.5 | 0.99
GO flakes 1345.7 | 1589.9 | 2675.9 | 2931.0 | 0.98
GO-PEDOT: PSS | 1334.6 | 1577.6 | 2674.5 | 2917.8 | 0.88

Table 2. Summary of Raman results for GO and GO-PEDOT: SS inks and their bulk precursor materials.

averaging of four measurements for each sample. Pure GO has a narrower distribution peak and flake sizes that
range from ~ 30 nm to ~ 950 nm, with the maximum peak corresponding to an average hydrodynamic diameter
of 220 nm. For the GO-PEDOT: PSS sample, the distribution curve is broader, with flake sizes varying from ~ 40
to ~1700 nm and an average hydrodynamic diameter of 396 nm.

The interaction between the PEDOT: PSS molecules and the exfoliated GO flakes was investigated using
Raman and ATR-IR spectroscopy. The recorded ATR-IR transmittance spectra of GO and GO-PEDOT: PSS
are presented in Fig. 5a. The transmittance spectrum of the pure GO flakes is comparable to the previously
recorded spectrum for the synthesised bulk graphite oxide, exhibiting multiple oxygen-containing group peaks.
Specifically, the GO spectrum features peaks at 1724.3 cm™! and 1643.3 cm™!, which correspond to the stretching
vibrations of the C=0 and C=C groups, respectively”>**. The peaks at 756.0 cm™" 875.6 cm™1, 987.5 cm™!, and
1421.5 cm™ are attributed to the C-H benzene, C=C, C-H and O-H bending vibrations, respectively>. Finally,
the broad shoulder centred around 3155.4 cm™ corresponds to the O-H stretching vibrations of GO’s hydroxyl
groups®®. The GO-PEDOT: PSS blend exhibits ATR-IR peaks from both components. GO peaks are observed
at2912.4 cm™!, 1627.8 cm™!, 1515.7 cm™, 1292.2 cm~! and 1122.5 cm™! which correlate to the C-H, C=C, C-H
benzene and C-O epoxy stretching modes, respectively’”*%. The peak at 997.1 cm™ is also attributed to the C-O
stretching of the epoxide groups, while the bending vibration of alcohol O-H appears at 1407.9 cm™?’. Peaks
related to the sulfur-containing groups of PEDOT: PSS are also detected. Specifically, the bands appearing at
671.0cm™',941.2 cm™ and 864.1 cm™! arise from the C-S stretching mode of the PEDOT thiophene groups®-°!.
The peak at 1161.1 cm™! is attributed to the SO, H groups of PSS®2 This peak appears red-shifted to that of pristine
PEDOT: PSS, which is an indication of interaction between the GO flakes and the PEDOT: PSS polymer®.

The Raman results are presented in Fig. 5b and summarised in Table 2. The GO flakes exhibit the
characteristic D and G bands at 1345.7 cm™! and 1589.9 cm™, respectively. Also visible are the 2D and D + D’
peaks at 2675.9 cm™' and 2931.0 cm™, respectively®. The I,/I; ratio of GO is 0.98, which is virtually the same
as that calculated for the bulk graphite oxide precursor (I,/I;=0.99). The GO-PEDOT: PSS Raman spectrum
exhibits multiple features that are attributed to both the GO and the PEDOT: PSS components. Apart from
the characteristic GO Raman modes, additional overlapping low-intensity peaks are detected between ~400-
1600 cm™! that are attributed to the presence of PEDOT: PSS®. These Raman features are more clearly indicated
in Fig. 5c. The most characteristic PEDOT: PSS Raman peak appears at 1437.4 cm™! due to the benzenoid
units of PEDOT®S. More specifically, the peaks at 1437.4 cm™! and 1507.8 cm™! arise from the symmetric and
asymmetric stretching modes of the aromatic C =C, bands within the PEDOT thiophene rings, respectivelys”-°,
The peaks at 1240.1 cm~! and 1353.7 cm™L, on the other hand, arise from the C,-C, and C,-C, single bond
stretching modes of the PEDOT chains, respectively'®®. The peak at 1385.3 cm™! is attributed to the CyC
stretching deformation’®. Two weak signals are detected at 985.2 cm™ and 1076.0 cm™, and are associated
with the oxyethylene ring and C-O-C deformations of the PSS units, respectively’!. The peak at 712.2 cm™ is
assigned to the symmetric C-S-C deformation, while the 440.8 cm™ peak appears due to the SO, ions of the
PSS units’>7%. The most prominent peaks, however, are the D and G bands of the GO component, which appear
red-shifted compared to the pristine GO sample. Specifically, the D band shifts from 1345.7 cm™ to 1334.6 cm™,
while the G band shifts from 1589.9 cm™ to 1577.6 cm™!. The intensity of the D band also decreases upon
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incorporation of the PEDOT: PSS polymer’%. The 2D and D + D’ peaks both red-shift to 2674.5 cm™! and 2917.8
9 cm™!, respectively, and become broader. The I,,/I, ratio decreases from 0.99 for pristine GO to 0.88 for GO-
PEDOT: PSS, which, along with the shifting of the D and G bands, suggests strong n-* interactions between the
PEDOT chains and the GO lattice and the formation of a composite”>7®.

