Table 1 Summary of brain tumor segmentation and classification methods in the literature.

From: A novel hybrid vision UNet architecture for brain tumor segmentation and classification

Authors

Dataset

Approach

Results / Metrics

Limitations / Future Work

Mehta & Arbel et al.17

BraTS2018

3D UNet

Dice scores:

ET: 0.706

WT: 0.871

TC: 0.771

Need to improve testing accuracy; limited generalizability

Cicek et al. (2016)18

Xenopus kidney

3D UNet from sparse annotation

IoU: 0.863

Performance may vary with different dataset characteristics; sensitive to annotation quality

Gitonga et al.19

BraTS2021

3D Attention-based UNet

Dice Coefficient: 0.9864

Computationally intensive

Asiri et al. (2023)20

TCGA-LGG, TCIA MRI

ResNet50 + UNet

IoU: 0.91, DSC: 0.95, SI: 0.95

Limited to LGG class

Shedbalkar & Prabhushetty et al.21

Figshare MRI

UNet + chopped VGGNet

Accuracy: 98.93%, Sensitivity: 0.98, Precision: 0.9833, F1-score: 0.9833

Limited validation and generalization

Pravitasari et al.22

Custom

UNet-VGG16

Accuracy: 96.1%

Need to explore different architecture

Kolarik et al.24

Custom + MICCAI 2016 MRI

3D Dense-U-Net

SSIM: 0.78547, PSNR: 24.09 dB

Need to explore different datasets

Chen et al.27

Synapse multi-organ segmentation dataset

TransUNet

DSC: 77.48, HD: 31.69

Need to evaluate on different dataset

Wang et al.28

BraTS 2019

TransBTS

Dice scores:

ET: 78.92

WT: 90.23

TC: 81.19

Computationally intensive

Hatamizadeh et al.29

BraTS 2021

Swin UNETR

ET

DSC: 0.858, HD: 6.016

WT

DSC: 0.926, HD: 5.831

TC

DSC: 0.885, HD: 3.770

High memory usage

Cao et al.30

Synapse multi-organ segmentation dataset

Swin-Unet

DSC: 79.13

HD: 21.55

Pure transformer; still evolving for medical images

Aloraini et al.31

BraTS 2018 and Figshare

ViT-CNN

Accuracy: 96.75% (BraTS), 99.10% (Figshare)

Need to explore with lightweight CNN model

Khushi et al.32

Multiclass brain tumor Kaggle dataset

EfficientNetB7

Accuracy: 98.97%

Need to evaluate on real medical image dataset