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Breast cancer (BC) is a kind of cancer that is created from the cells in breast tissue. This is a primary 
cancer that occurs in women. Earlier identification of BC is significant in the treatment process. To 
lessen unwanted biopsies, Magnetic Resonance Imaging (MRI) is utilized for diagnosing BC nowadays. 
MRI is the most recommended examination to detect and monitor BC and explain lesion areas as 
it has a better ability for soft tissue imaging. Even though, it is a time-consuming procedure and 
requires skilled radiologists. Here, Breast Cancer Deep Convolutional Neural Network (BCDCNN) 
is presented for Breast Cancer Detection (BCD) using MRI images. At first, the input image is taken 
from the database and subjected to a pre-processing segment. Adaptive Kalman filter (AKF) is 
utilized to execute the pre-processing phase. Thereafter, cancer area segmentation is conducted on 
filtered images by Pyramid Scene Parsing Network (PSPNet). To improve segmentation accuracy 
and adapt to complex tumor boundaries, PSPNet is optimized using the Jellyfish Search Optimizer 
(JSO). It is a recent nature-inspired metaheuristic that converges to an optimal solution in fewer 
iterations compared to conventional methods. Then, image augmentation is performed that includes 
augmentation techniques namely rotation, random erasing and slipping. Afterwards, feature 
extraction is done and finally, BCD is conducted employing BCDCNN, wherein the loss function 
is newly designed based on an adaptive error similarity. It improves the overall performance by 
dynamically emphasizing samples with ambiguous predictions, enabling the model to focus more on 
diagnostically challenging cases and enhancing its discriminative capability. Furthermore, BCDCNN 
acquired 90.2% of accuracy, 90.6% of sensitivity and 90.9% of specificity. The proposed method not 
only demonstrates strong classification performance but also holds promising potential for real-world 
clinical application in early and accurate breast cancer diagnosis.

Keywords  Breast cancer detection (BCD), Adaptive kalman filter (AKF), Pyramid scene parsing network 
(PSPNet), Jellyfsh search optimizer (JSO), Deep convolutional neural networks

BC is the most common cancer among women, consisting of about 23% of every female cancer worldwide1. In 
Western countries, many women are affected by BC in their lifetime. BC is a second vital cause of death among 
women in most countries. Earlier detection is crucial to enhanced subsistence and the total prognosis is linked 
directly to a phase of disease during diagnosis. Mammography is one of the helpful tools that can detect BC in its 
earlier phase before bodily symptoms occur. As the footnote, screening mammography is the only examination 
that is revealed to decrease fatalities owing to BC. The screening process with mammography is connected with 
a 16% to 40% relative decrease in BC mortality rate amongst women aged between 40 to 74 years2. However, 
cancer can be lost in mammography, especially in women having denser breasts3. The cancer tissues with high 
intensities of pixels are simply detected more than other breast areas4. For decreasing false negative diagnoses in 
mammography, a biopsy is suggested for lesions with more than 2% possibility of having suspicious malignant 
cancers5 and amongst them, less than 30% are identified as malignancy6.

The breast MRI is utilized for screening cancer in women with high risk, to phase known cancer and for 
evaluating treatment responsiveness systemic therapy7,8. To decrease unwanted biopsies, currently, MRI is 
utilized for diagnosing BC9 as it has a better ability for soft tissue imaging and is the most sensible method 
in predicting breast-related diseases, yet, it does not comprise probably hazardous radiation10. Diagnostic 
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understanding of the breast MRI is a time-consuming chore, frequently involved not only in the assessment of 
existing imaging investigation but also comparable with numerous previous imaging tests. Since the temporal 
and spatial resolution of the dynamic contrast-enhanced (DCE) breast MRI remains to rise, radiologists of breast 
imaging have worked with reviews about numerous images of individual patients11. In current years, computer-
assisted methods have been enhanced for detecting irregular lesions as well as identifying tissue attributes in 
clinical images6,12. BC clinical imaging can be utilized for viewing within the human body as it is referred to 
non-invasive technique to assist doctors for diagnosis and treatment4.

The problems experienced by MRI are resolved using machine learning (ML) as well as deep learning 
(DL). DL and ML methods are successful while testing and training data are from similar feature spaces as 
well as having similar frequency13. When a pattern alters, most of the quantitative data in approaches must 
be reconstructed from down up utilizing newly obtained classification techniques13,14. Attaining the necessary 
training data and designing systems in clinical applications like breast imaging is complicated14. As an outcome, 
it is better to decrease the necessity for a task required to obtain training data. In such criteria, it should be 
preferred for fine-tuning from one take to another15. DL is a promising method to resolve issues that remain in 
artificial intelligence (AI) society16,17. In contrast to conventional ML techniques that include linear regression, 
Naïve Bayes classifier, support vector machine (SVM) and logistic regression, DL18 approaches employ numerous 
deep layers of the perceptions, which capture low as well as high-level depictions of data19,20. DCNN has lately 
originated as strong DL approaches that satisfy or else exceed the performance level of radiologists in various 
well-defined as well as repeated image elucidation chores11,21.

The foremost goal is to design BCDCNN for BCD using MRI images. The proposed BCDCNN framework 
effectively addresses several challenges associated with traditional breast cancer detection methods:

Manual MRI interpretation is time-consuming and requires expert radiologists. BCDCNN automates this 
process by using a deep convolutional neural network that can quickly and accurately detect breast cancer 
regions, reducing the workload on clinicians and minimizing human error. Also, MRI images often contain noise 
and complex tissue structures. The AKF used in the pre-processing phase enhances image quality by reducing 
noise. Segmenting cancerous regions accurately is critical but challenging due to irregular tumor shapes and 
varying sizes. The use of PSPNet, optimized by the JSO, enables accurate segmentation by effectively tuning the 
network parameters to capture multi-scale contextual information. Medical imaging datasets are limited and 
imbalanced, causing overfitting in models. By applying image augmentation techniques, the method artificially 
expands the training data diversity, avoiding overfitting issues. The extraction of multiple feature types ensures 
comprehensive characterization of breast tissue, which is vital for distinguishing benign from malignant regions. 
The novel adaptive error similarity-based loss function dynamically emphasizes ambiguous or hard-to-classify 
samples during training. This helps the network focus learning on challenging cases, improving performance 
and reducing false negatives.

The main contribution of the proposed method is:

•	 Proposed BCDCNN for BCD: Earlier detection of BC decreases mortality risks by offering the best option of 
finding appropriate treatment and a new method is developed for BCD.

•	 The segmentation is done by PSPNet, which is optimized by the JSO.
•	 BCD is conducted employing BCDCNN, wherein the loss function is newly designed based on an adaptive 

error similarity

The segments beneath are arranged as: Traditional approaches reviewed are elucidated in section "Literature 
survey", BCDCNN methodology is described in section "Proposed BCDCNN for BCD", BCDCNN outcomes 
are described in section "Results and discussion" and section conclusion ends with the conclusion of BCDCNN.

Literature survey
Nasir et al.15 presented AlexNet for the prediction of BC that could be utilized in the clinical field for preventing 
unwanted treatment and biopsies, but it did not assess the method by fusing diverse datasets. Yurttakal et al.6 
introduced a Convolutional Neural Network (CNN) for characterizing benign or malignant tumors utilizing 
MRI images. It was capable of distinguishing benign and malignant cancers, even while cancer biologic feature 
reflects variations. However, the time consumption of the model was high. Eskreis-Winkler et al.11 designed DL 
for identifying cancer-comprising axial slices on breast MRI images. This method saved the radiologist’s time, 
though it did not expand the database to include every breast MRI. Daimiel Naranjo et al.22 developed Gaussian 
SVM for diagnosing BC. It has the potential to serve as a decision-assisting tool to decrease unwanted biopsies 
in the benign BC. Nevertheless, this technique failed as it only included the breast lesions with a median pixel 
dimension lesser than for tumors.

