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In this work, we construct Lyapunov functionals to analyze the global stability of the equilibria in 
reaction-diffusion systems arising in biological models. We employ Lyapunov functionals originally 
constructed for associated ordinary differential equation (ODE) models and extend them to partial 
differential equation (PDE) systems involving spatial diffusion. We analyze disease-free and endemic 
equilibrium stability in terms of the basic reproduction number R0 a threshold parameter. Specifically, 
we show that when R0 < 1 the disease-free equilibrium is globally asymptotically stable, while for 
R0 > 1 the endemic equilibrium is globally stable under certain conditions. To make our methods 
more feasible, we supply some examples from epidemiology and good health, including spatially 
structured models with diffusion. Numerical simulations are provided to justify the theoretical results 
and to show the convergence behavior of the solutions.
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Infectious diseases have always represented a threat to the health of populations in the world and their dynamics 
follow complex patterns both in space and time1. The spread can occur either within a population or as spatial 
diffusion between regions through human mobility, environmental factors, or due to interactions between the 
host and a vector. The knowledge of the dynamics of infectious diseases is paramount for designing control 
strategies. Mathematical modeling has become a very powerful means for the analysis of infectious disease 
dynamics: Keeling and Rohani2 and Murray3.

The motivation behind this study stems from the urgent need to understand how spatial heterogeneity and 
individual movement patterns influence the spread of infectious diseases. Traditional compartmental models try 
to ignore spatial interactions, yet real epidemics exhibit clear geographical structure that can be formulated only 
within the framework of spatial modeling. We attempt here to plug this hole by adding diffusion processes to 
the conventional epidemiological model and thus better understand how diseases propagate in realistic, spatially 
structured environments. Such information is important to design effective containment and mitigation 
strategies.

Diffusion in infectious disease modeling is the transmission of an infection or infected population in space. 
They observe the spread of diseases through dispersal or movement and are especially useful in observing 
geography-, environment-, or mobility-mediated outbreaks4. Ignoring this would result in unrealistic uniform 
mixing assumptions and fail to capture observed spatial spread patterns such as epidemic waves or hotspots. 
Therefore, spatial diffusion allows the model to reflect geographically heterogeneous dynamics more accurately.

The coupling between local reaction kinetics, e.g., infection, recovery, and immunity, and spatial dispersion 
generates complex phenomena like traveling waves and pattern formation. Fisher-KPP-type equations, for 
instance, have been used to model the spread of epidemics in space, e.g., in the seminal papers of Aronson and 
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Weinberger5, and more recently by Wang and Zhao6. Traveling wave solutions have been applied to describe 
rabies spread in fox populations (see Mollison7 and8,9) and dengue outbreaks (see Smith et al.10).

Lyapunov functionals have been successfully adapted from ODE to PDE epidemic models to establish global 
stability of equilibria. Examples of such works are those by Wang and Zhao11, where Lyapunov functionals were 
established for age-structured and spatially structured models, and Salako and Smith12, where global dynamics 
were studied in diffusive SEIR systems.

The threshold value R0 is important for the determination of the destiny of an epidemic. Its usefulness also 
extends to spatial models, where it continues to be a bifurcation parameter for disease extinction or persistence 
(Diekmann et al.13; Wang and Zhao14). If R0 < 1 then the disease-free equilibrium is globally asymptotically 
stable, if R0 > 1, an endemic equilibrium generally emerges, which can also exhibit spatial persistence or 
wavefronts depending on the structure of the system.

Moreover, numerical techniques are of great use in depicting and calculating dynamics of spatial epidemic 
models. Finite difference and finite element techniques are among the techniques often utilized to simulate 
solutions and calculate the effect of variables like mobility, heterogeneity, and controls on outcomes. Study by 
Wu et al.15, Brauer et al.16, and Allen et al.17 illustrates the application of simulations to guide public health policy 
by describing various intervention strategies.

The study addresses the mathematical analysis and numerical simulation of diffusive epidemic models. It 
develops Lyapunov functionals for reaction-diffusion equations derived from classical epidemiological models. 
The goal is to understand the global stability behavior of equilibria with respect to R0, and to support the 
analytical results with computational simulations. Our work contributes to the growing literature on spatial 
disease modeling by bridging theoretical analysis and real-world applicability.

Part I: global dynamics of reaction–diffusion SITR epidemic model
The SIR model, developed in 192718, assumes that an individual recovering from a disease develops lifelong 
immunity and the population size is constant. This model can help a lot in understanding how disease can spread 
in global networks, such as the recent H1N1 outbreak. It can be adapted for understanding the rate of spread in 
different countries and how it may re-enter a country after the initial epidemic phase has passed19. This model 
can guide public health responses, give warnings of expected re-emergence times, and can be used in cost-
benefit analysis of vaccinations and antiviral drugs20,21.

This section deals with the SITR model in epidemiology, which investigates the impact of treatment on 
infected individuals and the spread of infectious diseases22–24. It compares the disease-free equilibrium and 
the endemic equilibrium, and the stability of the equilibrium. The paper also plots graphs of the number of 
susceptibles, infectives, and removed through time. It suggests introducing a treatment rate to the rate of recovery 
for infected people, assuming that the rate of recovery is inversely proportional to the duration of infection. We 
consider the following model

	




St = dS∆S + ν − νS(ω, t) − χS(ω, t)I(ω, t),
It = dI∆I + χS(ω, t)I(ω, t) − (ν + η + δ + γ)I(ω, t) + σT (x, t),
Tt = dT ∆T + δI(ω, t) − (ν + κ + σ)T (ω, t),
Rt = dR∆R + γI(ω, t) + κT (ω, t) − νR(ω, t).

� (1)

where S(ω, t), I(ω, t), T (ω, t), R(ω, t) are respectively the densities of the susceptible individuals, infected 
persons,individuals in treatment, and recovered persons at time t and position ω. ν is the natural death coefficient. 
The rate β is the probability for transmission of the infection.γ is recovering coefficient without resorting to 
treatment. η is infection related death rate.The rate of treatment δ.κ is the recovery rate after treatment. σ the rate 
of return to infected compartment. We assume that the initial conditions and Neumann boundary conditions 
are written in the form:

	

{
∂S
∂η

= ∂I
∂η

= ∂T
∂η

= 0 ω ∈ ∂Ω × (0, +∞),
S(ω, 0) = S0(ω) ≥ 0 I(ω, 0) = I0(ω) ≥ 0 T (ω, 0) = T0(ω) ≥ 0 R(ω, 0) = R0(ω) ≥ 0 in Ω = [−l, l]. � (2)

