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Background  Cerebral-cardiac syndrome (CCS) is a severe cardiac complication following acute 
ischemic stroke, often associated with adverse outcomes. This study developed and validated a 
machine learning (ML) model to predict CCS using clinical, laboratory, and pre-extracted imaging 
features. A retrospective cohort of 511 post-stroke patients was analyzed. Data on demographics, 
laboratory results, imaging findings, and medications were collected. CCS diagnosis was based on 
cardiac dysfunction occurring after stroke, excluding pre-existing cardiac diseases. Five machine 
learning models, including Logistic Regression, Random Forest, Support Vector Machine (SVM), 
XGBoost, and Deep Neural Network, were trained on 80% of the data and tested on the remaining 
20%. Discrimination was assessed by AUC (95% CI), calibration by Hosmer–Lemeshow test and Brier 
score, and thresholds by Youden’s index. Model interpretability was evaluated using SHAP. On the test 
set, XGBoost achieved the highest discrimination (AUC 0.879; 95% CI 0.807–0.942), accuracy 0.825, 
precision 0.844, recall 0.675, and F1 score 0.750. Random forest followed closely (AUC 0.866; accuracy 
0.845; precision 0.962; recall 0.625; F1 0.758). SVM and logistic regression yielded AUCs of 0.853 and 
0.818, respectively. Calibration was optimal for SVM (HL p > 0.05; Brier 0.126) and random forest (HL 
p > 0.05; Brier 0.131). SHAP analysis identified D-dimer, ACEI/ARB use, HbA1c, C-reactive protein, and 
prothrombin time as top predictors. ML-based models accurately predict early CCS in ischemic stroke 
patients. XGBoost offers superior discrimination, while SVM and random forest demonstrate better 
calibration. Incorporation of these models into clinical workflows may enhance risk stratification and 
guide targeted preventive strategies.
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ACEI/ARB	� Angiotensin-converting enzyme inhibitors/angiotensin receptor blockers
AUC	� Area under the curve
APTT	� Activated partial thromboplastin time
BNP	� Brain natriuretic peptide
BMI	� Body mass index
BUN	� Blood urea nitrogen
CCS	� Cerebral-cardiac syndrome
CRP	� C-reactive protein
CT	� Computed tomography
DBP	� Diastolic blood pressure
FIB	� Fibrinogen
HbA1c	� Glycated hemoglobin
HDL-C	� High-density lipoprotein cholesterol
HL	� Hosmer-lemeshow
LDL-C	� Low-density lipoprotein cholesterol
LVEF	� Left ventricular ejection fraction
ML	� Machine learning
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MLP	� Multi-layer perceptron
MRI	� Magnetic resonance imaging
NIHSS	� National Institutes of Health Stroke Scale
NT-proBNP	� N-terminal pro-brain natriuretic peptide
PT	� Prothrombin time
ROC	� Receiver operating characteristic
SBP	� Systolic blood pressure
SHAP	� SHapley additive exPlanations
SVM	� Support vector machine
TC	� Total cholesterol
TG	� Triglycerides
TT	� Thrombin time
WBC	� White blood cell count
XGBoost	� Extreme gradient boosting

Acute ischemic stroke (AIS) is a major global health concern, ranking among the leading causes of death and 
disability worldwide1. While the primary focus of stroke management has traditionally been on restoring 
cerebral perfusion and preventing neurological damage, the systemic complications of AIS, particularly those 
affecting the cardiovascular system, have garnered increasing attention in recent years2. Cerebral-cardiac 
syndrome (CCS), a severe and multifaceted complication of AIS, exemplifies the intricate interplay between the 
brain and the heart3,4. CCS encompasses a spectrum of cardiac dysfunctions, including arrhythmias, myocardial 
injury, and structural abnormalities, which collectively contribute to poor cardiovascular outcomes and 
increased mortality3,4. The pathophysiology of CCS is complex, involving excessive activation of the sympathetic 
nervous system, systemic inflammation, catecholamine surges, and endothelial damage, all of which exacerbate 
myocardial toxicity and impair cardiac function5.