Zheng et al.4 devised DL assisted Efficient Adaboost Algorithm (DLA-EABA) for BCD. It obtained higher 
accuracy in the detection of BC mass and increased the survival rate of patients, but it failed to consider 
computational time. Onishi et al.23 presented ultrafast dynamic contrast-enhanced magnetic resonance imaging 
(DCE-MRI) for predicting BC. This method revealed a stronger association with few BC attributes particularly 
histopathology as well as molecular subtypes. However, it did not generate the prognostic imaging markers 
of BC. Hu et al.24 developed multiparametric magnetic resonance imaging (mpMRI) for diagnosing BC. This 
approach was computationally effective and it does not want intensive image pre-processing, but still failed to 
execute a validation on the independent databases for investigating the robustness of the methodology. Choi 
et al.19 designed a CNN-based model to predict BC. It had the potential to enhance the diagnosis accuracy of 
various real-time medical applications. However, the dataset utilized was very small and a substantial quantity 
of data was required to obtain the best outcomes. Rajasekhar Yadav and Vaegae Naveen Kumar20 implemented 
a Fractional Order Convolutional Neural Network (Frac-CNN), which was optimized by Particle Swarm 
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Optimization (PSO) for BCD. This model captured intricate patterns in mammograms, which enhanced the 
detection accuracy. However, high false-negative and false-positive rates were the major drawbacks of the model. 
Anas Bilal et al.25 established a quantum-inspired binary Grey Wolf Optimizer SqueezeNet and Support Vector 
Machines (Q-BGWO-SQSVM) for BCD. Here, the best SVM parameters were selected by Q-BGWO. This 
model was utilized for reliable and accurate early detection of breast cancer. However, it required high processing 
requirements.

The summary of the literature survey is presented in Table 1.

Challenges
The conventional methods reviewed for BCD experienced some drawbacks that are elucidated as follows.

•	 The model designed in15 for BCD was proven as rapid and highly effective in predicting BC, but still, it failed 
to apply fuzzed ML concepts to data for getting more precise as well as promising outcomes.

•	 In6, the CNN system automatically characterized and classified several dimensions of masses with the assis-
tance of computer assessment without the necessity for the biopsy even though it only utilized pixel informa-
tion for designing a structure.

•	 To detect BC, the DL method developed in11 was supportive during non-systematic image viewing. However, 
it did not test and train on the multicenter breast MRI to enhance the generalizability of an approach.

•	 Gaussian SVM presented in22 facilitated precise BC diagnosis when decreasing needless benign breast biop-
sies, though this approach was not validated in large multicenter studies.

•	 Across the globe, BC is the most prevailing cancer and it is the second crucial cause of death of women. Thus, 
diagnosing and prevention tools are necessary to treat BC at the starting stages. However, BC classification is 
a clinical technique that offers scientists and researchers serious challenges.

Proposed BCDCNN for BCD
BC refers to an older kind of cancer that affects humans. This cancer disease has been investigated and studied 
to avoid results caused by it, even though this disease is considered as most deadly disease every time. Here, 
BCDNN is presented newly to perform BCD. At first, the MRI image considered is given to the pre-processing 
stage. The pre-processing of the input image is executed by AKF. Afterwards, cancer area segmentation is done 
employing PSPNet and it is tuned by JSO. Thereafter, image augmentation is done by concerning augmentation 
methods like flipping, random erasing and rotation. Then, features like LBP, statistical features, Gabor features, 
LVP and shape features are extracted. At last, BCD is done using BCDCNN, wherein the loss function is newly 
designed based on adaptive error similarity. The visual representation of BCDCNN for BCD is exposed in Fig. 1.

Input MRI image acquisition
For performing BCD, input MRI image is taken from datasets specified in26,27, which can be illustrated as,

	 C = {C1, C2, ...Cb...Co}� (1)

where bth input MRI image is signified as Cb and Co indicates total MRI images in the dataset.

Pre-processing utilizing AKF
Pre-processing of an image has impressive positive consequences on the outcomes of image assessments. An 
image pre-processing is similar to the mathematical formulation of dataset normalization, which is the normal 

Reference Method Advantages Disadvantages

Nasir et al.15 AlexNet Prevent unwanted treatment and biopsies It did not assess the method by fusing diverse datasets

Yurttakal et al.6 CNN Capable to distinguish benign and malignant cancers, even while 
cancer biologic feature reflects variations Time consumption of the model was high

Eskreis-Winkler et al.11 DL Saved radiologist’s time It did not expand the database for including every 
breast MRI

Daimiel Naranjo et al.22 Gaussian SVM Decrease unwanted biopsies in the benign BC It only included the breast lesions with median pixel 
dimension lesser than for tumors

Zheng et al.4 DLA-EABA Obtained higher accuracy in detection of BC mass and increased 
survival rate Failed to consider computational time

Onishi et al.23 Ultrafast DCE-MRI Stronger association with few BC attributes as well as molecular 
subtypes

It did not generate the prognostic imaging markers 
of BC

Hu et al.24 mpMRI Computationally effective and it does not want intensive image 
pre-processing

Failed to execute a validation on the independent 
databases

Choi et al.19 CNN-based model Potential for enhancing the diagnosis accuracy of various real-time 
medical applications

The dataset utilized was very small and substantial 
quantity of data was required

Rajasekhar Yadav and 
Vaegae Naveen Kumar20 PSO-Frac-CNN Captured intricate patterns, which enhanced the detection accuracy High false-negative and false-positive rates were the 

major drawbacks

Anas Bilal et al.25 Q-BGWO-SQSVM Reliable and accurate early detection of breast cancer It required high processing requirements

Table 1.  Summary of the literature survey.
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phase in various feature descriptor techniques. Moreover, this phase eliminates noises from input images. Here, 
pre-processing of MRI images is conducted utilizing AKF by considering Cb as input.

AKF28 is introduced to overcome the disadvantages of the actual Kalman filter method. The AKF is used due 
to its effectiveness in reducing noise while preserving important image features, which is critical for enhancing 
MRI image clarity before segmentation. For AKF, a measurement variance ςo has a vital role. A measurement 
variance value is adjusted for compensating the occurrence of system error or outlying image pixels. The concept 
is to assign image pixels that are not consistent with a system to random noise by increasing measurement 
variance artificially, thus image pixels are not utilized for corrupting parameter estimates. A variance of 
measurement noise is computed by,

	
ςo = (1/λ)

(
λ∑

∂=1

–νo−∂ • –νo−∂

)
− –h–T

o • –Po • –ho� (2)

Here, λ indicates the count of pixels related to the pre-determined smoothing window, ∂ implies index, –Po 
signifies covariance matrix, –h–T

o  symbolizes measurement function vector whereas o denotes the count of values 
processed. Also, Kb specifies filtered images utilizing an adaptive Kalman filter.

Cancer area segmentation using PSPNet
The most crucial and vast phase in image processing is image segmentation. This phase is a significant 
component towards successful assessments of images and pattern recognition. Image segmentation is the group 
of processes utilized for dividing screened images into various areas. In clinical images, image segmentation has 
an essential part in segmenting suitable tissues from the background. Here, cancer area segmentation refers to 
the segmentation of areas covered by malignant tissues. In this work, the cancer area is segmented employing 
PSPNet which is tuned by JSO. The cancer area segmentation is performed by using filtered image Kb as input.

