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A robotic exoskeleton enables individuals with limited or no mobility to engage in moderate exercises, 
thereby promoting physical fitness and overall well-being. However, exoskeletons alone do not provide 
comprehensive insights into gait pattern monitoring and analysis over time. This study proposes 
the integration of smart insoles as a cost-effective and non-invasive tool for gait assessment in 
exoskeleton-assisted rehabilitation. Ten participants, including three unimpaired subjects used only as 
a reference, one stroke, one spinal cord injury, one traumatic brain injury, and four multiple sclerosis 
subjects were involved in a 12-week program where weekly rehabilitation exercises were conducted 
and gait patterns were monitored in three assessment sessions. Gait phases were identified using a 
Finite State Machine, with transitions guided by predictions from a fuzzy c-means clustering algorithm. 
Kinematic and kinetic analyses revealed significant disparities in stride time, stance time, and the 
trajectories of the centre of pressure. The findings demonstrated that while the exoskeleton enabled 
participants with limited or no mobility to walk similarly to unimpaired individuals, the use of smart 
insoles identified notable differences in their gait patterns. These differences could be traced back 
to choices in the rehabilitation plan, underscoring the importance of such devices for understanding 
rehabilitation progress. An acceptability analysis showed that participants found the smart insoles 
comfortable and expressed a willingness to use them for future rehabilitation. In conclusion, this 
study demonstrates the potential of smart insoles for the assessment of individuals’ rehabilitation 
progress while using an exoskeleton, laying the groundwork for a system that can support clinicians in 
developing tailored rehabilitation plans.
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Gait is an important aspect of human life. An individual’s gait involves the actuation of several lower-limb muscles, 
which are coordinated by the brain and neurons that allow the individual to maintain their balance and displace 
in the space1. Over time, an individual’s ability to walk may face a gradual decline, which can be attributed to 
various factors such as ageing, weight gain, or the loss of muscle mass. Furthermore, other unexpected factors 
can affect an individual’s gait, including but not limited to neurological diseases, musculoskeletal disorders, 
traumatic injuries, chronic pain, or the use of specific medications2. Multiple Sclerosis (MS), Parkinson’s 
Disease (PD), Spinal Cord Injury (SCI), Stroke (ST), and Traumatic Brain Injury (TBI) stand as exemplars of 
neurological and musculoskeletal conditions capable of exerting a profound impact on an individual’s gait. These 
conditions often develop into muscle weakness, coordination deficits, and balance disorders, forcing individuals 
to have a more sedentary lifestyle3, leading to the emergence of secondary health problems such as diabetes, 
obesity, and a marked decline in cardiorespiratory capacity4. In light of the far-reaching consequences of gait 
impairment on an individual’s health and well-being, it becomes imperative to address these issues as soon as 
they are identified. Rehabilitation and therapy, among other interventions, play a pivotal role in the management 
of gait disorders. However, in recent years, a promising technological advancement has emerged to offer new 
hope and possibilities to those grappling with gait limitations: the robotic exoskeleton.

A robotic exoskeleton is a wearable device meticulously designed to augment and enhance an individual’s 
physical capabilities5. Typically, it includes a durable frame equipped with motors or other types of actuators, 
which generate the necessary force to facilitate coordinated and controlled movements. Robotic exoskeletons 
can be divided into three main categories6: human performance augmentation exoskeletons7, which focus on 
enhancing an able-bodied person’s strength, endurance, and other physical capacities to accomplish tasks like 
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lifting, carrying, or working with heavy loads; assistive robotic exoskeletons8, which are adopted by individuals 
with limited movement capabilities, such as individuals with musculoskeletal or neurological diseases, to allow 
them to complete movements that they could not complete on their own; and therapeutic exoskeletons for 
rehabilitation9, which are used to train and stimulate an individual’s muscles when he/she has completely or 
partially lost the ability to move. In subjects with limited or no mobility, prolonged use of a robotic exoskeleton 
carries the potential to improve the individual’s quality of life10, by enabling them to engage in a moderate 
level of exercise, fostering physical fitness and overall well-being11, while reducing the impact of prolonged 
immobilisation and physical pain. Such benefits have been demonstrated for SCI patients, where reduced 
physical pain was identified12, and in MS patients, where an improved gait speed and metabolic expenditure 
were observed13.

When employing an exoskeleton for rehabilitation, it becomes imperative to implement an assessment system 
to analyse changes in an individual’s gait over time, facilitating a comprehensive understanding of rehabilitation 
progress, particularly in discerning any developments in a disease. While the joint angles of the exoskeleton can 
be used to construct an inverse pendulum for acquiring gait parameters and evaluation14, this approach has 
limitations in extracting information, rendering the exoskeleton unnecessarily complex and expensive. Existing 
commercially available exoskeleton solutions, such as the EksoNR by Ekso Bionics Holdings Inc.15, the ReWalk 
by ReWalk Robotics Ltd.16, the Hybrid Assistive Limb (HAL) by Cyberdyne Inc.17, provide only information 
about steps completed, distance walked, walking speed, level of assistance, and joint angles. Consequently, recent 
studies have fostered the integration of the exoskeleton with additional systems, which are exclusively focused 
on gait assessment, such as pressure and inertial sensors18. The essential purpose of monitoring systems lies in 
their capacity not only to assess potential declines in the individual’s functional abilities but also to pinpoint 
inaccuracies in exoskeleton settings that may result in improper posture and behaviour. Furthermore, they can 
be used to discern differences over multiple sessions and throughout the rehabilitation process.