Despite advances in understanding the mechanisms underlying CCS, its early detection and prediction 
remain significant clinical challenges6. The multifactorial nature of CCS, coupled with the variability in its 
clinical presentation, complicates risk stratification and timely intervention. Current diagnostic approaches rely 
heavily on clinical observation and basic biomarkers, which often fail to capture the dynamic and interconnected 
processes driving CCS3,7. This diagnostic gap underscores the urgent need for innovative tools that can integrate 
diverse data sources and provide accurate, real-time predictions of CCS risk.

In recent years, machine learning (ML) has emerged as a transformative technology in healthcare, offering 
powerful tools for analyzing complex datasets and uncovering patterns that elude traditional statistical 
methods8. ML algorithms have demonstrated remarkable success in predictive analytics, particularly in fields 
such as cardiology and neurology9,10. By integrating multidimensional data, including clinical, imaging, and 
biomarker information, ML models can identify subtle correlations and interactions, enabling the development 
of personalized risk prediction tools9–13. In the context of CCS, ML holds the potential to revolutionize risk 
assessment by integrating diverse data sources to predict the likelihood of cardiac complications post-stroke 
with high accuracy and reliability. However, the application of ML in CCS prediction is still in its infancy, with 
limited studies exploring its feasibility and effectiveness.

In this study, we aimed to develop and validate an ML-based predictive model for CCS using a comprehensive 
dataset, integrating SHAP analysis to elucidate the most significant predictors of CCS and ensure model 
transparency. The findings of this study provide a clinically applicable framework for early risk stratification, 
which could guide timely interventions and optimize the management of post-stroke patients at risk for CCS.

Methods
Study design and data sources
This retrospective cohort study analyzed data from 511 patients admitted to The Affiliated Hospital of Hangzhou 
Normal University between March 1, 2020 and March 15, 2023. Patient records were retrieved from the 
hospital’s electronic health system. Ethical approval was obtained from the institutional review board of The 
Affiliated Hospital of Hangzhou Normal University, and all procedures were conducted in compliance with the 
Declaration of Helsinki. Given the retrospective nature of the study, the requirement for informed consent was 
waived by the institutional review board. Patient data were anonymized to ensure confidentiality and used solely 
for research purposes.

Participants and setting
Inclusion criteria
Adults (age > 18 years) with confirmed AIS as diagnosed by CT or MRI.

Exclusion criteria
Pre-existing cardiac diseases (e.g., prior myocardial infarction, symptomatic heart failure [LVEF < 50%], known 
arrhythmias, moderate-to-severe valvular disease, previous coronary revascularization, cardiomyopathies, 
congenital heart defects), thrombolysis or thrombectomy recipients, malignancy, severe hepatic, renal, or 
pulmonary disease, and cases with > 30% missing data.

Patients were categorized into CCS and non-CCS groups based on new-onset cardiac dysfunction within 
72 h post-stroke, excluding those with prior cardiac conditions.
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Outcome definition
The primary outcome was occurrence of cerebral-cardiac syndrome (CCS), defined as development of cardiac 
dysfunction within 72 h of stroke onset, identified by one or more of: elevated troponin levels, ECG or Holter-
detected arrhythmias, LVEF < 50% on echocardiography, ST-segment changes, QT prolongation, or T-wave 
inversion. Outcome assessment was blinded to predictor values. Outcome assessments were performed by two 
board-certified cardiologists blinded to predictor data; discrepancies were resolved by consensus.

Predictors
Candidate predictors included demographic variables (age, sex), stroke severity (NIHSS), vascular imaging 
(carotid stenosis grade), laboratory biomarkers (e.g., D-dimer, CRP, HbA1c, prothrombin time), medication 
use (e.g., ACEI/ARB, statins), vital signs, and pre-extracted imaging features. All predictors were defined and 
measured at hospital admission. Nominal variables were one-hot encoded; ordinal predictors were mapped to 
integer codes.

Sample size and missing data
The full cohort comprised 511 patients with 178 CCS events (34.8%). Cases with > 30% missing entries were 
excluded. Continuous missing values were imputed by median and categorical by mode; remaining data 
completeness permitted robust model training without additional omission.