Model (1) accounts for spatiotemporal dynamics of an infectious disease through a reaction-diffusion 
framework with four compartments: susceptible (S), infected (I), quarantined or treated (T), and recovered 
(R). The susceptibles are recruited at a fixed rate and lost due to natural death or due to infection through 
normal mass-action contact with infectives. The infected class increases with new infections and decreases with 
natural mortality, disease-caused death, treatment, or cure. Interestingly, the model has a term for relapse or 
treatment failure, where individuals in the treated class re-enter the infectious class. Treated individuals are 
hypothesized to enter this class from the infected compartment at some specific rate, and may recover, relapse, 
or die naturally. The recovered class is formed through two pathways: direct recovery from disease or recovery 
after treatment, and permanent immunity is gained by these individuals. Each compartment diffuses in space, 
mimicking human travel or diffusion of infection vectors, and allowing spatial spread to be explored like traveling 
waves or regional clustering of disease.The spatial diffusion and relapse of treatment incorporate realistic and 
complex epidemiological dynamics such as delayed clearance, reinfection through treatment failure, and non-
homogeneous geographical spread. The formulation provides a solid framework to analyze stability, persistence, 
and infectious disease control, in particular the threshold behavior governed by the basic reproduction number 
R0.
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Existence and uniqueness of solution
Let X in Banach space C

(
Ω;R

)
 contain real-value function Φn(Ω) with ∥Φ∥X = supω∈Ω |Φ(ω)|. Let L1, 

L2,L3 and L4 be four linear operators, D(Li)(X −→ X) defined by:

	
L1Φ = dS

∂2

∂ω2 Φ L2Φ = dI
∂2

∂ω2 Φ, L3Φ = dT
∂2

∂ω2 Φ L4Φ = dR
∂2

∂ω2 Φ,

and

	
D(Li) =

{
Φ ∈ C2(

Ω;R
)
,

∂

∂η
Φ = 0, ω ∈ ∂Ω

}
(i = 1, 2, 3, 4)

Li : D(Li) −→ X are continuous and bounded linear operators in D(Li) . Therefore, L1, L2, L3, L4 are 
generators of uniformly continuous particles.semi- groups {TS(t)}t∈R+ , {TI(t)}t∈R+ ,{TT (t)}t∈R+  and 
{TR(t)}t∈R+  on X (see Theorem25), in deduces that the semi-groups are positive. The existence and uniqueness 
of the solution are determined by the following theorem:

Theorem 2.1  The diffusive model (1) have a unique solution (S(., t), I(., t), T (., t), R(., t)) ∈ Θ for 
(S0, I0, T0, R0) ∈ Ω

Proof  Since L1, L2, L3, L4 are generators of uniformly continuous semigroups {TS(t)}t∈R+ , {TI(t)}t∈R+ , 
{TT (t)}t∈R+  and {TR(t)}t∈R+  on X and the model (1) can be inserted by abstract form in the following

	

Θt = f(Θ(ω, t)) + D,

f(Θ) =




f1(Θ)
f2(Θ)
f3(Θ)
f4(Θ)


 =




ν − νS(ω, t) − βS(ω, t)I(ω, t),
χS(ω, t)I(ω, t) − (ν + η + δ + γ)I(ω, t) + σT (ω, t),

δI(x, t) − (ν + κ + σ)T (x, t),
γI(x, t) + κT (x, t) − νR(x, t).


 +




dS∆S
dI∆I
dT ∆T

dR∆RS


 .

with X(x, t) = (S(x, t), I(x, t), T (x, t), R(x, t)). Note that fi are of class C1, then it is locally Lipschitz with 
respect to the second variable, so implies the existence and uniqueness of the solution.�  □

Steady states
As stated in the previous section.Clearly, the 4th equation of the system (1) independent of other equations. So, 
we can reduction the system (1) to the following form

	

{
St = dS∆S + ν(1 − S(ω, t)) − χS(ω, t)I(ω, t),
It = dI∆I + χS(ω, t)I(ω, t) − (ν + η + δ + γ)I(ω, t) + σT (ω, t),
Tt = dT ∆T + δI(ω, t) − (ν + κ + σ)T (ω, t).

� (3)

The system (1) admits a unique disease free steady state (DFSS) E0 = (S0, 0, 0), with:

	 S0 = 1.

Now, to find the positive steady state say (endemic steady state) and referred to as (ESS) , according to the results 
in the following lemma

Lemma 3.1  When R0 > 1, the model (1) has a unique endemic steady state (ESS), which represents to 
E∗ = (S∗, I∗, T ∗).

Proof  E∗ verified the following system

	

{
ν(1 − S∗) − χS∗I∗ = 0,
χS∗I∗ − (ν + η + δ + γ)I∗ + σT ∗ = 0,
δI∗ − (ν + κ + σ)T ∗ = 0.

� (4)

Using similar calculations to the proof of Lemma 3.1, we deduce the result:

	
T ∗ = δI∗

ν + κ + σ
,� (5)

we replace (5) in the second equation of (4) we get:

	 S∗ =
(ν+η+δ+γ)− σδ

ν+κ+σ

χ
. � (6)

and
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I∗ = ν(1 − S∗)

χS∗ = ν(1 − R−1
0 )

χS∗ ,� (7)

Thus, the model (3) guarantee has a unique (ESS), E∗
1 = (S∗, I∗, T ∗),if and only if R0 = χ

(ν+η+δ+γ)− σδ
ν+κ+σ

> 1 
with

	 E∗ = (S∗, I∗, T ∗),

where

	 S∗ =
(ν+η+δ+γ)− σδ

ν+κ+σ

χ
, I∗ = ν(1−R−1

0 )
χS∗ , T ∗ = δI∗

ν+κ+σ
.

The proof of this lemma is therefore completed.�  □

Stability analysis
he obtained results are summarized in the following theorem:

Theorem 4.1  If R0 < 1 the disease-free state is globally asymptotically stable and unstable if R0 > 1

Proof  Consider the following system of eigenvalues:

	

{
−∆U = λU

∂U
∂ω

= ∂U
∂ω

= 0, ω ∈ ∂Ω.
� (8)

The function U(ω) = ϕ(ω) ∈ C2(Ω) which checks the system (8) and we call it eigenfunction,where λn > 0 is 
eigenvalue of −∆U . Now we pose Ω = [−l, l] so we get U(ω) = cos( nπ)

l
x) and λn =

(
nπ

l

)2 :

	
S(ω, t) = S̃(t) cos(nπ

l
ω) I(ω, t) = Ĩ(t) cos(nπ

l
ω) T (ω, t) = T̃ (t) cos(nπ

l
ω)

with we put J the Jaccobian matrix associated with (3) in the steady state E0, we write the system in the form:

	 Ũt = DŨ + JŨ

with

	
D =

(
d1

∂2

∂ω2 0
0 d2

∂2

∂ω2

)

and

	
JE0 =

(
−ν −χ 0
0 χ − (ν + η + δ + γ) σ
0 δ −(ν + κ + σ)

)

therefor

	

{
S̃t cos( nπ

l
ω) = −λndSS̃(t) cos( nπ

l
ω) − νS̃(t) cos( nπ

l
ω) − χµĨt cos( nπ

l
ω),

Ĩt cos( nπ
l

ω) = −λndI Ĩ(t) cos( nπ
l

ω) − (ν + δ + γ)Ĩ(t) cos( nπ
l

ω) + σT̃ (t) cos( nπ
l

ω),
T̃t cos( nπ

l
ω) = λndT T̃ (t) cos( nπ

l
ω) + δĨ(t) cos( nπ

l
ω) − (ν + η + κ + σ)T̃ (t) cos( nπ

l
ω) + χνĨt cos( nπ

l
ω).

