Table 2 Comparative discussion of BCDCNN.

From: BCDCNN: breast cancer deep convolutional neural network for breast cancer detection using MRI images

Analysis based upon

Metrics/Methods

DLA-EABA

Ultrafast DCE-MRI

AlexNet

CNN

DL

Gaussian SVM

Proposed BCDCNN

Breast Cancer Patients MRI’s dataset

  

Training data = 90%

Accuracy (%)

77.7

78.5

80.9

84.3

85.4

87.1

90.2

Sensitivity (%)

77.8

78.6

81.0

84.0

86.0

88.1

90.6

Specificity (%)

78.0

78.8

81.2

84.1

86.9

88.1

90.9

K value = 9

Accuracy (%)

79.3

80.1

82.6

85.6

84.6

86.7

89.2

Sensitivity (%)

77.0

77.8

80.2

83.5

84.9

86.8

89.4

Specificity (%)

81.1

82.0

84.5

85.5

86.6

87.9

90.9

Duke-Breast-Cancer-MR dataset

  

Training data = 90%

Accuracy (%)

82.5

83.3

85.9

86.2

87.1

87.6

89.4

Sensitivity (%)

84.2

85.1

87.7

89.0

90.2

89.8

92.2

Specificity (%)

77.4

78.2

80.6

83.9

85.0

86.4

92.0

K value = 9

Accuracy (%)

79.0

79.8

82.3

85.7

86.5

86.8

88.8

Sensitivity (%)

79.5

80.4

82.9

86.3

87.1

87.4

89.3

Specificity (%)

82.8

83.6

86.2

86.5

87.4

87.3

90.1

CBIS-DDSM: Breast Cancer Image Dataset

 

Training data = 90%

Accuracy (%)

76.9

77.7

80.1

83.5

84.5

86.2

89.3

Sensitivity (%)

77.0

77.8

80.2

83.2

85.1

87.2

89.7

Specificity (%)

77.2

78.0

80.4

83.3

86.0

87.2

90.0