Table 14 Training parameters for the HVU-E classifier.

From: A novel hybrid vision UNet architecture for brain tumor segmentation and classification

Parameters

Value

Input Size

256\(\times\)256\(\times\)3

Convolution Kernel size

3\(\times\)3

Max pool size

2\(\times\)2

Stride

2

Learning rate

0.001

No. of epochs

50

Batch size

32

Optimizer

Adam

Activation Function

Softmax

Loss

Categorical cross-entropy