Then, we obtain

	
K =

(
−λndS − ν −χ 0

0 χ − (ν + η + δ + γ) − λndI σ
0 δ −(ν + κ + σ) − λndT

)

In not that

	 ε1 = −λndS − ν < 0.

Clearly, the 1st eigenvalue of K.
So, the remain tow eigenvalues of (DFSS), are calculated from the following matrix.

	
M =

(
χ − (ν + η + δ + γ + λndI) σ

δ −(ν + κ + σ + λndT )
)
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with:

	

{
T r(M) = χ − (ν + δ + γ + ν + η + κ + σ) − λndI − λndT

Det(M) = −χ(ν + κ + σ + λndT ) + (ν + η + δ + γ + λndI)(ν + κ + σ + λndT ) − δσ

T r(M) = (ν + η + δ + γ) + σδ

ν + κ + σ

[
R0 − 1

]
− (ν + κ + σ) − λndI − λndT − σδ

ν + κ + σ
< 0.

and

	Det(M) = (ν + η + δ + γ)(ν + κ + σ) − δσ[−R∗
0 + 1] + λndI(ν + κ + σ + λndT ) + λndT (ν + δ + γ + η).

we get Det(M) > 0 weher R∗
0 = β(ν+η+κ+σ+λndT )

ν+δ+γ)(ν+η+κ+σ)−δσ
< 1 because 1 > R0 > R∗

0 ,hence,E0 is locally 
asymptotically stable.To complete the proof of Theorem 4.1, we need to prove the global attraction for R0 < 1 
using Lyapunov function. We consider it is in the following

	
L(ω, t) =

∫

Ω
S0h

(
S(ω, t)

S0

)
+ I(ω, t) + cT (ω, t)dω,

here h is Volterra function h(z) = z − 1 − ln(z); z ∈ R+. Let, L(ω, t) is a positive defined function at the 
(DFSS) (S0; 0; 0). The time derivative of L(ω, t) is:

	

∂L(ω,t)
∂t

= ∂
∂t

∫

Ω
S0h

(
S(ω, t)

S0

)
+ I(ω, t) + cT (ω, t)dω,

∂L(ω,t)
∂t

=
∫

Ω

∂

∂t

(
S0h

(
S(ω, t)

S0

)
+ I(ω, t) + cT (ω, t)

)
dω,

=
∫

Ω

(
1 − S0

S

)
(dS∆S + νS0 − νS(ω, t) − βI(ω, t)S(ω, t))

dI∆I + χS(ω, t)I(ω, t) − (ν + δ + γ)I(ω, t) + σT (x, t) + c(dT ∆T + δI(ω, t) − (ν + η + κ + σ)T (ω, t))dω,

=
∫

Ω
νS0

(
1 − S0

S

)(
1 − S0

S

)
+

(
1 − S0

S

)
dS∆S − χI(ω, t)S(ω, t) + χI(ω, t)S0 + χS(ω, t)I(ω, t)

−(ν + δ + γ)I(ω, t) + σT (ω, t) + c(dT ∆T + δI(ω, t) − (ν + η + κ + σ)T (ω, t))dω.

According to the simplification, we get:

	

∂L(ω,t)
∂t

=
∫

Ω

(
1 − S0

S

)(
1 − S

S0

)
νS0 +

(
1 − S0

S

)
dS∆S + χI(ω, t)S0 − (ν + δ + γ)I(ω, t) + σT (ω, t)

+c(dT ∆T + δI(ω, t) − (ν + η + κ + σ)T (ω, t))dω

for where the conditions on the banks of Neumann we have 
[

∇S

]l

−l

=
[

∇I

]l

−l

=
[

∇T

]l

−l

= 0

	

∂L(ω,t)
∂t

=
∫

Ω

(
1 − S0

S

)(
1 − S

S0

)
νS0 + χI(ω, t)S0 − (ν + δ + γ)I(ω, t) + σT (ω, t)

+c(δI(ω, t) − (ν + η + κ + σ)T (ω, t))dω +
∫

Ω
h′

(
S

S0

)
dS∆Sdω,

=
∫

Ω

(
1 − S0

S

)(
1 − S

S0

)
νS0 + χI(ω, t)S0 − (ν + δ + γ)I(ω, t) + σT (ω, t) + c(δI(ω, t)

−(ν + η + κ + σ)T (ω, t))dx −
∫

Ω
dS(∇S)2 S0

S2 dω

if we put c = σ
ν+η+κ+σ , hence

	

∂L(ω,t)
∂t

=
∫

Ω

(
1 − S0

S

)(
1 − S

S0

)
νS0 + χI(ω, t)S0 − (ν + δ + γ)I(ω, t) + δσ

ν + η + κ + σ
I(ω, t)dω

−
∫

Ω
dS(∇S)2 S0

S2 dω,

=
∫

Ω

(
1 − S0

S

)(
1 − S

S0

)
νS0 +

(
(ν + δ + γ) − δσ

ν + η + κ + σ

)
I(ω, t)

[
R0 − 1

]
dω −

∫

Ω
dS(∇S)2 S0

S2 dω

≤ 0.

and equality holds if and only if S = S0 and I = T = 0. That is mean (DFSS) is (GAS) if R0 < 1 .�  □
Now, we discuss the (GAS) of the (ESS) if R0 > 1 by the following theorem

Theorem 4.2  The (ESS) of the system (3) is (LAS) if R0 > 1 and otherwise unstable.

Proof  To prove local stability of (ESS), we consider the Jacobian matrix of the system (3) at (ESS) as follows.
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JE∗ =

[
−λndS − ν − χI∗ −βS∗ 0

βI∗ χS∗ − (ν + η + δ + γ) − λndI σ
0 δ −(ν + κ + σ) − λndT

]
.