Data preprocessing and partitioning
Continuous features were standardized to zero mean and unit variance using scikit-learn’s StandardScaler. The 
dataset was split via stratified sampling into training (80%, n = 408) and testing (20%, n = 103) sets, preserving 
CCS prevalence.

Model development and internal validation
Five classification algorithms (Logistic Regression, Random Forest, Support Vector Machine, XGBoost, Deep 
Neural Network) were implemented using default hyperparameters. Hyperparameter tuning employed stratified 
5-fold GridSearchCV optimizing ROCAUC on the training set; no performance gain justified retaining defaults. 
Internal validation comprised 5-fold cross-validation, reporting mean AUC and accuracy across folds.

Performance evaluation
Discrimination was assessed by ROCAUC with 95% CIs estimated via bootstrapping (n = 1000). Classification 
thresholds were chosen by maximizing Youden’s index to derive accuracy, precision, recall, and F1-score on the 
held-out test set. Calibration was evaluated using calibration plots, Hosmer-Lemeshow test, Brier score, and 
Expected Calibration Error (ECE). Clinical utility was examined through decision curve analysis comparing net 
benefit against “treat all” and “treat none” strategies. Model explainability was quantified using SHAP to rank 
feature importance and visualize effect directionality.

Statistical analyses were conducted using Python (version 3.9). Continuous variables were compared using 
Student’s t-test or the Mann-Whitney U test, while categorical variables were analyzed using the chi-square or 
Fisher’s exact test. A p-value of < 0.05 was considered statistically significant.

Results
Cohort characteristics
Out of 571 screened records, 511 met eligibility criteria; 178 (34.8%) developed CCS. Baseline comparisons 
between CCS and non-CCS groups showed significant differences in age (68.8 ± 7.9 vs. 66.8 ± 8.2 years, p = 0.011), 
NIHSS (median 11 vs. 9, p < 0.001), D-dimer (median 1.17 vs. 0.79, p < 0.001), CRP, HbA1c, and severe carotid 
stenosis (9.0% vs. 2.4%, p = 0.006) (Table 1).

Model development and cross-validation
During 5-fold cross-validation on the training set, SVM achieved the highest mean ROCAUC (0.799 ± 0.056) 
but lower accuracy (0.662 ± 0.004). Random Forest maximized accuracy (0.819 ± 0.018, AUC 0.794 ± 0.042). 
XGBoost and Logistic Regression balanced discrimination and accuracy (XGBoost: AUC 0.779 ± 0.042, 
accuracy 0.811 ± 0.018; Logistic Regression: AUC 0.785 ± 0.052, accuracy 0.792 ± 0.033). Deep Neural Network 
performance was moderate (AUC 0.759 ± 0.041, accuracy 0.755 ± 0.023). All AUC standard deviations were below 
0.06, indicating stable discrimination performance across folds (Supplementary Table S1). Hyperparameter 
tuning did not enhance test-set AUC; default models were retained. Supplementary Table S2 details each model’s 
parameter settings and performance before and after tuning.

Test set performance
On the test cohort (n = 103), XGBoost achieved the highest discrimination (AUC 0.879; 95% CI 0.807–0.942), 
with accuracy 0.825, precision 0.844, recall 0.675, and F1score 0.750. Random Forest followed (AUC 0.866, 
accuracy 0.845, precision 0.962, recall 0.625, F1score 0.758). SVM and Logistic Regression yielded AUCs of 
0.853 and 0.818, respectively; Deep Neural Network trailed (AUC 0.817). Detailed metrics are summarized in 
Table 2 and ROC curves shown in Fig. 1.

Confusion matrices for each classifier further illustrate that XGBoost predicted 27 true positives, 58 true 
negatives, 5 false positives and 13 false negatives, with analogous breakdowns for Random Forest (25 TP, 62 TN, 
1 FP, 15 FN), SVM (26 TP, 62 TN, 1 FP, 14 FN), Logistic Regression (27 TP, 55 TN, 8 FP, 13 FN) and Deep Neural 
Network (29 TP, 52 TN, 11 FP, 11 FN) (Fig. 2).
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Calibration performance
Model calibration was assessed using the Hosmer-Lemeshow goodness-of-fit test and Brier scores across all five 
machine learning algorithms. The analysis revealed significant differences in calibration quality among models 
(Table  3). SVM demonstrated the best calibration performance with a Hosmer-Lemeshow p-value of 0.246 
(p > 0.05, indicating good calibration) and the lowest Brier score of 0.126. Random Forest also showed acceptable 
calibration (HL p-value = 0.153, Brier score = 0.131).