Architecture of PSPNet
PSPNet29,30 is a multi-scale network that applies a pyramid pooling module to the semantic segmentation field. 
Thus, it can learn better about global contextual information of scenes as well as efficiently enhance segmentation 

Fig. 1.  Architecture of the proposed BCDCNN for BCD.
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accuracy. This network has obtained better outcomes in existing rank lists of semantic segmentation. The PSPNet 
presents rich context details to semantic segmentation and acquires background previously.

In the multi-layer CNN, a receptive field dimension indirectly identifies the degree of utilizing image 
contextual information. Even though ResNet efficiently expands a receptive field by means of whole convolution 
as well as additional feature maps, with the deepening of level and increasing the depth of the network, the real 
receptive field is much less than the theoretical receptive field. A spatial pyramid pooling system efficiently 
reduces this issue by utilizing pooling at diverse scales and also, and it can broaden the real receptive field in the 
network. The PSPNet efficiently make utilization of this benefit.

Initially, the feature map is acquired by input image features extraction through the steps of CNN. Generally, 
a CNN network on the basis of ResNet architecture is employed. Also, the pyramid adaptive average pooling 
module is utilized for capturing the features of diverse subareas at various partition scales and subarea features 
are upsampled to a similar size as global features preceding pooling and the CONCAT function is executed with 
global features preceding pooling, thus existing feature map comprises local as well as global features, improving 
the information of feature map. Finally, the last prediction outcomes are attained by certain upsampling and 
convolution operations. In the pyramid pooling module, the scales are utilized for achieved global feature maps 
to the adaptable average pool that is employed as priori details and additionally convolution, Rectified Linear 
Unit (ReLU) functions and batch normalization are accomplished for learning system parameters, capturing of 
local subarea’s feature information and decrease the size of the feature map. The learned subarea features with 
diverse scales are sampled and merged with actual feature maps. The cancer area segmented output obtained 
from PSPNet is implied by Pb and architecture of PSPNet as demonstrated in Fig. 2.

Training of PSPNet utilizing JSO
JSO31 is a bio-enthused metaheuristic approach that is based on food-identifying characteristics of the jellyfish in 
the ocean. Due to the various applications of JSO, it is more suitable to train PSPNet for cancer area segmentation. 
While PSPNet typically includes its own training mechanism, in this research, JSO is employed as an alternative 
optimization strategy to enhance training effectiveness and accuracy.

Jellyfish search solution encoding  In –z search space, the PSPNet learning parameter symbolized by Ψ is tuned 
continually to achieve the best solution, such that –z = [1 × Ψ].

Fitness function  A fitness measure is calculated by determining the difference between targeted and PSPNet 
output that can be illustrated by,

	
/F = 1

o

o∑
b=1

[Tb − Pb] 2� (3)

where total image samples are signified by o and targeted output is indicated by Tb whereas Pb implies output 
from PSPNet.

The JSO follows the below-specified steps to achieve an excellent solution.
Step 1: Initialize a solution
A population of this approach is generally initialized randomly in –z search space and it is represented as 

follows.

Fig. 2.  Structure of PSPNet.
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	 J = {J1, J2, ..., Js, ..., Jc}� (4)

where Jc specifies total variables, sth solution is symbolized by Js and J  implies population. JSO utilizes a 
chaotic map called a logistic map that gives many diverse initial populations than random choice and it results 
in a less probability of premature convergence, which can be given by,

	 Js+1 = β Js (1 − Js) , 0 ≤ /Js ≤ 1� (5)

Here, Js+1 denotes the position of sth jellyfish, /Js implies a logistic chaotic value of sth jellyfish position and β 
signifies a parameter that is fixed to 4.

Step 2: Estimating objective function
An objective function is evaluated by computing variation amid PSPNet output and targeted output 

employing Eq. (3).
Step 3: Following of ocean currents
The ocean current comprises a larger amount of nutrients, thus jellyfish are fascinated towards it. The 

direction of the ocean current 
(−→

R
)

 is identified by taking an average of every vector from every jellyfish in the 

population to a jellyfish, which is present in a better position. It can be modeled by,

	
−→
R = J∗ − η × r (0, 1) × ℓ� (6)

Here J∗ indicates jellyfish, which is presently in the finest position in a swarm, ℓ indicates the mean position of 
every jellyfish, r signifies rand and η specifies the distribution coefficient, which corresponds to ocean current 
length. The newer position of individual jellyfish can be illustrated as,

	 Js (ℑ + 1) = Js (ℑ) + r (0, 1) × −→
R � (7)

	 Js (ℑ + 1) = Js (ℑ) + r (0, 1) × J∗ − η × r (0, 1) × ℓ� (8)

Here, Js (ℑ) signifies the present position of jellyfish whereas Js (ℑ + 1) denotes the newer position of jellyfish.
Step 4: Swarm of jellyfish
In passive-type motion, the movement of jellyfish is across their individual positions. The related update 

position of individual jellyfish can be expressed by,

	 Js (ℑ + 1) = Js (ℑ) + χ × r (0, 1) × (U − L)� (9)

Here, U  illustrates the upper bound whereas L denotes the lower bound and χ signifies the motion coefficient 
that corresponds to motion length across the individual location of jellyfish.

For simulating active type motion, the jellyfish (q) other than one among interest is chosen randomly and a 
vector from a jellyfish of the interest (s) to chosen jellyfish (q) is utilized for determining movement direction. 
The motion direction and updated jellyfish location are formulated utilizing beneath equations.

	
−→
S = r (0, 1) × −→

D � (10)

	

−→
D =

{
Jq (ℑ) − Js (ℑ) , if /F (Js) ≥ /F (Jq)
Js (ℑ) − Jq (ℑ) , if /F (Js) < /F (Jq)

� (11)

Therefore,

	 Js (ℑ + 1) = Js (ℑ) + −→
S � (12)

Here, /F  reveals the objective function of position J , S denotes step and D implies direction.
Step 5: time control mechanism
For regulating the motion of jellyfish amongst subsequent ocean currents as well as moving within jellyfish 

swarm, a time controlling mechanism contains the time-control function indicated as ξ (ℑ) as well as constant 
denoted by x0. A time-control function is a randomly chosen value, which alters from 0 to 1 over time. It can 
be evaluated by,

	
ξ (ℑ) =

∣∣∣
(

1 − ℑ
N

)
× (2 × r (0, 1) − 1)

∣∣∣� (13)

Here ℑ represents time, which is illustrated by iteration count whereas N  implies the maximal count of iterations.
Step 6: Termination
JSO is terminated by performing the above-elucidated steps until the best solution is acquired.

Image augmentation
An image augmentation technique can considerably increase the count of samples. It is very precise as it is 
formerly produced from the ground truth naturally and this technique overcomes the overfitting issue. Here, 
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data augmentation techniques like rotation, random erasing and flipping are considered. A segmented input Pb 
is taken as input to perform image augmentation.

Rotation
Rotation32 is a traditional geometric image augmentation process that is executed by rotating an image in right 
or left directions by angles among 1 and 359. The rotation process is applied to an image by a certain degree of 
angles in a further manner. The equation to compute rotation is represented as,

	
A1 =

[
cos φ − sin φ

sin φ cos φ

]
.

[
d

h

]
� (14)

where d and h symbolize a pair of the coordinates whereas φ signifies rotation angle.