To ensure the prepared materials meet the criteria for correct printability, we characterised the rheological
properties, i.e. the viscosity (1), and surface tension (y), of the two prepared inks. The viscosity was measured
using a viscosimeter at different sheer rates to obtain the flow models for the inks. Both systems behave like
classic Newtonian fluids, observed by a classic linear regression intercepting the y-axis to 0 (Figure S1). The
presence of PEDOT: PSS in the blend greatly increases the overall viscosity of the system due to the large number
of Van der Waals forces between the polymer chains. For this reason, no additive was necessary to improve
the printability. For the GO ink, 20% v/v isopropanol (IPA) and 10% v/v propylene glycol (PG) were added to
increase the viscosity and reduce surface tension. The average viscosities resulting from the extrapolation of the
slope from the flow models were 4.36 cP for GO-PEDOT: PSS ink and 2.45 cP for GO ink (Figure SI).

Surface tension was calculated using the pending drop method (Figure S3). The presence of IPA in the
GO ink, decreases the surface tension to 42.54+1.37 mN/m, from the starting 72.36+0.05 mN/m of the GO
dispersion in water. For the GO-PEDOT: PSS ink, the measured surface tension is 80.83 +0.06 mN/m. Although
the addition of IPA to GO-PEDOT: PSS would have lowered the surface tension, it would have also increased the
already high viscosity. Consumer printer’s inks typically have viscosities, which range between 2 and 6 cP, and
in our formulation, we tried to remain in this range, to avoid possible damaging or clogging of the printhead,
without any additive to the blend. For this reason, neither IPA nor PG was added to the GO-PEDOT: PSS
aqueous blend, which was printed as is.

Finally, the contact angle (CA) of the two inks with the semi-absorbent plastic substrate was determined by
the sessile drop method (Figure S2). The CA is directly correlated with the homogeneity of the printed film and
its regularity. Due to the lower surface tension GO ink exhibited better adhesion to the substrate, with an average
contact angle of 45.85°, compared to that of GO-PEDOT: PSS which was 83.69°. The rheological profiles of the
inks are summarised in Table 3.

The formulated GO and GO-PEDOT: PSS inks were then inkjet-printed along with AgNP ink on PET
substrates to fabricate flexible, lightweight MEGs with interdigitated Ag contacts. Digital photographs of the
resulting devices are available in the Supplementary Information (Figure S4). The dimensions of each device
were 22 x 14 mm, as seen in the optical microscope image (Fig. 6a). The Ag electrodes form a comb-like structure
in the centre, with each contact being 2.850 x 0.4 mm? The GO or GO-PEDOT: PSS moisture-adsorbing layer is
printed in between the Ag contacts with an area of 2.825x 0.4 mm? or 19.2 mm?. There are 17 of these segments
of active material, making the total area A=19.2 mm? or A=0.192 cm? The flexibility of the substrate used
is demonstrated in Fig. 6(b) and (c). Atomic Force Microscopy (AFM) topography and Scanning Electron
Microscopy (SEM) images of the inkjet-printed GO and GO-PEDOT: PSS films are available in Figures S5
and S6 of the Supplementary Information, respectively. The surface roughness of the films expressed in Root
Mean Square (RMS) was calculated and compared. GO-PEDOT: PSS yielded a smoother film (RMS=5.14 nm),
compared to pure GO (RMS=21.77 nm).