In contrast, XGBoost exhibited poor calibration despite achieving the highest discrimination performance, 
with a Hosmer-Lemeshow p-value < 0.001 and Brier score of 0.141. Similarly, the Deep Neural Network showed 

Characteristics CCS (n = 178) Non-CCS (n = 333) P-value

Age 68.78 ± 7.88 66.84 ± 8.24 0.011

BMI 23.80 (22.70–25.00) 23.90 (22.20–25.80) 0.760

SBP 129.88 ± 14.98 129.49 ± 15.04 0.779

DBP 79.96 ± 9.71 79.83 ± 9.89 0.888

NIHSS 11.00 (8.00–15.00) 9.00 (6.00–12.00) < 0.001

BNP 114.90 (44.10-153.40) 39.80 (29.70–51.50) < 0.001

cTNI 0.83 ± 0.34 0.03 ± 0.01 < 0.001

WBC 7.78 (6.80–8.93) 7.84 (6.92–8.79) 0.752

Neutrophil_% 60.39 ± 5.22 59.97 ± 4.88 0.368

Lymphocyte 2.48 ± 0.45 2.52 ± 0.49 0.354

Hemoglobin 119.93 ± 11.48 127.22 ± 10.40 < 0.001

Albumin 38.60 (34.90–42.50) 39.30 (36.60–42.30) 0.047

BUN 6.78 ± 1.95 6.60 ± 1.87 0.309

Creatinine 86.13 ± 16.71 87.11 ± 17.55 0.541

K 4.05 ± 0.35 4.02 ± 0.30 0.392

CRP 4.70 (3.40–5.90) 3.90 (2.90–4.90) < 0.001

HbA1c 6.72 ± 0.94 6.28 ± 0.91 < 0.001

D_dimer 1.17 (0.82–1.52) 0.79 (0.66–0.92) < 0.001

PT 11.63 ± 0.92 11.32 ± 0.93 < 0.001

APTT 26.08 ± 1.21 25.79 ± 1.10 0.007

TT 16.62 ± 0.80 16.83 ± 0.78 0.004

FIB 3.20 (2.50–3.80) 2.80 (2.40–3.20) < 0.001

TC 4.72 ± 0.43 4.68 ± 0.40 0.297

TG 1.18 (0.86–1.49) 1.24 (0.98–1.53) 0.086

HDL_C 1.32 ± 0.20 1.31 ± 0.20 0.421

LDL_C 2.79 ± 0.39 2.77 ± 0.40 0.640

Gender (Male) 105 (59.0%) 204 (61.3%) 0.685

Smoke 42 (23.6) 73 (21.9) 0.749

Drink 29 (16.3) 38 (11.4) 0.156

Hypertension 126 (70.8) 193 (58.0) 0.006

Diabetes 63 (35.4) 94 (28.2) 0.116

History_Stroke 31 (17.4) 24 (7.2) < 0.001

ACEI_ARB 87 (48.9) 97 (29.1) < 0.001

Beta_Blocker 77 (43.3) 83 (24.9) < 0.001

Statin 85 (47.8) 98 (29.4) < 0.001

LVEF 45.0 ± 6.5% 56.0 ± 5.8% < 0.001

Carotid_Stenosis
Grade 0: 97 (54.5%)
Grade 1: 35 (19.7%)
Grade 2: 30 (16.9%) Grade 3: 16 (9.0%)

Grade 0: 211 (63.4%) Grade 1: 60 (18.0%) Grade 2: 54 (16.2%) Grade 3: 8 (2.4%) 0.006