Random erasing
The fundamental concept of random erasing32 is to erase a single square in the square area of an image randomly. 
A random erasing technique is proven as highly efficient and it is signified by A2.

Flipping
The flipping32 technique reflects the image across the horizontal or vertical axis or both axes. Flipping assists the 
users in maximizing the count of images in the database without requiring artificial processing.

(i) Vertical flipping
Vertical flipping refers to the rotation of an image in an upside-down manner, therefore x-axis is on the 

bottom whereas the y-axis is presented on top. A vertical flipping can be modeled by,

	
Y1 =

[
1 0
0 − 1

] [
d

h

]
� (15)

(ii) Horizontal flipping
In horizontal flipping, an image is horizontally rotated to right as well as left sides that can be given as follows.

	
Y2 =

[
−1 0

0 1

] [
d

h

]
� (16)

(iii) Horizontal and vertical flipping
This type of flipping specifies to horizontal and vertical rotation of an image, wherein both horizontal and 

vertical columns are conserved. The horizontal and vertical flipping can be represented as,

	
Y3 =

[
−1 0

0 − 1

] [
d

h

]
� (17)

The flipping technique is denoted by A3, in such a manner that,

	 A3 = {Y1, Y2, Y3}� (18)

The augmented output obtained is symbolized by Ab, such that it is expressed by,

	 Ab = {A1, A2, A3}� (19)

Feature extraction
The BC issue intends to predict the properties of newer tumor (benign or malignant). In the feature extraction 
stage, abstract benign and malignant tumor patterns are extracted separately before the actual image is trained 
in the classifier to decrease the higher dimensionality of the feature spaces. For recognizing patterns, feature 
extraction is utilized. Here, an augmented image Ab is taken to accomplish feature extraction. The features that 
are included for extraction are Gabor features, LBP, statistical features, shape features and LVP. Gabor features 
are effective for extracting texture and edge information at multiple orientations and scales, LBP captures local 
texture patterns that are useful for identifying subtle differences in tissue appearance, and shape features provide 
structural and boundary-related information critical for distinguishing tumor regions. Together, these features 
enhance the performance of the model to recognize complex patterns and contribute significantly to improving 
classification accuracy. 

Gabor features
Gabor features33,34 specified as Gabor bank, Gabor jet or a multi-resolution Gabor feature are created from the 
responses of Gabor filters by utilizing numerous filters on various frequencies as well as orientations. As a core 
of the Gabor filter enabled feature extraction is a two-dimensional Gabor filter operation, it can be modeled as,

	
T1 = –f2

πωℵe
−

(
–f2

ω2 –x′2+ –f2

ℵ2 –y′2
)

e–j2π–f–x′ � (20)
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	 –x′ = –x cos θ + –y sin θ� (21)

	 –y′ = –y sin θ + –y cos θ� (22)

where –f  indicates the central frequency of the filter, ω signifies sharpness or bandwidth along the Gaussian 
major axis, ℵ denotes sharpness or bandwidth along the Gaussian minor axis and θ specifies rotation angle.

LBP
LBP35 is primitively designed for 3 × 3 neighbors, offering 8-bit codes on the basis of neighbor pixels over the 
middle one. For a pixel at (–mO, –nO), a resulting LBP can be illustrated by,

	
T2 =

∑7

–r=0
I (–g–k − –gO) 2–r � (23)

Here, –r denotes 8 neighborhoods of middle pixel whereas –gO  and –g–k  implies gray-level values of middle and 
adjacent pixels.

LVP
On the basis of vector depiction, the LVP36 descriptor is devised for providing several two-dimensional spatial 
architectures of micro-patterns with diverse pair-wise vector directions of reference pixels and its neighbors. 
LVP is represented as,

	 T3 = {LV PΥ,X,ℏ (VE) | ℏ = 0◦, 45◦, 90◦, 135◦ }� (24)

Here, VE  symbolizes to reference pixel.
From Gabor features, LBP and LVP, the texture feature image indicated as Zb is obtained, such that,

	 Zb = {T1, T2, T3}� (25)

Then, shape features and the statistical features are applied to the texture feature image to obtain the feature 
vector.

Shape features
The shape features37 namely compactness, eccentricity, rectangularity and solidity are considered for extraction.

(i) Compactness
The compactness is a ratio of the area and perimeter of an image pixel that can be evaluated utilizing beneath 

equation.

	
H1 = Pr

Ar
� (26)

where Pr  implies perimeter and Ar  signifies area.
(ii) Eccentricity
It is signified as a ratio of the major axis length to the minor axis length. It can be computed by the fundamental 

axis method or minimum bounding method. Eccentricity is formulated as shown below.

	
H2 = M

O
� (27)

Here M symbolizes the major axis length and O represents the minor axis length.
(iii) Rectangularity
Rectangularity indicates a ratio amongst the area and the eccentricity values. It can be calculated as mentioned 

below.

	
H3 = Ar

H2
� (28)

where H2 reveals eccentricity.
(iv) Solidity
Solidity refers to a degree of shape whether it is concave or convex and it is estimated utilizing the below 

equation.

	
H4 = Ar

Ch
� (29)

Here Ch denotes the region of the convex hull for an area in pixels.
The shape features are symbolized as Hb, such that it is illustrated by,

	 Hb = {H1, H2, H3, H4}� (30)
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Statistical features
Standard deviation (SD), mean, kurtosis, variance and skewness are the statistical features38 concerned for 
extraction.

(i) Mean
Mean implies to arithmetical average of the group of values and mean can be mathematically formulated as,

	
Y1 =

E−1∑
ϑ=0

ϑ ∗ A (ϑ)� (31)

where A (ϑ) signifies the probability of ϑ occurrence, ϑ illustrates individual grey levels whereas E mentions the 
overall count of grey levels.

(ii) Variance
Variance indicates a deviation value of an image’s grey-level corresponding to the mean grey-level. It can be 

calculated by,

	
Y2 =

E−1∑
ϑ=0

(ϑ − Y1)2 ∗ A (ϑ)� (32)

Here Y1 signifies mean.
(iii) SD
SD reveals data dispersion across a mean. The lower SD specifies that values are much closer to the mean 

whereas the higher SD shows a wider dispersion of values against the mean. The SD can be formulated by,

	

Y3 =

√√√√
E−1∑
ϑ=0

(ϑ − Y1)2 ∗ A (ϑ)� (33)

(iv) Skewness
Skewness is defined as a degree of asymmetry of the distribution of certain features across a mean. It may be 

negative or else positive values and SD is calculated as follows.

	
Y4 = (Y1)−3

[
E−1∑
ϑ=0

(ϑ − Y1)3 ∗ A (ϑ)

]
� (34)

(v) Kurtosis
Kurtosis calibrates a leveling of the distribution with respect to an actual distribution that is modeled by,

	
Y5 = (Y1)−4

[
E−1∑
ϑ=0

(ϑ − Y1)4 ∗ A (ϑ)

]
� (35)

The statistical features are mentioned as Yb, in such a manner that,

	 Yb = {Y1, Y2, Y3, Y4, Y5}� (36)

From a feature extraction stage, the feature vector Tb is acquired, in such a way that,

	 Tb = {Hb, Yb}� (37)

BCD utilizing BCDCNN based on adaptive error similarity
BC is most common among females across the globe. It is considered as the most regularly diagnosed non-
skin cancer and the primary cause of death due to cancer among women. BC is the second most unsafe cancer 
after lung cancer. Earlier detection can save the lives of people as it is easy to treat and prevent tumor from 
expansion. Here, BCD is carried out by BCDCNN on the basis of adaptive error similarity, wherein the extracted 
image Tb is passed as the input to execute BCD. DCNN39,40 is considered one of the most expansively utilized 
ML approaches, particularly in vision-associated applications. The DCNN is capable to learn depictions from 
grid-based data and currently, it has been revealed considerable performance enhancement in several ML uses. 
The general CNN structure normally consists of alternative layers of convolutional (conv), pooling and one or 
multiple fully connected (FC) layers. In a few conditions, the FC layer is substituted by means of global average 
pooling layers. The BC-detected output from DCNN is revealed by Bb .