The moisture-induced V, results are presented in Fig. 6(d) and (e). In each humidity response cycle, the
relative humidity (RH) was increased from 40 to 95%, then back to 40%. Both devices exhibited a response
to the RH variations, with the V,_ increasing and then decreasing with the RH, as the chamber is filled with
moisture and subsequently purged Both MEG types require about 10 min to reach their maximum V_ as the
RH increases from 40 to 95%, while they exhibit a rapid response to the RH decrease. The GO device ylelded an
average voltage output of V =183 (+ 1.76) mV, while for GO-PEDOT: PSS this value increases to V =194 (+0.97)
mV. Dividing the average output voltage by the area A calculated earlier, yields an output of 950 mV-cm2 for
and 1010 mV-cm™ This increase in V_ can be ascribed to the fact that GO, on one hand, facilitates moisture
adsorption, while PEDOT: PSS, on the other hand, acts as an efficient charge transport material”’-”s. Even though
GO promotes ion transport upon moisture absorption, it exhibits intrinsically insulating behaviour, which would
reduce the efficiency of charge collection”. The inclusion of PEDOT: PSS likely results in the enhancement
of electronic conductivity due to the intrinsic n-conjugated polymer structure of the PEDOT component.
Therefore, the addition of PEDOT: PSS may offer better a balance of ionic and electronic conduction, allowing
for more efficient charge separation and collection, leading to higher voltage generation from the GO-PEDOT:
PSS MEG. It is also worth considering that since GO-PEDOT: PSS has a lower surface roughness (Figure S5) it is
likely that the generated surface charges meet less structural resistance during their diffusion, thus reaching the
respective electrodes with higher efficiency.

The Sheet Resistance (Ry;;) and volume resistivity (p) of GO and GO-PEDOT: PSS solid films were measured
using the Van der Pauw method. For GO, the Rg;; ranged from 1.00 to 1.51 GQ ™, while p ranged from 14.2 to
21.8 KQ-cm, results which agree with previous repor'[s80 %, For GO-PEDOT: PSS the Ry, decreases to the range
of 3.3-8.1 MQ™, while the p decreases to 1.1-2.3 KQ-cm. The decrease in both Ry, and p can be attributed to
the presence of PEDOT PSS which, as a semiconducting polymer, typically exhibits p values between 0.5 and
5 KO-cm and R, values in the range of 10°~10° Q¥4 This decrease in surface and volume resistance may

Viscosity, n | Surface Tension, y (mN/m) | Average Contact Angle, CA
GO 2.496 42.54+1.37 45.85°
GO-PEDOT: PSS | 4.359 80.83+0.06 83.69°

(ave)

Table 3. Summary of rheological properties of the developed GO and GO-PEDOT: PSS inks.
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Fig. 6. (a) Optical microscope image of printed MEG layout with dimensions given in mm. (b, c)
Demonstration of the flexibility of the developed MEGs. Voltage output as a response to applied relative
humidity (RH) variation of (d) GO-based MEG and (e) GO-PEDOT: PSS.

facilitate enhanced movement of the generated H* and therefore result in a higher voltage output for the GO-
PEDOT: PSS active layer.

A final round of experiments was performed to gain insight into the stability and durability of the devices
(a) under prolonged exposure to high humidity conditions (b) over a longer operation period and (c) after
undergoing mechanical stress. Firstly, the long-term exposure to high humidity conditions was explored by
measuring the output voltage under continuously applied RH=95% for 3 h (Figure S7). Results show that both
devices continue to stably generate voltage under continuous exposure to high humidity, without exhibiting
signs of degradation. In the second stability test, each device underwent multiple humidity response cycles in
the range of RH=40-95%, over a prolonged period of 12 h and the output voltage was recorded (Figure S8).
Both devices continuously generated voltage for up to 40 cycles. Lastly, the effect of mechanical stress on the
devices’ performance was investigated by measuring the humidity-induced V_ before and after 100 bending
cycles (Figure S9). The stress caused by bending appears to have a more significant effect on the GO-PEDOT:
PSS device with the repeatability of V being disrupted. The GO device, on the other hand, exhibits repeatable
response cycles and no evident output voltage losses after bending. For comparative purposes, the results were
normalised by dividing the voltage output by the maximum value of each measurement during all three stability
tests.