Now, we put

	
JE∗ =

[
A B 0
C D σ
0 δ E

]
,

where
A = −λndS − ν − χI∗ = −ν

S∗ − λn, B = −χS∗, C = χI∗, D = −σT ∗

I∗ − λndI , E = −δI∗

T ∗ − λndT .
Consequently, the eigenvalues are given by the characteristic equation of JE∗  in the following

	 p(λ) = ε3 + A1ε2 + A2ε + A3,� (9)

where

	

A1 = −(A + D + E),
A2 = −(BC − AE − DE − AD + δσ),
A3 = −ADE + BCE + Aδσ.

Now, according to the Routh-Hurwitz Criterion, we deduce that (ESS) is LAS under the conditions are satisfied 
in the following

	
(H1) :

{
A1, A3 > 0,
A1A2 − A3 > 0.

Clearly, when the R0 > 1, we guarantee the above conditions are hold. Where, S∗ =
(µ+δ+η+γ)− σδ

µ+κ+σ

χ

	 A1 = λndS + ν + χI∗ + σδ
ν+κ+σ

+ λndI + (ν + κ + σ) + λndT > 0.

Next, we show that A3 > 0.

	

A3 = −ADE + BCE + Aδσ,

= BCE − AδλndI

(
σ

ν+κ+σ

)
> 0.

Finally, we show the last inequality in (H1), that is,A1A2 − A3 > 0 we have:

	

A1A2 − A3 =
(

ν
S∗ + λndS + σT ∗

I∗ + λndI + δI∗

T ∗ + λndT

)((
ν

S∗ + λndS

)(
δI∗

T ∗ + λndT

)
+

(
ν

S∗ + λndS

)(
σT ∗

I∗ + λndI

)
+ χ2S∗I∗

)

−
(

χ2S∗I∗(
δI∗

T ∗ + λndT

))
,

> 0.

Therefore, for R0 > 1, we guarantee the (H1) is satisfied, thus, the (ESS) of system (3) is (LAS). This completes 
the proof.

Now, the (GAS) of (ESS) is analyzed by applied and used the lyapunov function:

	
L(ω, t) =

∫

Ω
S∗h

(
S

S∗

)
+ I∗h

(
I

I∗

)
+ cT ∗h

(
T

T ∗

)
dω. � (10)

Clearly, L(ω, t) is a continuous and differentiable. Then, taking the time derivative of L(ω, t), it is obtained that

	
∂L(ω,t)

∂t
= ∂

∂t

∫

Ω
S∗h

(
S

S∗

)
+ I∗h

(
I

I∗

)
+ cT ∗h

(
T

T ∗

)
dx,

Using the equilibrium propriety
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{
ν = νS∗ + χS∗I∗,
χS∗I∗ + σT ∗ = (ν + δ + γ)I∗,
δI∗ − σT ∗ = (ν + η + κ)T ∗,

∂L(ω,t)
∂t

=
∫

Ω

(
1 − S∗

S

)(
1 − S

S∗

)(
νS∗ + χS∗I∗

)
+ σT ∗

(
1 − I

I∗ + T

T ∗ − T I∗

IT ∗ + T ∗

T
− T ∗

T
+ 2 − 2

)

+cδI∗
(

I
I∗ − IT ∗

T I∗ − T
T ∗ + 1 + I∗

I
− I∗

I
+ 2 − 2

)
dω −

∫

Ω
dS(∇S)2 S∗

S2 dω −
∫

Ω
dI(∇I)2 I∗

I2 dω − c

∫

Ω
dT (∇T )2 T ∗

T 2 dω

=
∫

Ω

(
h
(S∗

S

)
− h

( S

S∗

))(
νS∗ + βS∗I∗

)
+ σT ∗

(
− h

( I

I∗

)
+ h

( T

T ∗

)
− h

(T I∗

IT ∗

))

+cδI∗
(

h
(

I
I∗

)
− h

(
IT ∗

T I∗

)
− h

(
T

T ∗

))
dω −

∫

Ω
dS(∇S)2 S∗

S2 dω −
∫

Ω
dI(∇I)2 I∗

I2 dω − c

∫

Ω
dT (∇T )2 T ∗

T 2 dω

we take c = σT ∗

δI∗

	

∂L(ω,t)
∂t

=
∫

Ω

(
− h

(S∗

S

)
− h

( S

S∗

))(
νS∗ + βS∗I∗

)
+ σT ∗

(
− h

(T I∗

IT ∗

)
− h

(IT ∗

T I∗

))
dω

−
∫

Ω
dS(∇S)2 S∗

S2 dx −
∫

Ω
dI(∇I)2 I∗

I2 dω − c

∫

Ω
dT (∇T )2 T ∗

T 2 dω

≤ 0

Therefore, when the S = S∗, I = I∗ and T = T ∗. We have that (ESS) is GAS.�  □

Impact of treatment on the basic reproduction number R0
A central goal of this study is to investigate the effect of treatment efforts on the transmission dynamics of the 
disease. In the model, treatment is represented by the transition of infected individuals to the treated class at a 
rate δ. Importantly, the model accounts for imperfect treatment, where individuals under treatment may relapse 
and return to the infectious class at rate σ. Therefore, understanding how variations in δ influence the basic 
reproduction number R0 is essential for evaluating the effectiveness of public health or veterinary interventions.

We derive an explicit expression for R0, which quantifies the average number of secondary infections 
generated by a single infected individual in a completely susceptible population. For this model, R0 is given by:

	

R0 = χ

(ν + δ + η + γ) − σδ

ν + κ + σ

.
� (11)

This expression highlights how treatment (δ) influences R0 through both direct removal of infectives and the 
possibility of relapse via the treated class. To further understand this dependence, we compute the derivative of 
R0 with respect to δ:

	

dR0

dδ
= − χ(ν + κ + σ)(ν + κ)

[(ν + η + δ + γ)(ν + κ + σ) − σδ]2
< 0.� (12)

This result confirms that increasing the treatment rate δ always leads to a decrease in R0, despite the presence of 
treatment failure. Therefore, enhancing the rate at which infectious individuals receive treatment is beneficial in 
controlling the spread of the disease. This theoretical conclusion is further supported by numerical simulations 
(see Fig. 3), which visually confirm the negative relationship between δ and R0.

From a control perspective, a key question is determining the minimal treatment rate δmin required to ensure 
disease eradication, i.e., to make R0 < 1. Solving the inequality:

	

χ

(ν + δ + η + γ) − σδ

ν + κ + σ

< 1,

leads to the critical threshold:

	
δ > δmin = χ(ν + κ + σ) − (ν + η + γ)(ν + κ + σ)

ν + κ
.� (13)

This condition provides a quantitative target for policymakers or human health authorities: ensuring that the 
treatment effort δ exceeds δmin guarantees that R0 < 1, thus leading to disease elimination in the long run. In 
summary, this section emphasizes the crucial role of treatment not only in reducing disease burden but also in 
shaping the overall epidemic threshold.