This research aims to assess the feasibility of using smart insoles to monitor the gait characteristics of subjects 
with neurological and musculoskeletal diseases who use exoskeletons for rehabilitation purposes. Smart insoles 
are footwear accessories equipped with different sensors that collect and transmit data related to the user’s foot 
movements and pressure distribution19. Smart insoles are designed to provide real-time information about 
gait, posture, and other biomechanical metrics, and usually include but are not limited to pressure and inertial 
sensors. Including smart insoles for assessing gait characteristics provides a minimally invasive system for the 
user, without increasing the complexity of the exoskeleton system. This study included seven volunteers affected 
by neurological and musculoskeletal disorders who participated in a 12-week rehabilitation program with 
weekly exoskeleton sessions. Three evaluation sessions in which participants were monitored using the smart 
insoles were conducted in the 1st, 6th, and 12th week, respectively. Besides these participants, three healthy 
participants who performed only one session were included as references for unimpaired subjects.

Due to the lack in the literature of data collected and annotated from users wearing smart insoles and 
exoskeletons, in this study, a novel smart insole-based unsupervised approach supported by rules dictated by 
knowledge of the gait cycle was proposed to identify the gait kinematic and kinetic parameters. The solution 
is based on an Finite State Machine (FSM) where the states are represented by gait phases and the transitions 
between them are handled by the predictions of a fuzzy c-means clustering model trained on real-world 
exoskeleton usage data. Furthermore, the possible transitions between the states have been limited based on 
the gait cycle oscillatory sequence to limit anomaly transitions. Unlike existing literature, this study focuses 
exclusively on developing a system based on data from real-world exoskeleton use, specifically with patients 
facing neurological and musculoskeletal diseases. Furthermore, using kinematic and kinetic gait parameters, 
an analysis to examine disparities for each participant between weeks and to evaluate common trends between 
different conditions was conducted as evidence of the insights that such a solution can provide to healthcare 
professionals to evaluate walking patterns in subjects undergoing rehabilitation using an exoskeleton. 
Additionally, the research investigates the feasibility and user acceptance of smart insoles, exploring their 
potential impact on the rehabilitation process.

The rest of the paper is structured as follows: Section 2 analyses current state-of-the-art solutions and the 
existing challenges. Section 3 presents how this study has been conducted and the principal techniques used, 
followed by a comprehensive discussion of the findings in Sect. 4. The paper concludes with Sect. 5 with a 
summary of the study and the future perspectives.

Related work
Monitoring the usage of an exoskeleton plays a crucial role in identifying specific patterns that significantly 
impact the quality of an individual’s locomotion. Over time, diverse approaches have been employed, ranging 
from devices attached to the wearer’s skin, posing potential hindrances and vulnerability to sweat, to devices 
integrated into the exoskeleton’s structure20, introducing heightened complexity and increased costs. To 
address these challenges, several examples can be found in the literature in which pressure sensors or Inertial 
Measurement Unit (IMU) sensors are employed to monitor the characteristics and steps involved in the gait of 
individuals wearing an exoskeleton.

Ding et al.21 introduced an algorithm for online gait event detection utilising an IMU system in individuals 
wearing a lower-limb exoskeleton. They designed an IMU device consisting of an accelerometer and a gyroscope 
that can be attached to the anterior surface of a shoe. Employing a sampling frequency of 100 Hz, they applied 
a low-pass filter with a cut-off frequency of 40 Hz to the collected data. To identify six events, including Initial 
Output (no gait detected), Heel-Strike, Foot Flat, Heel Off, and Toe Off, a fixed window size of 10 ms, and a 
fixed threshold were implemented. To validate the algorithm, initial tests were conducted on 10 healthy subjects 
without exoskeletons during five walking trials, comparing the results to a force plate, showing significant 
agreement and an overall error of 10ms and 19ms for the heel-strike and toe-off phases, respectively. The 
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algorithm’s performance was further assessed at various speeds on a treadmill, accurately identifying all gait 
cycles. Subsequently, the solution underwent evaluation with a subject wearing a lower extremity exoskeleton, 
revealing challenges such as strenuous ripples near Heel-Strike and Toe-off, as well as alterations in acceleration 
that complicated the determination of precise peak or valley points corresponding to Heel-Strike.

Ren et al.22 presented a novel method for the recognition of the gait phases in walking and running 
locomotion with possible applications for exoskeleton users. Their method involved the utilisation of an 8-force 
sensing resistor plantar pressure measurement system and a feature-free approach based on an Mulit-Layer 
Perceptron (MLP) algorithm. The primary objective of their study was to detect the gait period and subsequently 
identify the gait sub-phases. Four male individuals were recruited for the study and asked to walk on a treadmill 
at different speeds while wearing the developed system for 1 min with a sampling frequency set to 100 Hz. The 
detected gait sub-phases included the heel contact, toe contact, and double stance phases. A leave-one-subject-
out strategy was implemented to test the model, resulting in an average recognition rate for the gait phases 
of 93.4% during walking and 93.9% during running, with some delays when compared to the labelled data. 
Additionally, it was observed that the model exhibited misrecognition and oscillation when the subjects were 
running. However, it should be noted that the presented solution has not been evaluated with exoskeleton users, 
which was left for future investigation.

Lv et al.23 proposed a novel radius-margin-based Support Vector Machine (SVM) model with Particle Swarm 
Optimization (PSO) algorithm for gait phase detection. The measurement system utilised in this study consisted 
of a smart insole equipped with nine pressure sensors. By leveraging the PSO algorithm, the authors were able 
to identify the optimal parameters for the SVM model using the feature space of the training set. Subsequently, 
the model was trained and tested to assess its performance in classifying the gait phases. The data collection 
process involved two subjects who were instructed to walk for 5 min at four different speeds while wearing the 
smart insoles with a sampling frequency of 50 Hz. The primary objective of this study was to classify five distinct 
gait phases, namely loading response, mid-stance, terminal stance, pre-swing, and swing. The proposed solution 
was compared against baseline models and demonstrated superior performance, achieving an overall accuracy 
exceeding 98% across varying speeds.