A noteworthy topic to be discussed based on this work is the upscalability of the demonstrated MEG devices.
An appropriate interconnection of such devices in series or parallel has been reported to increase the overall
voltage or current output, respectively, in many dedicated research works on energy harvesting devices®. For
example, a voltage output of 2.0 V has been achieved by connecting GO-based MEGs in series, while the same
method has been used to power an LCD screen with carbon material-based MEGs!>%".

This course of action appears promising for achieving higher overall generated power from GO- and GO-
PEDOT: PSS-based MEGs and working toward powering electronics. The matter of upscalability and large-area
manufacturing of energy harvesters can be successfully addressed with techniques described in this manuscript,
i.e. inkjet printing and printable inks comprised of liquid-processed functional materials. This research has
aimed to yield a proof of concept that can pave the way for viable manufacturing of MEGs in large quantities
since they are based on low-capex converting techniques such as inkjet printing and eco-friendly, robust and
upscalable materials. Maximizing generated power so far has not been this work’s intention but constitutes a
subsequent research objective towards a future publication. Another avenue of research may be the effect of the
amount of printed active material on the performance of the MEG device. Our first experiments involved devices
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fabricated using the same GO and GO-PEDOT: PSS inks described above, but with an inkjet-printed active layer
comprised of 10 layers. These devices were found to be non-operational when measuring the humidity response,
possibly due to non-compact film formation. By increasing the number of printed layers to 20, the operational
devices reported herein were achieved.

Conclusions

In this work, we fabricated and evaluated thin, light, flexible and fully printed GO- and GO-PEDOT: PSS-based
MEGs, that convert ambient moisture variation into voltage output through a moisture-induced H* generation
and diffusion. The water-based GO and GO-PEDOT: PSS printable inks were formulated following simple, user-
friendly and scalable methods from inexpensive materials. The moisture-induced responses of both devices were
tested using a custom-made automated humidity chamber, with results revealing an average voltage output of
V=183 (+1.76) mV for pure GO and V =194 (+0.97) mV for GO-PEDOT: PSS for an RH range of 45-95%.
We trust that this study may act as proof of concept for the development of low-cost energy harvesters for self-
powered portable and wearable technologies that will minimise the dependence on batteries and, by extension,
reduce electronic waste.

Materials and methods

Materials

For graphite oxide synthesis, pure graphite powder (<20 um) and sodium nitrate were purchased from Sigma
Aldrich, potassium permanganate was purchased from Fisher Scientific, while sulfuric acid (95-97%) and
hydrogen peroxide (30%) were purchased from Honeywell. Ultrapure water purchased from Honeywell was
used to prepare aqueous GO dispersions. PEDOT: PSS AI4083 was purchased from Ossila. Silver Nano™ AgNP
ink (NBSIJ-MUO1) and semi-absorbent plastic substrates (NB-TP-3GU100) were purchased from Mitsubishi
Paper Mills (Tokyo, Japan).