Numerical analysis
In this section, we perform numerical simulations to illustrate the theoretical results obtained in the previous 
sections. The simulations are conducted using finite difference methods to approximate the solutions of the 
reaction-diffusion system (3). The full list of parameter values used in the simulation are given in the following.

	 χ = 0.05 Λ = 2 ν = 0.1 γ = 0.3 η = 0.1 σ = 0.1 δ = 0.1 κ = 0.1 ds = dI = dT = 0.1.� (14)
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Therefore, consider two scenarios: one where the basic reproduction number satisfies R0 < 1, and another 
where R0 > 1, to demonstrate the contrasting asymptotic behaviors of the disease dynamics.

The computational space is chosen to be one-dimensional space region Ω = [0, L] with homogeneous 
Neumann boundary conditions, which represents an closed setting with zero population flux along the 
boundaries. The initial compartment distributions (S,  I,  T,  R) are assumed to be spatially heterogeneous. 
Parameter values are determined based on biologically reasonable assumptions and are consistent with the 
analytical conditions for R0.

Figure  1 displays the evolution of susceptible, infected, and treated populations for the case where 
R0 = 0.13 < 1, with a low transmission rate χ = 0.05. As expected from the theoretical analysis, the disease 
dies out over time, and the solution converges to the disease-free equilibrium (DFE). This behavior is consistent 
with the global asymptotic stability of the DFE under the condition R0 < 1.

In contrast, Fig.  2 presents the dynamics for the case where R0 = 1.36 > 1, with a higher transmission 
rate χ = 0.5. Here, the infection persists over time and stabilizes at a nontrivial endemic equilibrium. This 
confirms the theoretical prediction of the global asymptotic stability (GAS) of the endemic steady state (ESS) 
when R0 > 1.
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Fig. 2.  Numerical simulations of solutions for system (3), where χ = 0.5 and R0 = 1.36 > 1. The disease 
persists and the solution converges to an endemic steady state (ESS).

 

Fig. 1.  Numerical simulations of solutions for system (3), where χ = 0.05 and R0 = 0.13 < 1. The disease 
dies out and the solution converges to the disease-free equilibrium.
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Sensitivity analysis of treatment rate
To better understand the role of the treatment rate δ, we investigate the sensitivity of R0 with respect to changes 
in δ. As shown in Figure 3, the value of R0 decreases monotonically with increasing δ. A critical threshold δmin 
is identified, beyond which R0 drops below 1, leading to disease elimination.

These simulations demonstrate the effectiveness of treatment in reducing disease spread. By increasing the 
treatment effort beyond δmin, it is possible to control or eliminate the epidemic, providing a quantitative target 
for public health interventions.

Discussion
Epidemic models represent disease spread in populations. This research aims to study the behavior of a diffusive 
epidemic model that considers treatment effects. We have proven that R0 determines the extent of the spread 
of the disease and its relationship to the treatment. Where if R0 < 1, then we find that the solution converges 
to the disease free equilibrium point, that is the disease free equilibrium point is globaly stable, and this is when 
the value of the treatment parameter δ > δmin is large. but if R0 > 1, then we find the solution converges to 
the endemic equilibrium point, then the endemic equilibrium point is globaly stable, this is for for the treatment 
parameter δ < δmin. Treatment can have a substantial impact on the overall epidemic behavior. This information 
can inform effective disease control strategies. In summary, the diffusive epidemic model with treatment effect 
provides valuable insights into infectious disease behavior and aids in developing effective infection control 
strategies.

Part II: global stability of SVIR epidemic model with diffusion
The SVIR model, an extension of the SIR model, includes vaccination into the framework19,26–28. An extra 
compartment of the model is required for the number of vaccinated individuals (V)29. Vaccinated people can 
be infected but typically will not develop severe symptoms and therefore cannot spread the virus as actively. 
Reaction-diffusion models take into account the spatial spread of a population. Reaction-diffusion models have 
been used in infectious disease modeling to examine the spread of a disease through a geographical region30. In 
this paper, we study the global stability of the SVIR model with imperfect vaccination and reaction-diffusion31,32. 
Global stability means that a solution of the model always converges to a steady state regardless of the initial 
condition.

Mathematical model
In this part, we study the proposal model of Salih et al29:

	




∂S
∂t

= dS∆S + Λ − (µ + α)S(ω, t) − βI(ω, t)S(ω, t) + κV (ω, t),
∂V
∂t

= dV ∆V + αS(ω, t) − (µ + κ + εβI(ω, t))V (ω, t),
∂I
∂t

= dI∆I + βI(ω, t)(S(ω, t) + εV (ω, t)) − (µ + δ + ξ)I(ω, t),
∂R
∂t

= dR∆R + δI(ω, t) − µR(ω, t).

� (15)

Under Neumann boundary conditions:

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

R 0

min

Fig. 3.  The dynamics of the basic reproduction number R0 in relation to the treatment rate δ. When δ < δmin, 
we have R0 > 1 and the endemic equilibrium is globally stable. For δ > δmin, R0 < 1, and the disease-free 
steady state becomes globally stable.
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{
∂S
∂ω

= ∂V
∂ω

= ∂I
∂ω

= 0 on ∂Ω × (0, +∞)
S(x, 0) = S0(ω) ≥ 0 V (ω, 0) = V0(ω) ≥ 0 I(ω, 0) = I0(ω) ≥ 0 in Ω.

With Ω is a bounded interval. Let’s consider the functional space:

	
X =

{
ϕ ∈ C2(Ω) ∂S

∂η
= ∂V

∂η
= ∂I

∂η
= 0 ω ∈ ∂Ω

}

Now, since the system (15) is not dependent on the R equation. So, we can reformulation it to the following a 
new system.

	

{ ∂S
∂t

= dS∆S + Λ − (µ + α)S(ω, t) − βI(ω, t)S(ω, t) + κV (ω, t),
∂V
∂t

= dV ∆V + αS(ω, t) − (µ + κ + εβI(ω, t))V (ω, t),
∂I
∂t

= dI∆I + βI(ω, t)(S(ω, t) + εV (ω, t)) − (µ + δ + ξ)I(ω, t).
� (16)

Steady state
The basic reproduction number of (16) given by :

	
R0 = Λβ(µ + αε + κ)

µ(δ + µ + ξ)(α + κ + µ) .

 The system (16) has a steady state namely disease free steady state (DFSS) and denoted by E0 = (S0, V0, 0), 
when S′ = V ′ = I ′ = 0 with S0 = Λ

µ+α− ακ
κ+µ

= Λ(κ+µ)
µ(α+κ+µ) > 0 and V0 = αS0

µ+κ
> 0.