BCDCNN based on adaptive error similarity
The loss function is newly designed based on adaptive error similarity41. In classification problems, let M  
indicate sample space and limited group of labels is represented as /L, wherein /L = {–l1, –l2, ..., –lϖ}, ϖ > 2. Thus, 
the mapping association of the sample z ∈ M–N  for labeling set /L is several to one. The multi-class classification 
chore is to forecast sample classes from multi-classes.
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(i) Gradient descent
The common neural network (NN) on the basis of softmax activation function comprises three layers namely 

input, output and hidden layers. A softmax function transforms numerical outcomes of NN to probability 
output. Furthermore, the predicted class is determined by maximal probability in output. Thereafter, cross-
entropy (CE) is utilized for measuring the variation amongst true labels and predicted classes at individual 
training iteration. Afterwards, an error or variation is propagated back to a hidden layer for adjusting weights. 
Consider gu,v  implies the association weight of uth neuron to vth neuron. Additionally, G represents the weight 
matrix that is comprised of gu,v  and gu reveals uth row vector of the matrix G. Hence, the output can be 
given by a = G z. However, output a is not normalized. To resolve this issue, the softmax operation has gained 
considerable attention in a multi-class classification that is utilized be an output layer. An output layer of NN 
comprises ϖ cells and individual cells correspond to the label. Furthermore, tu indicates uth coordinate value 
of vector t whereas t̃u symbolizes uth coordinate value of a vector t̃. A softmax maps the output outcomes to 
intervals 0 and 1, wherein the sum of every output is 1. Hence, it converts classification trouble into probability 
form that gives intuitive options for the last decision. A softmax can be illustrated by,

	
tu = exp (au)∑ϖ

v=1 exp (av) � (38)

Here, u ∈ {1, 2, ..., ϖ} and neural output is given by au =
∑

v
guvzuv . Thus, it can be attained by,

	

ϖ∑
u=1

tu = 1� (39)

The major purpose of NN is tuning the weight matrix G. The weight values are adjusted by back-propagation of 
individual iteration errors. Furthermore, errors are produced by a loss function or else a cost function. Assume 
f i (G) represents loss function at the iteration i. Therefore, the optimization problem can be modeled by,

	
min

I∑
i=1

f i (G)� (40)

Here I  signifies the overall count of training iterations. To obtain an optimum solution, the optimization 
approaches search through the direction of gradients. In addition, the gradient of loss function at ith iteration 
while concerning uth output cell is mathematically expressed by,

	
∇f i (gu) = ∂f i (gu)

∂gu

� (41)

Hence, an update model of a weight vector gu in the gradient descent-enabled approaches is formulated as 
shown beneath,

	 gi
u = gi−1

u − µ ∇f i
(
gi−1

u

)
� (42)

where µ indicates learning rate.
(ii) CE
CE loss function generated from the information theory that calibrates a loss amongst predicted and true 

distributions of existing techniques. In the following phase, the CE loss function as well as its gradient while 
utilizing a multi-classifier is formulated by,

	
f i (G) = −

ϖ∑
u=1

t̃u log (soft max (guz))� (43)

	
f i (G) = −

ϖ∑
u=1

t̃u log (tu)� (44)

Here, ϖ reveals the overall count of classes, tu implies uth prediction class and t̃u signifies uth true class of the 
training samples. From Eq. (41) and Eq. (44) and based on the chain rule,

	
∇f i (gu) = −∂f i (gu)

∂tv

∂tv

∂au

∂au

∂gu

� (45)

Here,

	
∂f i (gu)

∂tv
=

∑p

v=1

∂
(
−t̃v log tv

)
∂tv

� (46)
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∂f i (gu)

∂tv
= −

∑p

v=1
t̃v

1
tv

� (47)

Also, z ∈ M–N  is normalized prior to the training procedure, thus it can be given by,

	

∂au

∂gu
=

p∑
v=1

zuv = 1� (48)

Here, p implies the overall count of association units of the cell u. Consider two conditions of association units 
such as u = v and u ̸= v. If u = v, then,

	
∂tu

∂au
=

∂

(
exp (au)∑ϖ

p=1
exp (ap)

)

∂au

� (49)

	
∂tu

∂au
= tu (1 − tu)� (50)

Moreover, if u ̸= v, then,

	
∂tu

∂au
=

∂

(
exp (auv)∑ϖ

α=1
exp (auα)

)

∂au

� (51)

	
∂tu

∂au
= −tutv � (52)

Applying Eq. (45) to Eq. (52), the obtained equation can be modeled by,

	
∇f i (gu) = −

(
p∑

v=1

t̃v
1
tv

)
∂tv

∂au
� (53)

	
∇f i (gu) = tu

∑
v

t̃v − tu� (54)

Also, in accordance to Eq. (39) and Eq. (54), the equation can be represented by,

	 ∇f i (gu) = tu − t̃u� (55)

(iii) Conditional autoregressive value-at-risk (CAViaR) and CE-based stochastic gradient
Let tmax specifies maximal in {t1, t2, ..., tϖ}, wherein ϖ indicates the count of classes and ε th class implies 

actual class. Furthermore, ε th coordinate of t̃ is 1. Consider t′ := (tmax − tε) t̃ having t̃ that signifies vector of 
actual classes. Owing to the values of the unreal classes are 0, the equation can be given by,

	

ϖ∑
u=1

(tmax − tu) t̃u = tmax − tε� (56)

Thus, the maximized CE loss function can be illustrated by,

	
f ′ (G) = −

ϖ∑
u=1

tu′ log (tu)� (57)

	
f ′ (G) = −

ϖ∑
u=1

(tmax − tε) t̃u log (tu)� (58)

Here, tu′ implies uth coordinate value of the vector t′. In accordance to Eq. (41) and Eq. (58), the equation can 
be expressed by,

	
∂f i (gu)

∂tv
=

∂
(
−

∑
v

(tmax − tv) t̃u log tv

)
∂tv

� (59)

	

∂f i (gu)
∂tv

= −
∑

v

(tmax − tv) t̃u

tv
� (60)
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From Eq. (45), Eq. (52), Eq. (54), Eq. (56) and Eq. (60), the equation attained is represented as,

	
∇f ′ (gu) =

(
−

∑
v

(tmax − tv) t̃u

tv

)
∂tv

∂au
� (61)

	 ∇f ′ (
gi−1

u

)
= tu (tmax − tε) − (tmax − tu) t̃u� (62)

Substitute Eq. (62) in Eq. (42),

	 gi
u = gi−1

u − µ
(
tu (tmax − tε) − (tmax − tu) t̃u

)
� (63)

Let us consider,

	 tu = ti−1
u � (64)

Substitute the above consideration in Eq. (63), then the equation becomes,

	 gi
u = gi−1

u − µ
(
ti−1
u (tmax − tε) −

(
tmax − ti−1

u

)
t̃u

)
� (65)

	 gi−1
u = gi

u + µ
(
ti−1
u (tmax − tε) −

(
tmax − ti−1

u

)
t̃u

)
� (66)