Equipment

LPE of graphite oxide was carried out using a Hielscher (Teltow, Germany) UP200Ht (200 W, 26 kHz) ultrasonic
probe. Centrifugations were performed in a Hettich (Tuttlingen, Germany) UNIVERSAL 320 centrifuge. ATR-
IR transmission spectra were obtained with a Bruker Vertex 70v FT-IR vacuum spectrometer equipped with
a A225/Q Platinum ATR unit with a single reflection diamond crystal. Raman spectra were obtained using a
modified HORIBA Scientific LabRAM HR Raman Spectrometer (Kyoto, Japan) using a 532 nm laser UV-Vis
absorption spectra were obtained with a Shimadzu UV-2401 PC (Kyoto, Japan) Recording Spectrophotometer.
The XPS surface analysis measurements were performed in a UHV chamber (P ~ 5 x 1071 mbar) equipped with
a SPECS Phoibos 100-1D-DLD hemispherical electron analyser and a non-monochromatized dual-anode Mg/
Al X-ray source. SpecsLab Prodigy (Specs GmbH, Berlin, Germany) software was used for spectra collection and
processing. XRD patterns were obtained with a RIGAKU (Tokyo, Japan) D/MAX-2500 powder diffractometer
equipped with a monochromated Cu Ka radiation (A =1.5418 A). DLS was performed with a Nano-ZS Zetasizer
from Malvern Panalytical (Worcestershire, United Kingdom) using a Folded Capillary Zeta Cell (DTS1070),
and automatic focus and calibration mode. Viscosity measurements were done with an AMETEK Brookfield
Viscometer (Massachusetts, USA) for low torque ranges (CZ-40 spindle). Surface tension and contact angle
measurements were executed with Drop Shape Analyzer DSA25S (KRUSS GmbH, Hamburg, Germany). Inkjet
printing was carried out with a commercial EPSON XP15000 using refillable cartridges purchased from InkOwl.
AFM images were captured using a Park XE7 AFM system from Park Systems (Suwon, South Korea) and
subsequently processed and analysed using Gwyddion software. SEM images were obtained using a XHRSEM
Magellan 400 L Thermo Fisher Scientific microscope. The humidity-response performance of the devices was
carried out using a custom-made automated humidity chamber that utilises electronic solenoids controlled by
an Arduino Uno (Monza, Italy) microcontroller board. The Arduino Uno allows for automatic adjustment of the
chamber’s relative humidity (RH %), the number of cycles and the wait time of each cycle. The humidity chamber
is filled with water vapours and then purged with N, gas, with the gas pressure standardised at 2 bar. The Arduino
Uno is equipped with an AM2302 (DHT22) sensor for real-time monitoring of humidity and temperature levels.
Data acquisition was achieved with a Keithley 2700 multimeter. The Van der Pauw Sheet Resistance (Ry;) and
resistivity (p) were measured using a KEITHLEY 4200 A-SCS Parameter Analyzer measurement system and a
Cascade Microtech EPS150TRIAX probe station. Finally, to test the bending stability of the devices, MEGs were
attached with a double-sided adhesive tape to a PET substrate and mounted onto the bending apparatus. In this
custom-made setup, an Arduino-driven bipolar stepper motor (SM15DD) with a L298N dual H-bridge motor
driver was programmed to reach bending values between 0° (flat) and 90°.

Experimental procedures

GO and GO-PEDOT: PSS dispersion preparation and characterisation

To formulate the moisture-active layer, graphite oxide powder was synthesised from pure graphite powder
following a modified Hummers’ method. The chemical composition of the as-prepared graphite oxide was
investigated using ATR-IR and Raman spectroscopy, as well as XRD and XPS. The synthesised graphite oxide
was dispersed in ultrapure water (2 mg/ml, 40 ml) via LPE using an ultrasonic homogeniser (26 kHz, 100% A,
Pmax =200 W, 1 h). The mixture was subsequently centrifugated (9000 rpm, 5 min) to remove any unexfoliated
particles, yielding an aqueous GO dispersion. 20 ml of the GO dispersion were used as-is, while the other 20 ml
were mixed with PEDOT: PSS at a ratio of 1:1 v/v and stirred at room temperature overnight to create a GO-
PEDOT: PSS blend. The as-prepared GO and GO-PEDOT: PSS dispersions were diluted 100 times and their
UV-Vis absorption spectra were recorded in the 200-800 nm region.
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GO and GO-PEDOT: PSS printable ink formulation

Before formulating printable inks, both dispersions were filtered using a 0.45 um PVDF filter to remove the
larger flakes (> 500 nm) that would clog the inkjet-printer nozzles. To determine the size of the GO flakes in each
dispersion and ensure that they are within the acceptable range for the inkjet-printer nozzles, both samples were
diluted to 20 ug/ml and DLS was performed to obtain an estimation of the flake size distribution.