Table 1.  Baseline characteristics of the study Population. Continuous variables are presented as 
mean ± standard deviation for normally distributed data or median (interquartile range) for non-normally 
distributed data. Categorical variables are presented as n (%). CCS, cerebral-cardiac syndrome; BMI, body 
mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; NIHSS, national institutes of health 
stroke scale; BNP, B‑type natriuretic peptide; cTnI, cardiac troponin I; WBC, white blood cell; BUN, blood 
urea nitrogen; CRP, C-reactive protein; PT, prothrombin time; APTT, activated partial thromboplastin time; 
TT, thrombin time; FIB, fibrinogen; TC, total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein 
cholesterol; LDL-C, low-density lipoprotein cholesterol; ACEI, angiotensin‑converting enzyme inhibitor; ARB, 
angiotensin II receptor blocker; LVEF, left ventricular ejection fraction.
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severe miscalibration (HL p-value < 0.001, Brier score = 0.178), while Logistic Regression demonstrated moderate 
calibration issues (HL p-value = 0.001, Brier score = 0.148).

Calibration plots (Fig. 3) visually confirmed these findings, with SVM and Random Forest showing predicted 
probabilities closely aligned with observed frequencies across deciles, while XGBoost and Deep Neural Network 
showed systematic deviations from the diagonal line of perfect calibration.

Decision-curve analysis
In decision curve analysis (Fig. 4), all five models confer greater net benefit than either default strategy (“treat all” 
or “treat none”) across a wide range of clinically relevant threshold probabilities (0.1–0.8). Across the clinically 
relevant threshold range of 0.1–0.6, the SVM and RF models yielded the highest net benefit, consistently 
exceeding both “treat-all” and “treat-none” strategies. XGBoost provided marginally higher net benefit only at 
very low thresholds (< 0.15), reflecting its aggressive detection of true positives. Beyond 0.6, none of the models 
offered advantage over default strategies, indicating diminishing clinical utility at high decision thresholds.

Threshold optimization analysis
Because the dataset exhibited a moderate class imbalance (Non-CCS: CCS = 1.96 : 1; CCS prevalence = 33.8% 
in training and 38.8% in test data), six threshold-selection strategies were compared: the default cut-off of 0.50, 

Fig. 1.  The ROC curves for the five machine learning models. AUC: Area Under the Curve; ROC: Receiver 
Operating Characteristic; SVM: Support Vector Machine; XGBoost: Extreme Gradient Boosting.

 

Model Accuracy AUC Precision Recall F1-score

Logistic regression 0.796 0.818 0.771 0.675 0.720

Random forest 0.845 0.866 0.962 0.625 0.758

SVM 0.854 0.853 0.963 0.650 0.776

XGBoost 0.825 0.879 0.844 0.675 0.750

Deep neural network 0.786 0.817 0.725 0.725 0.725

Table 2.  Model performance comparison of the five machine learning models. AUC, area under the curve; 
ROC, receiver operating characteristic; SVM, support vector machine; XGBoost, extreme gradient boosting.
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a prevalence-based cut-off (0.338), Youden Index optimisation, F1-score maximisation, and cost-sensitive 
optimisation with false-negative penalties of 2 : 1 and 3 : 1.

The SVM model with a Youden-optimised threshold (0.576) delivered the most balanced overall performance 
(accuracy = 87.4%, sensitivity = 70.0%, specificity = 98.4%, F1-score = 0.812), outperforming all other model–
strategy combinations. For high-sensitivity applications, XGBoost tuned with a 3 : 1 false-negative penalty 
reached 95.0% sensitivity at a threshold of 0.019, albeit with reduced specificity (52.4%) and accuracy (68.9%). 
Conversely, Random Forest retained the highest specificity (98.4%) at the default 0.50 threshold, making it 
preferable for confirmatory testing despite lower sensitivity (62.5%).

Across models, prevalence-based thresholds consistently increased sensitivity (≈ 5–10% points) relative 
to the default but did not maximise any single metric. Notably, the Youden and F1-maximising thresholds 
converged for SVM, Random Forest, and XGBoost, indicating stable optimisation despite the modest imbalance. 
(Supplementary Table S3)

Feature importance
Feature importance analysis using SHAP identified D-dimer as the most influential predictor, followed closely 
by ACEI/ARB usage, HbA1c, CRP, and prothrombin time. Additional significant contributors included age, 
NIHSS scores, and severe carotid artery stenosis. Figure 5A presents the SHAP feature importance plot, which 
ranks predictors based on their average impact on model output. The SHAP summary plot (Fig. 5B) further 
illustrates the distribution and directionality of these features, demonstrating how higher levels of D-dimer, CRP, 
and HbA1c, among others, are associated with increased CCS risk.