Now, to find the positive steady state say (endemic steady state) and referred to as (ESS) , according to the 
results in the following lemma

Lemma 9.1  If R0 > 1, the system (16) has a unique endemic steady state, which corresponds to the (ESS).

The (ESS) achieves the following system:

	

Λ − (µ + α)S∗ − βI∗S∗ + κV ∗ = 0,
αS∗ − (µ + εβI∗))V ∗ − κV ∗ = 0,
βI∗(S∗ + εV ∗) − (µ + δ + ξ)I∗ = 0.

� (17)

Clearly, we can calculated the value of V ∗, from 2nd equation of system (16) in the following

	 V ∗ = αS∗

µ+κ+εβI∗ > 0 � (18)

we substituting (18) in the 1st equation of (16) we have:

	
S∗ = Λ

µ + α + βI∗ − ακ
µ+κ+εβI∗

> 0� (19)

According to the 3rd equation of the system (16) we have:

	
I∗[β( Λ

µ+α+βI∗− ακ
µ+κ+εβI∗

+ ε αS∗

µ+κ+εβI∗ µ + εβI∗) − (µ + δ + ξ)] = 0

Since I∗ ̸= 0, we get

	

β( Λ
µ+α+βI∗− ακ

µ+κ+εβI∗
+ ε

α Λ
µ+α+βI∗− ακ

µ+κ+εβI∗
µ+κ+εβI∗ ) − (µ + δ + σ + ξ) = 0

− a1I∗2+a2I∗+a3
αµ+κµ+µ2+β2I∗2ε+βκI∗+βµI∗+αβI∗ε+βµI∗ε

= 0

Where

	

a1 = εβ2(δ + µ + ξ),
a2 = −Λβ2ε + β(κ + µ + αε + µε)(δ + µ + σ + ξ),
a3 = µ(δ + µ + ξ)(α + κ + µ)[1 − R0],

where I∗2 is a positive root of the following equation:

	 a1I∗2 + a2I∗ + a3 = 0. � (20)

Since that a1 > 0 and a3 < 0, we confirm that (20) has always one positive root I∗, with ϑ = a2
2 − 4a1a3 > 0 

and ϑ is the determinator of (20),
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	 I∗ = a2+
√

ϑ
2a1

> 0. � (21)

where 
√

ϑ > a2.
Obviously, the system (16) always has a unique positive steady state denoted by E∗ = (S∗, V ∗, I∗).

Stability analysis
Let’s recall that λ2

n are the eigenvalues of −∆ with n ∈ N∗. Now the Jacobian matrix of system (16) at the point 
(S⋆, V ⋆, I⋆) can be written as:

	

J(S, V, I) =




−(µ + α) − βI + dS
∂2

∂x2 κ −βS

α −(µ + κ + εβI) + dV
∂2

∂x2 εβV

βI εβI β(S + εV ) − (µ + δ + σ + ξ) + dI
∂2

∂x2




Therefore, the Jacobian matrix at the (DFSS), becomes:

Theorem 10.1  The (DFSS) is LAS if R0 < 1 and unstable if R0 > 1.

Proof  The following Jacobian matrix is obtained at (DFSS)

	
JE0 =

[
−(µ + α) − dSλ2

n κ −βS0
α −µ − κ − dV λ2

n −εβV0
0 0 β(S0 + εV0) − (µ + δ + ξ) − dIλ2

n

]

Clearly, the 1st eigenvalue of the corresponding characteristic equation is written as

	 λ1 = β(S0 + εV0) − (µ + δ + ξ) − dIλ2
n = (µ + δ + ξ)[1 − R0] − dIλ2

n < 0

Now, the other eigenvalues of JE0 , can be found by the following matrix

	
M =

[
−(µ + α) − dSλ2

n κ
α −µ − κ − dV λ2

n

]

with:

	

{
T r = −µ − κ − (µ + α) − dSλ2

n − dV λ2
n < 0

Det = (µ + α + dSλ2
n)(µ + κ + dV λ2

n) − ακ > 0

Thus, for R0 < 1, E0 is locally asymptotically stable.�  □

Theorem 10.2  The disease-free steady state (DFSS), E0 is globally asymptotically stable (GAS), if R0 < 1 .

Proof  We consider the following lyapunov function:

	
L(ω, t) =

∫

Ω
S0h

(
S(ω, t)

S0

)
+ V0h

(
V (ω, t)

V0

)
+ I(ω, t)dω,

The time derivative of L(ω, t) along the positive solution of system (16), it follows that:

	

∂L(ω,t)
∂t

= ∂
∂t

∫

Ω
S0h

(
S(ω, t)

S0

)
+ V0h

(
V (ω, t)

V0

)
+ I(ω, t)dω,

∂L(ω,t)
∂t

=
∫

Ω

∂

∂t

(
S0h

(
S(ω, t)

S0

)
+ V0h

(
V (ω, t)

V0

)
+ I(ω, t)

)
dω,

=
∫

Ω

(
1 − S0

S

)
(dS∆S + Λ − (µ + α)S(ω, t) − βI(ω, t)S(ω, t) + κV (ω, t))

+
(

1 − V0
V

)(
dV ∆V + αS(ω, t) − (µ + εβI(ω, t))V (ω, t) − κV (ω, t)

)

+dI∆I + βI(ω, t)(S(ω, t) + εV (ω, t)) − (µ + δ + ξ)I(ω, t)dω.

Thus, by applying the propriety of the equilibrium

	

{ Λ = (µ + α)S0 − κV0,
µV0 = αS0 − κV0. � (22)

Clearly, according to the simplification, we get:
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∂L(ω,t)
∂t

=
∫

Ω

(
1 − S0

S

)(
1 − S

S0

)
µS0 +

(
µ + δ + ξ

)
I(ω, t)

[
R0 − 1

]

+αS0

[
3 − S0

S
− V

V0
− V0S

S0V

]
+ κV0

[
− 1 + S0

S
+ V

V0
− S0V

SV0
+ 2 − 2 + V0S

V S0
− V0S

V S0

]
dω

+
∫

Ω

(
1 − S0

S

)
dS∆S +

(
1 − V0

V

)
dV ∆V dω +

[
dI∇I

]

Ω

,

for where the conditions on the banks of Neumann we have 
[

∇I

]

Ω

=
[

∇S

]

Ω

=
[

∇V

]

Ω

= 0

	

∂L(ω,t)
∂t

=
∫

Ω

(
1 − S0

S

)(
1 − S

S0

)
µS0 +

(
µ + δ + ξ

)
I(ω, t)

[
R0 − 1

]

+αS0

[
− h

(
S0
S

)
− h

(
V
V0

)
− h

(
V0S
S0V

)]

+κV0

[
+ h

(
S0
S

)
+ h

(
V
V0

)
+ h

(
V0S
V S0

)
− h

(
S0V
SV0

)
− h

(
V0S
V S0

)]
dω +

∫

Ω
h′

(
S

S0

)
dS∆S + h′

(
V

V0

)
dV ∆V dω.