The standard equation from CAViaR42 is formulated by,

	
gi

u = ϕ0 +
j∑

l=1

ϕl ∗ gi−ϖ
u +

γ∑
m=1

ϕm F
(
gi−m

u

)
� (67)

Consider, j = γ = 2, then the above equation becomes,

	 gi
u = ϕ0 + ϕ1 gi−1

u + ϕ2 gi−2
u + ϕ1 F

(
gi−1

u

)
+ ϕ2 F

(
gi−2

u

)
� (68)

Substitute Eq. (68) in Eq. (66),

	 gi−1
u = ϕ0 + ϕ1 gi−1

u + ϕ2 gi−2
u + ϕ1 F

(
gi−1

u

)
+ ϕ2 F

(
gi−2

u

)
+ µ

(
ti−1
u (tmax − tε) −

(
tmax − ti−1

u

)
t̃u

)
� (69)

where

	
ϕ1 = ei

ei−1
� (70)

	
ϕ2 = ei

ei−2
� (71)

Here, ϕ0 represents a constant and e indicates an error.

Results and discussion
BCDCNN for BCD achieved excellent outcomes for the assessments performed and thus acquired outcomes are 
elucidated in beneath segment.

Experimentation setup
To perform BCD, BCDCNN designed in this research is experimentally performed in PYTHON tool.

Description of dataset
The datasets utilized to accomplish BCD are Breast Cancer Patients MRI’s and Dynamic contrast-enhanced 
magnetic resonance images of breast cancer patients with tumor locations (Duke-Breast-Cancer-MRI).

Breast cancer patients MRI’s
In the Breast Cancer Patients MRI’s dataset26, the images are classified into two categorizations such as sick or 
malignant and healthy or benign. For training purposes, both classifications comprise 700 MRI images of sick 
and healthier patients. For the purpose of validation, both categorizations comprise 40 MRI images of sick and 
healthier patients.

Duke-breast-cancer-MRI
Duke-Breast-Cancer-MRI dataset27 is a single-organized, retrospective accumulation of about 922 biopsy 
affirmed invasive BC patients for a decade. It comprises 922 participants, 922 studies, 5161 series and 773,888 
images of about 368.4 GB.

Scientific Reports |        (2025) 15:29014 12| https://doi.org/10.1038/s41598-025-09974-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


CBIS-DDSM: breast cancer image dataset
The CBIS-DDSM dataset43 comprises 10.2 k JPG images and 6 CSV files, totaling 6.3 GB. It contains 103 columns, 
among them 65 string type, 29 integer-type, 4 ID fields, and 5 of other types. This dataset supports research in 
breast cancer detection and classification using mammography images.

Experimentation outcomes
Figure 3 displays the experimentation outcomes of BCDCNN for two datasets. Figure 3a–h shows input image-1, 
filtered image-1, segmented image-1, rotated image-1, random erased image-1, flipped image-1, LBP image-1 
and LVP image-1 for Breast Cancer Patients MRI’s dataset whereas input image-2, filtered image-2, segmented 
image-2, rotated image-2,—random erased image 2, flipped image-2, LBP image-1 and LVP image-2 for Duke-
Breast-Cancer-MRI dataset is demonstrated in Fig. 3i–p.

Performance measures
Sensitivity, specificity and accuracy are performance measures considered for the estimation of BCDCNN for 
BCD.

Accuracy
Accuracy specifies a ratio of precisely classified samples to overall samples that are calculated as follows,

	
ℜ1 = T rpt + T rnt

T rpt + T rnt + F apt + F ant
� (72)

where T rpt and T rnt indicates true positive as well as true negative whereas F apt and F ant mentions false 
positive and false negative.

Sensitivity
Sensitivity refers to a rate of perceived positive cases with overall positive cases, which is given by,

	
ℜ2 = T rpt

T rpt + F ant
� (73)

Specificity
Specificity is referred as an association of viewed negative instances with every negative instance. Also, it is the 
rate of detected occurrence including complete instances by an occurrence of BC. Sensitivity can be formulated 
by,

	
ℜ3 = T rnt

T rnt + F apt
� (74)

Comparative techniques
AlexNet15, CNN6, DL11, Gaussian SVM22, DLA-EABA4, and Ultrafast DCE-MRI23 are the conventional 
approaches concerned to assess with BCDCNN to show its effectiveness.

Comparative evaluation
A comparative evaluation of BCDCNN is accomplished regarding Breast Cancer Patients MRI’s and Duke-
Breast-Cancer-MR datasets with concern to evaluation metrics.

Assessment based on breast cancer patients MRI’s DATASET
BCDCNN is evaluated by changing training data and K value with regard to three performance metrics.

(i) Evaluation based on data
Figure  4 elucidates the evaluation of BCDCNN concerning three metrics by changing training data. For 

training, data = 90%, the accuracy, sensitivity and specificity values obtained by BCDCNN and traditional 
techniques are interpreted. Analysis of BCDCNN relating to accuracy is revealed in Fig. 4a. Accuracy acquired 
by BCDCNN is 0.902 whereas DLA-EABA, Ultrafast DCE-MRI, AlexNet, CNN, DL and Gaussian SVM obtained 
0.777, 0.785, 0.809, 0.843, 0.854 and 0.871 that shows performance enhancement about 13.858%, 12.971%, 
10.320%, 6.583%, 5.354% and 3.434%. Figure 4b mentions the evaluation of BCDCNN regarding sensitivity. 
BCDCNN attained a sensitivity value of 0.906 while the sensitivity obtained by DLA-EABA is 0.778, Ultrafast 
DCE-MRI is 0.786, AlexNet is 0.810, CNN is 0.840, DL is 0.860 and Gaussian SVM is 0.881. This explains 
the improvement of performance about 14.128%, 13.245%, 10.606%, 7.329%, 5.145% and 2.803%. Estimation 
of BCDCNN considering specificity is described in Fig. 4c. DLA-EABA, Ultrafast DCE-MRI, AlexNet, CNN, 
DL and Gaussian SVM achieved a specificity of 0.780, 0.788, 0.812, 0.841, 0.869 and 0.881 whereas BCDCNN 
obtained 0.909. The enhancement of performance by BCDCNN is 14.191%, 13.311%, 10.755%, 7.533%, 4.463% 
and 3.131%.

(ii) Evaluation based on K value
Analysis of BCDCNN with regard to measures by changing K values is delineated in Fig. 5. When the K 

value is 9, the values acquired by BCDCNN and traditional approaches are explicated. Figure 5a indicates the 
estimation of BCDCNN with respective to accuracy. The value of accuracy acquired by BCDCNN is 0.892 while 
accuracy attained by DLA-EABA is 0.793, Ultrafast DCE-MRI is 0.801, AlexNet is 0.826, CNN is 0.856, DL is 
0.846 and Gaussian SVM is 0.867. Assessment of BCDCNN in respect to sensitivity is illustrated in Fig. 5b. 
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Fig. 3.  Experimentation outcomes, (a) Input image-1, (b) Filtered image-1, (c) Segmented image-1, (d) 
Rotated image-1, (e) Random erased image-1, (f) Flipped image-1, (g) LBP image-1, (h) LVP image-1, (i) input 
image-2, (j) filtered image-2, (k) segmented image-2, (l) rotated image-2, (m) random erased image-2, (n) 
flipped image-2, (o) LBP image-1, (p) LVP image-2.
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Sensitivity acquired by BCDCNN is 0.922 whereas DLA-EABA, Ultrafast DCE-MRI, AlexNet, CNN, DL and 
Gaussian SVM obtained 0.778, 0.786, 0.810, 0.840, 0.860, 0.881, and 0.906. Figure 5c specifies the evaluation of 
BCDCNN concerning specificity. The specificity values obtained by DLA-EABA, Ultrafast DCE-MRI, AlexNet, 
CNN, DL and Gaussian SVM are 0.811, 0.820, 0.845, 0.855, 0.866, and 0.879 while BCDCNN achieved 0.909 that 
describes 10.781%, 9.791%, 7.041%, 5.941%, 4.730%, and 3.300% of performance improvement by BCDCNN.