The above studies present several limitations that deserve careful consideration. The exclusive use of IMU 
sensors limits the ability to obtain detailed information about balance and stability, underlining the importance 
of using pressure sensors for a comprehensive evaluation. Additionally, IMU sensors can be affected by the drift 
problem when used for long-term measurements, and the placement of such sensors on the front of the show can 
generate discomfort for the user since the exoskeletons could present straps in that area. Furthermore, it should 
be noted that the studies available in the literature are often designed on data collected from healthy individuals 
and without the aid of exoskeletons, neglecting the intrinsic challenges linked to wearing such devices and 
how these can influence the biomechanics of walking and consequently the proposed solution. Finally, the 
lack of subjects with gait-related pathologies in the existing studies represents a further limitation, since these 
conditions can significantly alter people’s way of walking, potentially impacting the performance of the solutions 
developed, especially in rehabilitation practices.

Methodology
To assess the feasibility of employing smart insoles for gait analysis in individuals using an exoskeleton for 
rehabilitation, data from participants, recruited from the No Barriers Foundation Ireland (https://nobarriers.ie), 
who suffer from neurodegenerative and musculoskeletal conditions were collected. This section delineates the 
methodology employed in conducting the study and presents the proposed solution for translating data from the 
smart insoles into gait parameters for comprehensive assessment.

This study has been reviewed and approved by the Ulster University Faculty of Computing, Engineering 
and The Built Environment Research Ethics Committee (reference number: 20.11) following the University’s 
policies on Research Governance(​h​t​t​p​s​:​​/​/​w​w​w​.​​u​l​s​t​e​r​​.​a​c​.​u​k​​/​_​_​d​a​​t​a​/​a​s​s​​e​t​s​/​p​d​​f​_​f​i​l​e​​/​0​0​0​3​​/​3​3​1​8​7​​8​/​P​o​l​i​​c​y​-​H​u​m​​a​n​-​
R​e​s​e​a​r​c​h​-​V​5​.​p​d​f), and in accordance with the Declaration of Helsinki (​h​t​t​p​s​:​​/​/​w​w​w​.​​w​m​a​.​n​e​​t​/​p​o​l​i​​c​i​e​s​-​​p​o​s​t​/​w​​m​
a​-​d​e​c​​l​a​r​a​t​i​​o​n​-​o​f​​-​h​e​l​s​i​​n​k​i​-​e​t​​h​i​c​a​l​-​​p​r​i​n​c​​i​p​l​e​s​-​​f​o​r​-​m​e​​d​i​c​a​l​-​​r​e​s​e​a​​r​c​h​-​i​n​​v​o​l​v​i​n​​g​-​h​u​m​a​​n​-​s​u​b​j​e​c​t​s​/). All participants 
provided informed written consent before the beginning of this research. All participants’ information has been 
anonymised to ensure confidentiality.

Devices
In this research, the ActiSense Kit from IEE Luxembourg S.A.24 has been employed for collecting data from 
participant ambulation. This kit consists of two IEE Smart Foot sensors and two ActiSense Electronic Control 
Unit (ECU), with the former positioned on the footbed and the latter attached to the side of the participant’s 
shoes. The IEE Smart Foot Sensors are equipped with eight individual high dynamic pressure cells, positioned 
at the hallux, toes, first, third and fifth metatarsal, arch, and left and right side of the heel, whereas, the ECUs 
incorporate different IMU sensors, including a three-axial accelerometer (with a range of ±8G), a three-axial 
gyroscope (with a range of ±1000 DPS), and a three-axial magnetometer (with a range of ±4912µT ). The 
insoles were provided by the manufacturer in different sizes (from 3.5 to 11.5 UK sizes) to ensure a proper fit 
for each participant. The sampling frequency of the smart insoles for the entire duration of the study has been 
set to 200 Hz.

The exoskeleton used in this study is the EksoNR provided by Ekso Bionics Holdings Inc.15, which is 
specifically designed to be employed in rehabilitation settings for supporting neurological and musculoskeletal 
patients in their exercises. It amplifies ambulation ability and allows for extended therapy sessions, increasing 
energy expenditure to a similar level as non-exoskeleton walking, which may improve cardiovascular function 
in limited mobility subjects12. The exoskeleton responds to changes in the user’s centre of mass, shifting from 
one limb to the other, and when the exoskeleton senses these changes, it initiates the gait cycle25. Furthermore, 
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the exoskeleton provided multiple assistive modalities, changing the extent of assistance or resistance during 
walking. In this study, the assistive modality was set to full assistance, which provided maximal mechanical 
support to activate and support participants’ muscles. However, while this mode is designed to assist movement, 
emerging research indicates that similar muscle activation patterns may occur across different assistive levels, 
despite differences in support magnitude26, hence, future investigations will focus on characterising specific 
muscle engagement in each assistive mode to better understand the neuromuscular effects of robotic gait training, 
which has not been investigated in this study. Finally, to adapt the exoskeleton to the different participants, 
the lower leg segments were adjusted by the physiotherapist to align with the participant’s distance between 
the lateral joint of the knee and the bottom of the foot, and the ankle stiffness was adjusted according to the 
participant’s mobility.

The exoskeleton provided only information about the number of steps, walking time, and time of 
verticalization27, thus posing the need for an additional device, such as smart insoles, for assessing gait 
characteristics.

The devices involved in this study have been presented in Fig. 1 along with an example of a user wearing the 
exoskeleton suit and the smart insoles during data collection.

Participants
A comprehensive recruitment strategy was formulated to enlist volunteers from private clinics. The targeted 
participants were individuals aged between 18 and 70, possessing a well-established diagnosis of their respective 
conditions, and provided consent to participate in prolonged rehabilitation training with the exoskeleton.

A total of seven participants were successfully recruited, representing diverse conditions: four subjects with 
MS, one with SCI, one with ST, and one with TBI, however, the participant with ST was withdrawn before the 
beginning of the study due to an identified mistake in age on the screening form, rendering the participant 
ineligible based on the inclusion criteria. Additionally, three healthy (unimpaired) subjects were included to serve 
as reference data during the study. Such subjects reported no previous history of neurological or musculoskeletal 
conditions and were able to walk without any assistance. Healthy subjects completed only one session utilising 
the exoskeleton and smart insoles. The characteristics of each participant are presented in Table 1.