According to (22) we replace κV0 by αS0 − µV0 we get:

	

∂L(ω,t)
∂t

=
∫

Ω

(
1 − S0

S

)(
1 − S

S0

)
µS0 +

(
µ + δ + ξ

)
I(t)

[
R0 − 1

]
+ αS0

[
− h

(
S0

S

)
− h

(
V

V0

)
− h

(
V0S

S0V

)]

+
(

αS0 − µV0

)[
+ h

(
S0
S

)
+ h

(
V
V0

)
+ h

(
V0S
V S0

)]
+ κV0

[
− h

(
S0V
SV0

)
− h

(
V0S
V S0

)]
dω +

[
dS∇Sh′

(
S

S0

)]

Ω

−
∫

Ω
dS(∇S)2 S0

S2 dω +
[

dV ∇V h′
(

V

V0

)]

Ω

−
∫

Ω
dV (∇V )2 V0

V 2 dω,

=
∫

Ω

(
1 − S0

S

)(
1 − S

S0

)
µS0 +

(
µ + δ + ξ

)
I(t)

[
R0 − 1

]
+ µV0

[
− h

(
S0

S

)
− h

(
V

V0

)
− h

(
V0S

V S0

)]

+κV0

[
− h

(
S0V
SV0

)
− h

(
V0S
V S0

)]
dω −

∫

Ω
dS(∇S)2 S0

S2 dω −
∫

Ω
dV (∇V )2 V0

V 2 dω ≤ 0.

Under the conditions S = S0, I = 0 and V = V0 are satisfied that guarantee the equality holds. Then, the 
system (16) near (DFSS) is (GAS).�  □

Theorem 10.3  The (LAS) of system (16) at (ESS) is satisfied if R0 > 1.

Proof  The variational matrix of the system (16) around (ESS) is as follows

	
JE∗ =

[
−(µ + α) − βI∗ − dSλ2

n κ −βS∗

α −(µ + κ + εβI∗) − dV λ2
n −εβV ∗

βI∗ εβI∗ −dIλ2
n

]

Due to the (ESS), achieves the following equation:

	

0 = I∗(β(S∗ + εV ∗) − (µ + δ + ξ)),

JE∗ =

[
A κ B
α C D
E F −dIλ2

n

]
,

here
A = −

[
(µ + α) + βI∗ + dSλ2

n

]
, B = −βS∗, C = −(µ + κ + εβI∗) − dV λ2

n, D = −εβV ∗, E = βI∗ 
and F = εβI∗

Then, the characteristic equation is given by

	 p(λ) = λ3 + A1λ2 + A2λ + A3� (23)

where

	

A1 = −A − C + dIλ2
n

A2 = AC − F D − BE − ακ − AdIλ2
n − CdIλ2

n

A3 = BCE + AF D − κDE − BF α + ACdIλ2
n + ακdIλ2

n

According to Routh-Hurwitz criterion, characteristic equation will have negative real roots and the (ESS) is 
(LAS) if the following conditions are true

	
(H1) :

{
A1, A3 > 0
A1A2 − A3 > 0
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Clearly, when the R0 > 1, we guarantee the above conditions are hold. Such that,

	 A1 = (µ + α) + βI∗ + dSλ2
n + µ + κ + εβI∗ + dV λ2

n + dIλ2
n > 0

Next, we show that A3 > 0.

	
A3 = (βS∗)(µ + κ + εβI∗ + dV λ2

n)βI∗ + (µ + α + βI∗ + dSλ2
n)(εβV ∗)(εβI∗) + κεβ2V ∗I∗

+εαβ2S∗I∗ + ACdIλ2
n + ακdIλ2

n > 0

Finally, we show the last inequality in (H1), that is,A1A2 − A3 > 0 we have:

	

A1A2 − A3 = ABE − A2C − AC2 + CF D + κDE + BF α + Aακ + Cακ − Ad2
Iλ4

n + A2dIλ2
n

−Cd2
Iλ4

n + C2dIλ2
n − BdIλ2

nE − F dIλ2
nD + 2ACdIλ2

n

= 3αµ2 + α2µ + 3κµ2 + κ2µ + 2µ3 + β3I∗3ε + β3I∗3ε2 − Bβ2I∗2 + β2κI∗2

+β2I∗2µ + βκ2I∗ + 3βµ2I∗ + 2ακµ + 2αβ2I∗2ε + εαβ2I∗2ε2 + 2β2κI∗2ε + 4β2µI∗2ε
+β2µI∗2ε2 + BαβI∗(ε − 1) − BβµI∗ + αβκI∗ + 2αβµI∗ + 4βκµI∗

−β2DI∗2ε2 + βκDI∗(ε − 1) + α2βI∗ε + 3βµ2I∗ε + αβκI∗ε + 4αβµI∗ε + 2βκµI∗ε − βµDI∗ε
−Ad2

Iλ4
n + A2dIλ2

n − Cd2
Iλ4

n + C2dIλ2
n − BdIλ2

nE − F dIλ2
nD + 2ACdIλ2

n
> 0

Therefore, the (ESS) of system (16) is (LAS), and the Routh-Hurwitz conditions are satisfied when R0 > 1. This 
completes the proof.�  □

The next theorem now discusses the system’s global stability (GAS) around the endemic stable state (ESS).

Theorem 10.4  If R0 > 1 the unique endemic steady state (ESS) is globally asymptotically stable (GAS).

Proof  Let us consider a Lyapunov function as follows

	
L(ω, t) =

∫

Ω
S∗h

(
S

S∗

)
+ V ∗h

(
V

V ∗

)
+ I∗h

(
I

I∗

)
dx � (24)

The following is the result of taking the time derivative of L(t) along the system (16) affirmative solution

	

∂L(ω,t)
∂t

=
∫

Ω

(
1 − S∗

S

)(
dS∆S + Λ − (µ + α)S(ω, t) − βI(ω, t)S(ω, t) + κV (ω, t)

)

+
(

1 − V ∗

V

)(
dV ∆V + αS(ω, t) − εβI(ω, t)V (ω, t) − κV (ω, t) − µV (t)

)

+
(

1 − I∗

I

)(
dI∆I + βI(ω, t)(S(ω, t) + εV (ω, t)) − (µ + σ + δ + ξ)I(ω, t)

)
dω

By applying the propriety of the equilibrium and by doing some algebraic manipulation, we get

	