Assessment based on duke-breast-cancer-MR dataset
The analysis of BCDCNN is done in relation to considered evaluation metrics by altering training data and K 
value.

(i) Evaluation based upon training data
Figure 6 interprets the estimation of BCDCNN regarding metrics by altering training data. When considered 

training data is 90%, the values of evaluation metrics achieved by BCDCNN and conventional methods are 
expounded. Evaluation of BCDCNN in respect to accuracy is shown in Fig. 6a. DLA-EABA, Ultrafast DCE-
MRI, AlexNet, CNN, DL and Gaussian SVM obtained values of accuracy about 0.825, 0.833, 0.859, 0.862, 0.871, 
and 0.876 while BCDCNN acquired 0.894. Assessment of BCDCNN in regard to sensitivity is explicated in 
Fig. 6b. The sensitivity value attained by BCDCNN is 0.922 whereas DLA-EABA, Ultrafast DCE-MRI, AlexNet, 
CNN, DL and Gaussian SVM acquired 0.842, 0.851, 0.877, 0.890, 0.902, and 0.898. Figure 6c displays an analysis 
of BCDCNN with concerning specificity. BCDCNN obtained a specificity of 0.920 while values acquired by 
DLA-EABA is 0.774, Ultrafast DCE-MRI is 0.782, AlexNet is 0.806, CNN is 0.839, DL is 0.850 and Gaussian 
SVM is 0.864.

(ii) Evaluation in terms of K value
Estimation of BCDCNN concerning measures by changing K values is illustrated in Fig.  7. The values 

attained by BCDCNN and conventional techniques for K value = 9 are described. Analysis of BCDCNN in terms 
of accuracy is displayed in Fig. 7a. BCDCNN achieved an accuracy of 0.888 while DLA-EABA, Ultrafast DCE-

Fig. 3.  (continued)
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MRI, AlexNet, CNN, DL and Gaussian SVM achieved 0.790, 0.798, 0.823, 0.857, 0.865, and 0.868. Figure 7b 
reveals an assessment of BCDCNN based upon sensitivity. The sensitivity values acquired by DLA-EABA, 
Ultrafast DCE-MRI, AlexNet, CNN, DL and Gaussian SVM are 0.795, 0.804, 0.829, 0.863, 0.871, and 0.874 
whereas BCDCNN obtained 0.893. Figure 7c delineates the estimation of BCDCNN by means of specificity. The 
value of specificity attained by BCDCNN is 0.901 while specificity achieved by DLA-EABA is 0.828, Ultrafast 
DCE-MRI is 0.836, AlexNet is 0.862, CNN is 0.865, DL is 0.874 and Gaussian SVM is 0.873.

Assessment based on CBIS-DDSM: breast cancer image dataset
The analysis of BCDCNN is done in relation to considered evaluation metrics by altering training data using 
CBIS-DDSM: Breast Cancer Image Dataset.

(i) Evaluation based upon training data
The estimation of BCDCNN regarding metrics by altering training data is provided in Fig. 8. When considered 

training data is 90%, the values of evaluation metrics are expounded. Evaluation of accuracy is shown in Fig. 8a. 
DLA-EABA, Ultrafast DCE-MRI, AlexNet, CNN, DL and Gaussian SVM obtained values of accuracy about 
0.769, 0.777, 0.801, 0.835, 0.845, and 0.862 while BCDCNN acquired 0.893. Assessment of BCDCNN in regard 
to sensitivity is explicated in Fig. 8b. The sensitivity value attained by BCDCNN is 0.897 whereas DLA-EABA, 
Ultrafast DCE-MRI, AlexNet, CNN, DL and Gaussian SVM acquired 0.770, 0.778, 0.802, 0.832, 0.851, and 0.872. 
Figure 8c displays an analysis of BCDCNN with concerning specificity. BCDCNN obtained a specificity of 0.900 
while values acquired by DLA-EABA is 0.772, Ultrafast DCE-MRI is 0.780, AlexNet is 0.804, CNN is 0.833, DL 
is 0.860 and Gaussian SVM is 0.872.

Scalability analysis
The estimation of BCDCNN regarding metrics by altering training data is provided in Fig. 9. The scalability 
analysis using Breast Cancer Patients MRI’s dataset is shown in Fig.  9a. DLA-EABA, Ultrafast DCE-MRI, 
AlexNet, CNN, DL and Gaussian SVM required runtime of 0.809 s, 0.818 s, 0.843 s, 0.748 s, 0.662 s, and 0.627 s 
while BCDCNN required minimum runtime of 0.491 s, for datasize 100. The scalability assessment of BCDCNN 
using the Duke-Breast-Cancer-MR dataset is explicated in Fig. 9b. Runtime required by BCDCNN is 0.485 s 
whereas DLA-EABA, Ultrafast DCE-MRI, AlexNet, CNN, DL and Gaussian SVM required runtime of 0.664 s, 
0.671 s, 0.692 s, 0.662 s, 0.630 s, and 0.538 s, for datasize = 80. Figure 9c displays analysis of BCDCNN using 
CBIS-DDSM: Breast Cancer Image Dataset. BCDCNN needed the runtime of 0.544  s, while runtime values 

Fig. 4.  Comparative estimation regarding training data for Breast Cancer Patients MRI’s dataset, (a) Accuracy, 
(b) Sensitivity, (c) Specificity.
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acquired by DLA-EABA is 0.835 s, Ultrafast DCE-MRI is 0.843 s, AlexNet is 0.870 s, CNN is 0.772 s, DL is 
0.698 s and Gaussian SVM is 0.668 s, for datasize = 100.

Computational time analysis
The computational time analysis for three datasets is depicted in Fig.  10. When considered training data is 
90%, the computational time required for the models is discussed in this section. The computational time 
evaluation using the Breast Cancer Patients MRI’s dataset is discussed in Fig. 10a. DLA-EABA, Ultrafast DCE-
MRI, AlexNet, CNN, DL and Gaussian SVM required the values of computational time of 0.193  s, 0.195  s, 
0.201  s, 0.165  s, 0.153  s, and 0.135  s, while BCDCNN required 0.103  s. Assessment of computational time 
using the Duke-Breast-Cancer-MR dataset is explicated in Fig. 10b. The computational time value required by 
BCDCNN is 0.111 s whereas DLA-EABA, Ultrafast DCE-MRI, AlexNet, CNN, DL and Gaussian SVM required 
0.142 s, 0.144 s, 0.148 s, 0.145 s, 0.135 s, and 0.130 s. Figure 10c displays an analysis of computational time 
using CBIS-DDSM: Breast Cancer Image Dataset. BCDCNN obtained a computational time of 0.113 s while the 
computational time needed by DLA-EABA is 0.175 s, Ultrafast DCE-MRI is 0.177 s, AlexNet is 0.183 s, CNN is 
0.151 s, DL is 0.162 s and Gaussian SVM is 0.140 s.