All participants with neurological or musculoskeletal diseases were in stable condition as confirmed by their 
healthcare providers, with no recent acute episodes or change in their diagnosis or treatment plan. Notably, 
only four participants had prior experience using an exoskeleton before the study commenced. Furthermore, 
the participants of the study presented different walking capabilities. The subject with TBI had power in the legs 
which allowed him to walk assisted, the subject with SCI had strength only in the left leg and therefore required 
a walking frame for walking, and finally, subjects with MS, although in different stages of the disease, had no or 
limited strength in their legs, which did not allow them to walk.

Data collection
The research spanned a 12-week duration. Each participant conducted one exoskeleton-assisted rehabilitation 
session and two home-based resistance training sessions per week. The rehabilitation sessions were tailored 
to the participants’ needs and abilities, with the aim of improving their strength, balance, and mobility. The 
home-based resistance training sessions were designed to complement the exoskeleton-assisted rehabilitation 
sessions and to help the participants maintain their progress between sessions. Over the 12 weeks, 3 assessment 
sessions were defined, namely at the 1st, 6th, and 12th week. Before each session, physiotherapists assisted the 
subjects in wearing the smart insoles and the exoskeleton, and they were instructed about the protocol to follow. 

Fig. 1.  Experimental setup and equipment configuration. (a) Configuration of the smart insole system used 
in the experiments, showing its placement inside the user’s shoe. Each insole was equipped with 8 pressure 
sensors and an Electronic Control Unit (ECU) containing Inertial Measurement Unit (IMU) sensors. The 
illustration was created by the authors using Photopea version 5.6. (b) Image of co-author Luigi D’Arco, who 
provided consent for the use of this photograph, wearing the smart insoles and an exoskeleton during data 
collection. The setup also includes a walking aid and support from a physiotherapist.
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The protocol used encompasses different activities including sitting in a steady position for 2 min, standing in 
a steady position for 2 min and 6-min walking in a hallway of approximately 10 meters, with a 180° turning left 
at the beginning and end. The walking activities were supervised by a physiotherapist, who timed the steps, to 
ensure the safety of the participants. Furthermore, all participants were provided with a walking frame to lean 
on during the activities.

At the end of the 12 weeks, the participants were given a questionnaire to evaluate their experience using the 
smart insoles. The questionnaire included 11 questions ranging from the subjects’ acceptance of smart insoles to 
their opinion on how much this technology could impact their rehabilitation. The items of the questionnaire are 
presented in Table 2. Participants responded to questions 1, 2, and 11 with a binary choice of either yes or no. 
For the remaining questions, participants used a scale from 1 to 5, where 1 indicated “Strongly disagree” and 5 
indicated “Strongly agree”.

Extraction of gait phases
Gait is characterised by a cyclical nature, which is composed of a series of distinct phases and events, collectively 
forming what we refer to as gait cycles. Each gait phase represents specific functional segments of the walking 
process, such as the Stance (St) and Swing (Sw) phases28. The stance phase begins as one foot establishes its initial 
contact with the ground, and it persists until the same foot is lifted off the ground again, providing stability 
and support during the walking process. On the other hand, the swing phase encompasses the time when the 
foot leaves the ground after toe-off and extends until it once more makes contact with the ground. During the 
swing phase, the leg is in a free-swinging motion, transitioning to the next step. Under a more in-depth analysis, 
each stride contains eight functional patterns or sub-phases29, which can be directly interpreted for impairment 
identification. The Initial Contact (IC) marks the beginning of a new gait cycle with the touching of the foot with 
the ground, and it is followed by the Loading Response (LR) in which the body’s weight shifts onto the stance 
leg, reaching a complete foot flat on the ground in the Mid Stance (MSt) in which the entire body’s weight is 
support be the stance leg providing stability and balance. The Terminal Stance (TSt) phase marks the progression 
of the body beyond the supporting foot, raising the heel and continuing the forward motion until the other foot 
touches the floor. The Pre-Swing (PSw) phase follows, involving the unloading of the stance leg in preparation 
for lifting off, thus marking the transition to the swing phase, which in turn is composed of Initial Swing (ISw), 
when the foot leaves the ground and starts the forward motion, the Mid Swing (MSw), when the swinging limb 
is opposite to the stance limb, and the Terminal Swing (TSw), in which the tibia is in a vertical position and move 
forward until the foot touches the ground. However, the walking phases presented are altered when using an 

ID Description

Q1 Have you previously used wearable technology e.g. fitness trackers, to assist with your health and well-being?

Q2 Before taking part in this study, were you aware of the use of wearable technologies for assessing physical rehabilitation?

Q3 The purpose of wearing the insoles was clearly explained prior to starting the rehabilitation session

Q4 The insoles were comfortable to wear during the rehabilitation session

Q5 Wearing the insoles made a difference to my rehabilitation session when compared to not wearing them

Q6 Knowing that the insoles were measuring my movements affected my walking motion during the rehabilitation session

Q7 Wearing the insoles could have a positive impact on my rehabilitation by providing objective data on my walking motion to the physiotherapist

Q8 Receiving feedback on my progress is an important part of the rehabilitation process

Q9 Wearing the insoles could have a positive impact on my rehabilitation by providing clear feedback on my progress

Q10 I would be willing to continue using the insoles in future rehabilitation sessions

Q11 Were there any interruptions to your rehabilitation session due to wearing the insoles?

Table 2.  Items of the questionnaire submitted to participants to evaluate their acceptance of the smart insoles.