∂L(ω,t)
∂t

=
∫

Ω

(
µS∗ + βS∗I∗

)[
2 − S∗

S
− S

S∗

]
+ αS∗

[
3 − S∗

S
− SV ∗

S∗V
− V

V ∗

]

+
(

αS∗ − µV ∗ − εβI∗V ∗
)[

− 3 + S∗

S
+ V

V ∗ + SV ∗

S∗V

]
+ κV ∗

[
− S∗V

SV ∗ − SV ∗

S∗V
+ 2

]
dω

−
∫

Ω
dS(∇S)2 S∗

S2 dω −
∫

Ω
dV (∇V )2 V ∗

V 2 dω −
∫

Ω
dI(∇S)2 I∗

I2 dω

=
∫

Ω

(
µS∗ + βS∗I∗

)[
2 − S∗

S
− S

S∗

]
+

(
µV ∗ + εβI∗V ∗

)[
+ 3 − S∗

S
− V

V ∗ − SV ∗

S∗V

]
+ κV ∗

[
− S∗V

SV ∗ − SV ∗

S∗V
+ 2

]
dω

−
∫

Ω
dS(∇S)2 S∗

S2 dω −
∫

Ω
dV (∇V )2 V ∗

V 2 dω −
∫

Ω
dI(∇S)2 I∗

I2 dω

=
∫

Ω

(
µS∗ + βS∗I∗

)[
2 − S∗

S
− S

S∗

]
+

(
µV ∗ + εβI∗V ∗

)[
− h(S∗

S
) − h( V

V ∗ ) − h(SV ∗

S∗V
)
]

+κV ∗
[

− h( S∗V
SV ∗ ) − h( SV ∗

S∗V
)
]

dω −
∫

Ω
dS(∇S)2 S∗

S2 dω −
∫

Ω
dV (∇V )2 V ∗

V 2 dω −
∫

Ω
dI(∇S)2 I∗

I2 dω

≤ 0

and equality holds when S = S∗ and V = V ∗, we replace the results in system (16) we get I = I∗. Which 
implies that (ESS) is (GAS).�  □

Furthermore, our main purpose is to determine the effect of the vaccination on the spread of the contagious 
disease. The responsible rate for the vaccination force is α. Note that this infection is imperfect, where it is 
possible that the vaccinated person to get infected, but this infection will reduce the transmission rate (this 
means that β > εβ ). Due to the dependence of asymptotic dynamics to the value of R0, we investigate the 
sensibility of the R0 to α using the derivation of R0 with respect to α. By a simple computation we get:

	
dR0

dα
= Λβµ(δ + µ + ξ)[µ(ε − 1) + κ(ε − 1)]

(µ(δ + µ + ξ)(α + κ + µ))2 < 0.
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This result means that the vaccination has a negative effect on the value of the BRN and augmenting the number 
of vaccinated persons will lead to reducing the spread of the disease.

Numerical results
To look into the dynamics and make sure the analytical results are correct, we numerically simulate the effect 
of the treatment on the dynamics of the system (3) using a set of parameter values that were carefully chosen to 
make sense from a biological point of view.

	 Λ = 3 β = 0.8 µ = 0.1 ξ = 0.3 ϵ = 0.1 α = 0.1 δ = 0.1 κ = 0.1 ds = dV = dI = 0.1.� (25)

The infection disease for different class with time to compare the distribution of the population when R0 < 1 
and R0 > 1 is shown in Fig. 4. In Fig. 4, the basic reproduction number, R0 = 3.36 > 1 when β = 0.8. 
The figure tells us that the disease increases and the endemic steady state is global stable. In Fig. 5 the basic 
reproduction number, R0 = 0.33 < 1 when β = 0.008. The figure tells us that the disease extinction and the 
(DFSS) is global stable.

Discussion
In this part, we have investigated the global stability of the SVIR model with imperfect vaccination and reaction-
diffusion. We have proved that the (DFSS) is (GAS) when the basic reproduction number is less than one. We 
have also proved that the(ESS) is (GAS) when the R0 >. Our results have several implications for the control 
of infectious diseases. First, they show that imperfect vaccination can help to control the spread of infectious 
diseases. Second, they show that reaction-diffusion can also help to control the spread of infectious diseases. 
These results suggest that vaccination and reaction-diffusion should be considered as part of a comprehensive 
strategy for controlling infectious diseases.

Combined analysis of reaction–diffusion epidemic models: SITR and SVIR 
formulations
In this study, we presented a unified framework for analyzing two biologically relevant epidemic models 
incorporating spatial diffusion: a SITR model and a SVIR model. Both models account for critical epidemiological 
processes such as infection transmission, recovery, treatment, and vaccination, embedded within a reaction-
diffusion system. Our goal was to investigate the global stability of disease equilibria by combining analytical 
tools–such as Lyapunov functionals and the basic reproduction number R0—with numerical simulations.

Fig. 5.  Numerical simulations of solutions for system (15),where β = 0.8 and R0 = 0.336 < 1.

 

Fig. 4.  Numerical simulations of solutions for system (15), where β = 0.8 and R0 = 56 > 1.
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Unified methodological approach
For both models, we adopted the same methodological approach. We began by formulating the reaction-
diffusion system under homogeneous Neumann boundary conditions, reflecting a closed spatial domain. The 
local dynamics were modeled using nonlinear ODE compartments extended to PDEs with diffusion operators. 
We derived the basic reproduction number R0 using the next-generation matrix method adapted to systems with 
treatment or vaccination terms. We also constructed Lyapunov functionals to investigate the global asymptotic 
stability (GAS) of disease-free and endemic equilibria, with the threshold determined by the value of R0.

For numerical simulation, we used an implicit finite difference scheme for time integration and central 
differences for spatial discretization. This enabled the stable and accurate approximation of solutions in both 
models.

Comparative dynamics and sensitivity
The SITR model emphasized the impact of treatment and imperfect isolation on the spread of disease. We 
showed that increasing the treatment rate δ reduces R0, and derived the minimum value δmin needed to suppress 
the outbreak. The numerical results confirmed this, showing convergence to the disease-free equilibrium for 
δ > δmin and to an endemic state for δ < δmin.

The SVIR model introduced vaccination as a preventive control measure. Similar to the treatment in the 
SITR model, increasing the vaccination rate reduced the value of R0. We derived an explicit condition for the 
minimal vaccination rate necessary to ensure R0 < 1, hence eliminating the disease. Simulations revealed the 
critical role of vaccine coverage in disease control.

Both models illustrated how spatial effects, such as spatial heterogeneity, can persist even under strong 
local control measures, emphasizing the importance of accounting for mobility and diffusion in public health 
planning.

Data availability
The data used to support the findings of this study are available from the corresponding author upon request. 
The articles used to support the findings of this study are included within the article and are cited at relevant 
places within the text as references.
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