The final printable GO ink was formulated by mixing 70% GO aqueous dispersion with 20% IPA and 10%
PG to increase the viscosity and reduce surface tension. This resulted in a final concentration of ~ 1 mg ml-!. The
viscosities were then measured using a rotational rheometer performing a full scan at different shear speeds and
fitting a linear curve extracting the viscosity from the slope of the curve.

The contact angles of the inks on the flexible PET substrate were determined using the sessile drop method,
wherein drops of 2 ul were cast onto the surfaces with an automatically software-controlled syringe and 0.5 mm
diameter steel needles.

Surface tension values were obtained with the pendant drop method, and the pendant drops were generated
by an automatically software-controlled dosser in the tip of a 1.8 mm diameter steel needle.

Consumer inkjet printing of MEGs

MEGs were fabricated using an Epson XP15000 consumer printer loaded with commercial AgNPs ink (15%
wt.) for the contacts, and either GO or GO-PEDOT: PSS inks for the active layer. 6 ml of the prepared ink (final
concentration ~ 1 mg mL™!) were loaded into an empty cartridge (InkOwl) and installed in the printer in the
magenta and cyan colour slot, respectively. The printed patterns are designed using Autodesk AutoCAD 2025,
coding each part of the MEGs, with the corresponding colour slot of the printer (magenta for the contacts and
cyan for the active layer), and exported as a PDF file. The substrate used (NB-TP-3GU100 from Mitsubishi Paper
Mills) is a semi-absorbent plastic (PET) substrate which allows rapid drying of the ink upon contact, inducing
room-temperature sintering of the AgNPs made by the same producer. The optimised settings to ensure the
maximum possible printing resolution have been described in a previous publication'*.

The printing follows the normal consumer procedure, inserting the substrate into the rear feed cassette of the
printer and initiating the printing process from the created PDF file. A first layer of the two materials AgNPs and
GO or GO-PEDOT: PSS, was printed simultaneously onto the substrate. Additionally, another 19 layers of only
GO or GO-PEDOT: PSS were printed on top of the previously deposited one, to ensure sufficient coverage of the
substrate and a uniform surface. After the last layer was deposited, the devices were left to dry in a fume hood
overnight, completing the fabrication process.

MEG performance evaluation

The performance of the printed MEGs was investigated using a custom humidity test chamber and data
acquisition system, described in the “Equipment” section. The V, of the devices was measured against the applied
RH for five response cycles. The wait time of each cycle was set at 10 min, during which the RH varied from 45 to
95% (high RH state) and then back to 45% (low RH state). The temperature was monitored consistently at 26 °C.

Bending stability evaluation

To further validate the flexibility of resulting MEGs, a GO- and a GO: PEDOT: PSS-based MEG were attached
atop flexible PET substrates that were subjected to bending via an Arduino-driven stepper motor. Bending
started from the flat state (0° bending angle) and ended at almost 90° bending angle. The upper (outer), coated
surface of the attached bent sample undergoes greater tensile stresses. No compressive stress has been exerted
to the GO- and PEDOT: PSS coating. More relevant information regarding the bending setup can be found
in the SI. Before bending, each MEG was subjected to 5 humidity cycles ranging from RH=40% to RH=95%
and the output voltage was measured. 100 bending cycles were then performed on the devices which were
subsequently subjected to an additional 5 humidity cycles ranging from 40 to 95% while having their output
voltage measured. During both humidity-induced output voltage measurements, the MEGs were kept in a flat
position. The bending equipment is demonstrated in Figure S10, while Figure S11 shows a bending snapshot.

Preparation of GO and GO-PEDOT: PSS films for resistance measurements

To measure the resistance of the developed materials, solid films of GO and GO-PEDOT: PSS were prepared
on glass substrates by spray-coating the respective inks®*®. The glass substrates were treated with O,-plasma
(50 W, 5 min), first to increase the surface hydrophilicity and ensure better film formation. The spray coating
parameters were as follows: nozzle-to-substrate distance: 10 cm, length: 6 cm, substrate temperature: 70 °C,
spray speed: 0.025 ml s71, deposition rate: 0.15 ml cm™2.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author upon
reasonable request.
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