 

ID Age Weight (Kg) Height (cm) Gender Condition First diagnosis of the condition Familiarity with the exoskeleton

1 29 70 174 F H – Yes

2 58 40 162 F H – No

3 27 72 170 M H – No

4 69 40 162 F MS 1999 Yes

5 58 67 177 M SCI 2019 Yes

6 25 69 180 M TBI 2018 No

7 63 64 178 M MS 2002 No

8 52 85 183 M MS 2011 Yes

9 72 66 160 F ST 2001 No

10 60 62 160 F MS 2007 No

Table 1.  Characteristics of participants included in the study. H Healthy, MS Multiple Sclerosis, SCI Spinal 
Cord Injury, ST Stroke, TBI Traumatic Brain Injury.
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exoskeleton due to its rigid structure around the foot30. Therefore, this study presents a novel solution to detect 
gait phases from smart insole data in subjects wearing an exoskeleton, taking into account that some phases may 
be missing or altered. In addressing the limitations posed by the exoskeleton, a preliminary analysis of the data 
collected revealed a lack of pressure in the forefoot, mainly due to the rigidity of the shoe’s exoskeleton structure, 
which limited pressure in this area. For this reason, the TSt and PSw phases have been grouped and considered 
as a single sub-phase, which from here on will be referred to as TSt. Similarly, due to the limitations provided 
by the pressure sensors, which do not provide information when the foot is in the air, the swing phase was 
considered in its entirety and not in sub-phases.

The proposed approach leverages the use of the pressure sensors of the smart insoles by using an FSM for 
the identification of the different states of the gait cycles. This approach has been proven efficient and powerful 
in previous studies for the identification of gait phases in both healthy and PD individuals31, and in amputee 
users32. In32, the solution was compared with a gold standard solution, demonstrating a high level of agreement 
between the extracted gait parameters. The FSM has been defined as the quintuple (Σ, S, s0, δ, F ), where Σ is 
the set of input symbols and comprises the reading from the pressure sensors of the smart insoles, S is the set of 
states and has been extended from previous studies to include the above-mentioned gait phases (IC, LR, MSt, 
TSt, Sw) plus an additional state which represents that no gait cycle has been detected yet, named Init. The initial 
state of the FSM, s0 has been set as the state Init, and the set of final states have been set to ∅ as the FSM will 
progress as long as there will be new data coming in. The transition between the states, δ, has been managed 
using a fuzzy c-mean algorithm33, which is a soft clustering algorithm that assigns degrees of membership to 
each data point for every cluster. This allows for a more flexible representation of data points that may exhibit 
characteristics of multiple clusters simultaneously, allowing the handling of smart insole data without the need 
for labelling and providing a solution that can be easily updated when new data are considered. The number of 
clusters in the fuzzy c-means algorithm has been set to 5, representing the possible gait sub-phases. The fuzzifier 
parameter that controls the degree of fuzziness in the clustering process was set to 2, ensuring a balance between 
fuzziness in the data partitioning and computational complexity34. The distance between data points has been 
represented as the Euclidean distance. The transition function of the FSM can be defined as follows:

	 δ : S × ŷ(Σ) −→ S� (1)

where ŷ(Σ) is the cluster prediction with the highest membership function of the timestep sample from the 
pressure sensors. The fuzzy c-means algorithm has been trained on the real-world exoskeleton usage data to 
ensure the reliability of the predictions. To further enhance the reliability of the transition function, the next 
FSM state has been predicted as the argument of maxima of a sample window that included 10 preceding and 
10 subsequent samples for each data point. Hence the transition function presented in Eq. 1 can be rewritten as:

	 δt : st−1 × argmax(ŷ(W[xt−10,xt+10]) −→ st� (2)

where δt is the transition function for the time t, st−1 ∈ S is the state of the FSM at time t − 1, W[xt−10,xt+10] 
is the sample window for the data point xt, and st ∈ S is the state at time t. To address the issue of missing or 
overlapping gait phases due to the structure of the exoskeleton, knowledge-driven rules were introduced into 
the FSM based on the walking cycle reference sequence. These rules allow for missing phases during gait cycle 
identification while preserving the system’s functionality to accurately identify the gait cycles. The detailed states 
and transitions of the FSM are illustrated in Fig. 2.

Preceding its input into the FSM, the data from smart insoles were comprehensively preprocessed involving 
sensor aggregation, noise reduction, and data normalisation. Analysing the pressure sensors data, utilising 
Pearson’s correlation coefficient (r), revealed a strong correlation (r > 0.5) among pressure sensors situated 
within the same foot zone, aligning with findings from prior research35. Consequently, a magnitude calculation 
was employed to combine pressure sensors within the back, middle, and front zones. To reduce the noise in 
the sensor readings a Butterworth low-pass filter has been implemented36, to attenuate the high frequencies 
and allow the low frequencies to be preserved. The cutoff frequency was set to 10 Hz with a second-order filter 
since the walking frequency is lower than 5 Hz37. Finally, the data has been normalised transforming the data 

Fig. 2.  Finite State Machine for gait phase identification. The states represent the gait phases, and the 
transitions between them are handled by the predictions of a fuzzy c-means clustering model with allowed 
transitions based on gait cycle knowledge.
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range into a range between 0 and 1. The data was grouped by foot, and each group was fed into a different 
FSM to independently extract gait sub-phases for each foot. By aligning the extracted gait phases for each foot, 
information on the single or double support task was extracted, and the gait cycles were identified by considering 
the consecutive occurrence of stance and swing phases as a distinctive feature of a complete gait cycle.

Furthermore, considering that the data collected concerned continuous 6-min walks, turning activities were 
present. Thus, to prevent turning activities from affecting the statistical analysis of the gait parameters, since they 
have a longer duration and sparse patterns, an approach based on the interquartile range38 was used to eliminate 
the outliers among gait cycles using the stride duration.