Analysis based on memory
The analysis based on memory for three datasets is discussed in Fig.  11. When considered training data is 
90%, the memory required for the models is discussed in this section. The memory evaluation using the Breast 
Cancer Patients MRI’s dataset is discussed in Fig. 11a. DLA-EABA, Ultrafast DCE-MRI, AlexNet, CNN, DL 
and Gaussian SVM required the values of memory of 1.008 MB, 1.019 MB, 1.051 MB, 0.864 MB, 0.803 MB, 
and 0.710  MB, while BCDCNN required 0.539  MB. Assessment of memory using the Duke-Breast-Cancer-
MR dataset is explicated in Fig. 11b. Memory value required by BCDCNN is 0.583 MB whereas DLA-EABA, 
Ultrafast DCE-MRI, AlexNet, CNN, DL and Gaussian SVM required 0.744 MB, 0.752 MB, 0.776 MB, 0.759 MB, 
0.710 MB, and 0.682 MB. Figure 11c displays an analysis of memory using CBIS-DDSM: Breast Cancer Image 
Dataset. BCDCNN obtained memory of 0.594 MB while memory needed by DLA-EABA is 0.919 MB, Ultrafast 
DCE-MRI is 0.928 MB, AlexNet is 0.957 MB, CNN is 0.792 MB, DL is 0.847 MB and Gaussian SVM is 0.732 MB.

Fig. 5.  Comparative assessment regarding K-value for Breast Cancer Patients MRI’s dataset, (a) Accuracy, (b) 
Sensitivity, (c) Specificity.
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Training and validation curve
Figure 12 shows the training and validation accuracy and loss of the model over 100 epochs. The blue lines 
represent accuracy, while the red lines represent loss. From the graph, the training accuracy quickly reaches 
nearly 100% and stays constant, which means the model is learning the training data very well. Similarly, the 
training loss drops close to zero, confirming that the model is performing perfectly on the training set. The 
validation curve is shown in red dashed line. It decreases in the beginning, and it starts to increase slightly 
and shows fluctuations after a certain point. The validation accuracy is shown in the blue dashed line, which is 
slightly lower than the training accuracy.

Comparative discussion
BCDCNN designed for BCD obtained the best outcomes while comparing with AlexNet, CNN, DL and Gaussian 
SVM. Table 2 specifies the discussion table with values obtained for assessments by BCDCNN and traditional 
approaches. It is recognized that BCDCNN acquired maximum values of accuracy, sensitivity and specificity 
about 90.2%, 90.6% and 90.9% when training data = 90% for Breast Cancer Patients MRI’s dataset. Thus, the 
results clearly reveal that BCDCNN is an excellent approach to performing BCD to decrease the mortality rate 
and increase the patient’s survival rate.

Statistical analysis
To evaluate the statistical significance of the performance differences among the compared methods, an Analysis 
of Variance (ANOVA) test is conducted, as presented in Table 3. The ANOVA results show that the sum of squares 
for the treatments is 0.04213 with 3 degrees of freedom, while the residual sum of squares is 0.032548 with 120 
degrees of freedom. The F-statistic value is calculated as 20.025418, and the associated p-value is 2.335E-11, which 
is significantly lower than the standard threshold of 0.05. This indicates that there is a statistically significant 
difference between at least one pair of the compared methods, confirming that the performance improvements 
achieved by the proposed BCDCNN model are statistically meaningful.

Conclusion
A second kind of cancer by which many women die throughout the world is referred to as BC. If prediction is 
carried out in the starting stage of cancer, women have a better possibility of heal. Accurate detection of BC is 

Fig. 6.  Comparative assessment regarding training data for Duke-Breast-Cancer-MR dataset, (a) Accuracy, (b) 
Sensitivity, (c) Specificity.
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an important and deadly issue in clinical society. In past decades, many researchers are attracted towards BC 
detection problems. In this research, a new approach termed BCDCNN is designed for BCD. The MRI image 
taken as input from the database is initially fed to perform pre-processing. AKF is utilized to filter an input 
image, which is then subjected to cancer area segmentation. PSPNet is employed to segment cancer areas in 
filtered images and PSPNet is tuned using JSO. Then, the image is augmented by considering augmentation 
techniques like flipping, random erasing and rotation. Afterwards, features namely LBP, statistical features, Gabor 
features, LVP and shape features are extracted. Finally, BCD is executed by BCDCNN in which the loss function 
is devised on the basis of adaptive error similarity. Furthermore, designed BCDCNN attained high accuracy, 
sensitivity and specificity values of about 90.2%, 90.6% and 90.9% for considered training data = 90% for Breast 
Cancer Patients MRI’s dataset. However, the proposed model tends to overfit when trained on small datasets 
and may show reduced performance on data from different sources. In addition, it requires high computational 
power, which limits its use on low-resource devices. Future improvements will focus on enhancing the model’s 
ability to handle larger and more diverse datasets. Integration of clinical information with image data is also 
planned to improve overall diagnostic accuracy.

Fig. 7.  Comparative estimation regarding K value for Duke-Breast-Cancer-MR dataset, (a) Accuracy, (b) 
Sensitivity, (c) Specificity.
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Fig. 8.  Comparative assessment regarding training data for CBIS-DDSM: Breast Cancer Image Dataset, (a) 
Accuracy, (b) Sensitivity, (c) Specificity.
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Fig. 9.  Scalability analysis using, (a) Breast Cancer Patients MRI’s dataset, (b) Duke-Breast-Cancer-MR 
dataset, (c) CBIS-DDSM: Breast Cancer Image Dataset.
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Fig. 10.  Computational time analysis using, (a) Breast Cancer Patients MRI’s dataset, (b) Duke-Breast-Cancer-
MR dataset, (c) CBIS-DDSM: Breast Cancer Image Dataset.
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Fig. 12.  Training and validation curve.

 

Fig. 11.  Analysis based on memory using, (a) Breast Cancer Patients MRI’s dataset, (b) Duke-Breast-Cancer-
MR dataset, (c) CBIS-DDSM: Breast Cancer Image Dataset.
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Data availability
The datasets generated during and/or analysed during the current study are available in the Breast Cancer Pa-
tients MRI’s at ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​d​​a​t​a​s​e​​t​s​/​u​z​a​​i​r​k​h​a​n​​4​5​/​b​r​e​​a​s​t​-​c​a​n​c​e​r​-​p​a​t​i​e​n​t​s​-​m​r​i​s, ​D​u​k​e​-​B​r​e​a​s​t​-​C​a​n​c​
e​r​-​M​R​I at ​h​t​t​p​s​:​​/​/​w​i​k​i​​.​c​a​n​c​e​​r​i​m​a​g​i​​n​g​a​r​c​​h​i​v​e​.​n​​e​t​/​p​a​g​​e​s​/​v​i​e​​w​p​a​g​e​.​a​c​t​i​o​n​?​p​a​g​e​I​d​=​7​0​2​2​6​9​0​3, and CBIS-DDSM: 
Breast Cancer Image Dataset at ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​d​​a​t​a​s​e​​t​s​/​a​w​s​​a​f​4​9​/​c​​b​i​s​-​d​d​​s​m​-​b​r​​e​a​s​t​-​c​​a​n​c​e​r​-​​i​m​a​g​e​-​​d​a​t​
a​s​e​t.

Code availability
The source code of this research is available at https://github.com/MartinaaJ/BCDCNN.git.
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