Extraction of gait parameters
For each participant, the key gait kinematic and kinetic parameters were extracted to comprehensively assess 
and quantify the gait aspect, as summarised in Table 3. The kinematics parameters offer insights into the spatial 
and temporal movement patterns exhibited by an individual, while kinetic parameters gauge aspects of stability 
and balance for effective ambulation. Notably, the analysis of kinetic parameters has focused on the evaluation of 
the Centre Of Pressure (COP), a virtual point delineating the base of the ground reaction force vector within the 
foot46. This parameter serves as a robust indicator of postural competency and sway, offering valuable insights 
into gait dynamics.

The gait parameters were utilised to compare differences across various weeks among participants and to 
evaluate distinctions between different condition groups. A preliminary analysis revealed that the data did not 
satisfy the requirements for parametric tests such as ANOVA. Therefore, the Friedman test47, a non-parametric 
alternative, was employed to assess the differences among the weeks for each participant. Afterwards, for the 
groups that showed statistical difference (p < 0.05), the Conover post-hoc test was employed to understand 
which group differed from the other, offering a comprehensive analysis of the fluctuations in the gait metrics.

Results and discussion
This section presents the findings of the analysis of kinematic and kinetic gait parameters extracted from smart 
insoles for individuals wearing an exoskeleton during rehabilitation, demonstrating the additional information 
such smart insoles can provide and their feasibility of integration into rehabilitation practices.

Evaluation of gait phases detection
The proposed solution for identifying the gait phases leveraged a FSM, wherein transitions were determined 
by the predictions of a fuzzy c-means clustering algorithm applied to windows of samples. This novel approach 
demonstrated adaptability across diverse samples despite significant variations, as shown in Figure 3. The data 
collected varied according to the wearing of the smart insoles, the condition of the participants, and the amount 
of force and weight applied to their feet. While the objective encompassed recognising five distinct walking 
phases (IC, LR, MSt, TSt, Sw), the presence of an exoskeleton introduced alterations, constraining the typical 
oscillatory movements inherent in gait. Consequently, not all phases manifested consistently across every gait 
cycle.

Figure 3a portrays an ideal scenario characterised by a healthy subject’s gait cycle. The pressure patterns are 
distinct and well-distributed across the front, mid, and back regions of the feet, as well as the transitions between 
different gait phases, are clear and consistent, reflecting a typical gait cycle48. In contrast, the participant with 
MS exhibited notable irregularities (Fig. 3), particularly in the front and back foot sensors, leading to incomplete 
and less pronounced gait phases, reflecting difficulties in maintaining balance and weight distribution. The 
SCI participant’s data (Fig. 3c) are characterised by severe fluctuations and missing data in foot regions, 
pointing to pronounced gait abnormalities and highly variable phase transitions. The TBI participant (Fig. 3d) 
shows considerable overlap in pressure signals between the back and mid-foot zones, especially on the right 
foot, which complicates the accurate identification of gait phases and results in incomplete phase transitions. 
These inconsistencies suggest potential issues with insole placement or the participants’ gait mechanics due 
to their conditions, which will need further investigation when increasing the number of participants under 
analysis. Despite these challenges, the proposed solution demonstrates robustness and adaptability, managing to 
reconstruct gait cycles across various conditions. Specifically, the proposed solution can handle the absence of 
pressure sensor data and the difference in pressure patterns resulting from insole misplacement or the subject’s 
condition.

Analysis of gait parameters
Participants were involved in a 12-week rehabilitation program with three assessment sessions. By evaluating 
the gait kinematic and kinetic parameters across the weeks, insights can be gained from each participant for 
the evaluation of walking patterns and postural control. Such analysis allowed us to evaluate whether smart 
insoles had consistent results over time, as well as evaluate the support that such information can provide to 
physiotherapists to monitor participants’ gait changes over time.

Kinematic analysis
Table 4 presents the kinematic parameters extracted from the smart insoles for each participant across the three 
assessment sessions. The results provide a comprehensive overview of the participants’ gait patterns, highlighting 
the differences between healthy individuals and those with neurological impairments.
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Type Name Description Equation References

Kinematic

Stride time
Duration in seconds between 
the initial contact of one foot 
to the next contact of the same 
foot. It is expressed in seconds

∑E

e
eEND−eST ART

fs ,

E = {IC, LR, MSt, T St, Sw}

where E is the set of events 
composing the stride, END and 
START are the last and first 
index for the event e, and fs is 
the sampling frequency

39

Stance time
Duration during which a foot 
is in contact with the ground 
during a single gait cycle. It is 
expressed in seconds

∑E

e
eEND−eST ART

fs ,

E = {IC, LR, MSt, T St}

where E is the set of events 
composing the stance phase, 
END and START are the last 
and first index for the event e, 
and fs is the sampling frequency

39

Swing time

Duration during which the foot 
is off the ground and swinging 
forward in the air during a 
single gait cycle. It is expressed 
in seconds

SwEND−SwST ART
fs

where SwEND  and 
SwST ART  are the last and 
first index of the swing phase, 
and fs is the sampling frequency

39

Stance percentage
Proportion of the gait cycle 
spent in the stance phase, 
expressed as a percentage

Stance time
Stride time × 100 40

Swing percentage
Proportion of the gait cycle 
spent in the swing phase, 
expressed as a percentage

Swing time
Stride time × 100 40

Single support time
Duration when only one 
foot is in contact with the 
ground during a gait cycle. It is 
expressed in seconds

∑
1

fs if xl ∈ St ∧ xr ∈ Sw,
∀x ∈ GC

where fs is the sampling 
frequency, el  and er  are 
the left and right foot event 
respectively, and St and Sw are 
the stance and swing phases

39

Double support time
Duration during which both 
feet are in contact with the 
ground during a gait cycle. It is 
expressed in seconds

∑
1

fs if el ∈ St ∧ er ∈ St,

∀e ∈ GC

where fs is the sampling 
frequency, el  and er  are 
the left and right foot event 
respectively, and St is the stance 
phase

39

Single support 
percentage

Proportion of the gait cycle 
spent in single support, 
expressed as a percentage

Single support time
Stride time × 100 40

Double support 
percentage

Proportion of the gait cycle 
spent in double support, 
expressed as a percentage

Double support time
Stride time × 100 40

Kinetic

COP ML It is the Centre of Pressure on 
the Mediolateral sagittal plane.

∑
FiXi∑

Fi

where Fi  is the force applied to 
the i-th pressure sensor and Xi  
is the sensor’s position on the 
mediolateral plane

41

COP AP
It is the Centre of Pressure on 
the Anterior-posterior sagittal 
plane.

∑
FiYi∑

Fi

where Fi  is the force applied to 
the i-th pressure sensor and Yi  
is the sensor’s position on the 
anterior-posterior plane

41

Range COP ML
Amplitude of mediolateral COP 
displacement. It is expressed 
in cm

maxn,m|MLn − MLm| where ML represents the COP 
ML

42

Range COP AP
Amplitude of anterior-posterior 
COP displacement. It is 
expressed in cm

maxn,m|APn − APm| where AP represents the COP 
AP

42

Planar deviation
Average distance of each COP 
point from the mean COP 
position in the transverse plane. 
It is expressed in cm

√
RMS(ML)2 + RMS(AP2) where RMS is the root mean 

square, ML is the COP ML, and 
AP is the COP AP

43

Confidence ellipse 
area

Area of the ellipse that contains 
95% of the COP points in the 
transverse plane. It is expressed 
in cm2

π
√

λ1λ2χ2
2,0.95

where λ1  and λ2  are the 
eigenvalues of the covariance 
matrix, and χ2

2,0.95  is the chi-
squared value for 2 degrees of 
freedom at the 95% confidence 
level

44

Principal sway 
direction

Angle between 0° and 90°, 
between the anterior-posterior 
axis and the direction of the 
main eigenvector produced 
by the Principal Component 
Analysis (PCA). It is expressed 
in degrees

arccos( |v2|√
v2

1+v2
2

) × 180
π

where v = (v1, v2) denotes 
the eigenvector associated with 
the highest variance produced 
by the PCA of the COP

45

Table 3.  Gait parameters extracted from the gait cycles of the subjects included in the study. IC Initial 
Contact, LR Loading Response, MSt Mid-stance, TSt Terminal Stance, Sw Swing COP Centre of Pressure, ML 
Mediolateral, AP Anterior-posterior.
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Healthy participants showed the longest stride times compared to the other groups, averaging 2.51s for the left 
and 2.29s for the right leg. Variability in stride time among the groups highlights the differences in their walking 
abilities, however, in all the participants, a decrease in stride time can be observed over the weeks. Participant 5 
on the left limb, Participant 6 on both limbs and Participant 7 on the right limb showed no statistical differences 
between week 6 and week 12 (p > 0.05). Similarly, a decrease in stance time and an increase in swing time can 
be identified across the weeks, showing that participants became more confident with the exoskeleton.

Stance and swing percentages from healthy participants reflected the natural walking pattern without an 
exoskeleton, aligning with previous research. For example, Iosa et al.49 identified a golden ratio between stance 
and swing of 1.6. In line with this, the stance and swing percentages in healthy participants in this study were 
approximately 67.69% stance and 32.31% swing. In contrast to healthy participants, all other participants showed 
a higher stance percentage, indicating a more cautious walking pattern. Participants 4, 5, 6, and 7 showed 
asymmetry between the limbs in the assessment weeks, with Participant 5 moving towards a more balanced 
distribution over the weeks. Among the participants, only Participant 6 showed almost no statistical differences 
among the weeks for almost all the gait kinematic parameters (p > 0.05).

Single support time and percentage were similar among all the participants, except for Participant 5 in week 
12, who showed a significant decrease in single support time (0.01s), which is the result of misclassification due to 
wrong placement of smart insole in the user’s shoe. Double support time and percentage were significantly lower 
in healthy participants compared to the other groups, indicating more confidence during walking. Participant 6 
showed a decrease in double support time over the weeks, however, no statistical differences were identified for 
the right limb (p = 0.36). All MS participants showed stable double support percentage over the weeks, except 
for Participant 10, who showed a significant decrease in double support time in week 6.

Overall, the results suggest that healthy participants exhibited more stable walking patterns compared to 
those with neurological impairments, who showed more cautious and variable walking patterns.

Kinetic analysis
Table 5 presents the kinetic parameters extracted from the smart insoles for each participant across the three 
assessment sessions. The results provide insights into the participants’ postural control and balance, highlighting 
the differences between healthy individuals and those with neurological impairments.

Evaluating the average COP position among participants revealed differences in postural control and balance. 
The results showed that all participants tended to lean more towards the right foot with the mean COP in the 
mediolateral plane greater than the left counterpart. Such a trend, invisible to the eye of the physiotherapist, 
requires further investigation to understand its underlying causes, which may be the result of the exoskeleton 
settings, the participants’ conditions or the definition of the test protocol, in which walking tasks were performed 
with a left rotation at the beginning and end of the hallway. In terms of mean COP in the anterior-posterior 
plane, differences can be observed between participants. Participant 5 and Participant 10 showed a marked lean 

Fig. 3.  Gait phases extraction examples for each condition group. The samples are referred to the week 6th, 
except for the healthy participant, which was a test session. The terms “front”, “middle”, and “back”, stand for 
the pressure data collected from the foot’s front, foot’s middle, and foot’s back zones respectively, whereas “IC”, 
“LR”, “MSt”, “TSt”, and “Sw” stand for the gait phases, initial contact, loading response, mid-stance, terminal 
stance, and swing, respectively.
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towards the front of the foot, particularly in the right limb in the first and both in the second. For Participant 
5 this behaviour can be attributed to the difference in strength in the legs, having only strength in the left leg. 
Participant 10 instead did not show strength in both legs, so the difference compared to other participants 
with the same condition, could be attributed either to his aptitude to lean forward or to the type of support 
given by the physiotherapist during the tests. Participant 6 showed in the first assessment week an unbalanced 
distribution between the limbs, with the left COP tending towards the back of the foot.

Healthy participants demonstrated lower displacement of COP on the mediolateral plane (1.35cm left, 1.18cm 
right), indicating stable mediolateral control. Participants diagnosed with MS, who had no strength in their legs, 
showed values that resembled those of healthy participants, suggesting that the exoskeleton provided adequate 
support to maintain balance. In contrast, the participant with SCI and TBI, who had strength mainly in one of 
their legs, showed higher values, reflecting greater instability possibly due to the resistance to the exoskeleton. 
All participants showed disparities between the limbs in both the mediolateral and anterior-posterior planes, 
indicating the need for further investigation to understand the underlying causes.

The COP planar deviation resulted in a similar trend among all the participants, with the highest values for 
the right limb only for Participant 5. The confidence ellipse area highlighted the disparities between the limbs in 
all the participants. Finally, the principal sway direction showed how the exoskeleton influenced the participants’ 
balance, with all the participants showing low values, indicating a forward sway.

Overall, the analysis of kinetic parameters provided valuable insights into the distinct postural control 
mechanisms among the participants, underscoring the importance of considering these parameters along 
with the kinematics parameters for the assessment of the gait in individuals undergoing rehabilitation with the 
exoskeleton, which can provide physiotherapist with additional information for evaluating the progress of the 
rehabilitation.

Acceptability analysis
At the end of the 12 weeks, participants were given a questionnaire to assess their experience with the smart 
insoles. The results, depicted in Fig. 4, revealed that although none of the participants had previous experience 
with wearable technology (Q1), 50% were familiar with wearable technologies used in physical rehabilitation, 
such as smart bands and watches (Q2). Everyone, except for one subject, was fully aware of the purpose and 
operation of smart insoles, demonstrating that the prior lack of use and awareness of wearable technology has 
had no impact on the current understanding (Q3). Feedback on comfort revealed that 66% of participants 
found the smart insoles very comfortable, one participant found them comfortable, and another remained 
neutral (Q4). Additionally, the majority of participants expressed neutrality regarding whether the insoles had 
influenced their rehabilitation (Q5). Notably, most participants believed that their walking motion remained 
unaffected by their awareness of the insoles tracking their movements (Q6), while 50% were optimistic about the 
potential benefits of providing insights to their physiotherapist (Q7), with the remaining respondents expressing 
neutrality. All participants acknowledged the importance of receiving feedback on their progress (Q8), and 50% 
recognised the potential impact of smart insoles in rehabilitation by offering precise feedback (Q9). Except for 
one neutral response, all participants indicated willingness to continue using the insoles for further rehabilitation 
(Q10). The absence of reported interruptions due to wearing the insoles (Q11) suggests that their use did not 
disrupt the continuity of rehabilitation sessions, which is crucial for integrating such technology practically into 
rehabilitation practices.

Limitations
This study should be considered as a preliminary investigation into the integration of smart insoles for gait 
assessment in exoskeleton-assisted rehabilitation.

The presented solution adeptly tackles numerous challenges arising from the lack of pressure data in certain 
areas due to participants’ condition and the wearing of the exoskeleton, the absence of predefined patterns, 
and inaccuracies resulting from the misplacement of the smart insoles. However different limitations should 
be considered. The number of participants involved in the study was limited and didn’t allow for generalisation 
of the results. Collecting the data from existing facilities and rehabilitation programs provided a unique 
opportunity to assess the impact that smart insoles can have on such practices. However, the absence of ground 
truth information limited the comparison with other approaches and technologies and the validation of the 
presented solution. Furthermore comparing the results with results from other state-of-the-art solutions was 
not possible as existing solutions are designed mainly to evaluate distance walked, steps taken and speed as 
highlighted in12.

The potential issue with insole misplacement during data collection, leading to data alteration, suggests the 
need for further investigation into the integration of additional modalities to augment the analysis. Furthermore, 
the insoles currently consist of a film without any covering material which can cause slip in the shoe. The 
inclusion of an additional soft material layer such as a common insole could reduce such behaviour.

Future research will aim to enhance the number of participants involved in the study to provide a more 
comprehensive evaluation of the proposed solution. Furthermore, the analysis can be extended to include 
participants from different conditions, rehabilitation programs, and exoskeleton models and settings. Different 
additional modalities will be investigated, such as IMU sensor data, to enhance the analysis and overcome the 
limitations of the current solution.
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Conclusion
This study examined the integration and acceptance of smart insoles for assessing gait characteristics in 
individuals with neurological and musculoskeletal diseases undergoing exoskeleton-assisted rehabilitation. 
Smart insoles were found to be a feasible and minimally invasive method for assessing gait characteristics in 
individuals wearing an exoskeleton, providing insights into gait kinematic and kinetic parameters. Results 
showed that the exoskeleton positively impacted mobility, enabling individuals with limited leg strength to 
achieve gait patterns similar to healthy individuals, particularly notable in those with MS. Participants expressed 
positive acceptance of smart insoles, emphasising comfort and willingness to continue using them for future 
rehabilitation, underscoring the importance of continuous feedback for individuals undergoing rehabilitation. 
Future research will focus on enhancing smart insole integration into exoskeleton systems, optimising real-time 
monitoring, improving the number of gait parameters extracted, and employing IMU sensors for additional 
insights. Furthermore, long-term studies with larger cohorts will further validate the findings and explore the 
impact of smart insole in exoskeleton-assisted rehabilitation.

In summary, the combination of robotic exoskeletons and smart insoles presents a promising avenue 
for advancing rehabilitation practices. This study contributes to the growing body of knowledge in the field, 
providing a foundation for further exploration and innovation in personalised and effective rehabilitation 
strategies for individuals with neurological and musculoskeletal conditions.

Data availibility
The datasets generated and analysed during the current study are available from the corresponding author upon 
reasonable request.
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