Model Brier score HL p-value Well calibrated

Logistic regression 0.148 0.001 No

Random forest 0.131 0.153 Yes

SVM 0.126 0.246 Yes

XGBoost 0.141 < 0.001 No

Deep neural network 0.178 < 0.001 No

Table 3.  Model calibration performance: of the five machine learning models. SVM, support vector machine; 
XGBoost, extreme gradient boosting; HL, hosmer-lemeshow.

 

Fig. 2.  Confusion Matrix for the five machine learning models. Panels A–E correspond to (A) logistic 
regression, (B) random forest, (C) support vector machine, (D) XGBoost, and (E) deep neural network. SVM: 
Support Vector Machine; XGBoost: Extreme Gradient Boosting; CCS: cerebral–cardiac syndrome.
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Discussion
Our study demonstrates that ML algorithms can effectively predict CCS in AIS patients, offering a novel approach 
to early risk stratification. Among the five ML models tested, XGBoost achieved the highest discrimination 
(AUC 0.879), while SVM (AUC 0.853) and random forest (AUC 0.866) exhibited superior calibration. This 
performance divergence highlights a common modeling challenge: balancing discrimination with calibration. 
In clinical practice, an optimal algorithm must align with the intended application—XGBoost may excel at 
identifying high-risk individuals, whereas SVM or random forest may provide more reliable absolute risk 
estimates for individualized decision-making.

Key predictors identified by SHAP analysis, including D-dimer, prothrombin time, ACEI/ARB usage, HbA1c, 
and CRP, collectively highlight the critical roles of coagulation, inflammation, glycemic control, and blood 
pressure regulation in the pathophysiology of cerebral-cardiac syndrome (CCS). Among these, Elevated D-dimer 
and prolonged prothrombin time, both key markers of coagulation dysfunction, reflect the hyperactivation of the 
coagulation and fibrinolytic systems frequently observed following acute ischemic events14,15. This state is often 
accompanied by systemic inflammation, endothelial dysfunction, and microvascular thrombosis, all of which 
are central to CCS development16,17. The inclusion of these coagulation markers as key predictors underscores 
their utility in capturing the complex interplay between thrombosis and cardiovascular dysfunction. Clinically, 
monitoring these markers in ischemic stroke patients could facilitate early identification of those at risk for CCS, 
enabling timely interventions such as anticoagulation therapy or enhanced cardiac monitoring18.

Interestingly, ACEI/ARB usage emerged as a significant predictor of CCS, which may appear counterintuitive 
given their well-established protective effects in cardiovascular diseases. However, this association likely 
reflects the presence of poorly controlled hypertension in CCS patients, as suggested by the higher baseline 
systolic and diastolic blood pressures observed in this group. Poor blood pressure control, despite ACEI/ARB 
therapy, may indicate treatment resistance or suboptimal adherence, would increase the risk of cardiovascular 
complications following AIS18,19. This finding highlights the critical importance of achieving optimal blood 
pressure management to mitigate the risk of cardiac complications in stroke patients.

Elevated HbA1c levels highlight the impact of poor glycemic control, which exacerbates oxidative stress, 
endothelial dysfunction, and systemic inflammation—key mechanisms contributing to CCS development16,17. 
Similarly, elevated CRP levels emphasize the role of systemic inflammation, which is heightened after AIS and 
is known to promote cardiac dysfunction16,17. These findings collectively illustrate how vascular risk factors, 
combined with the inflammatory and thrombotic responses to stroke, drive the development and progression 

Fig. 3.  Calibration curves for the five machine learning models. SVM: Support Vector Machine; XGBoost: 
Extreme Gradient Boosting.
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of CCS. Carotid artery stenosis, particularly severe stenosis (70–99%), was also more prevalent in CCS patients, 
highlighting the role of systemic atherosclerosis and cerebrovascular pathology in CCS development20.

Our work builds on earlier ML research in stroke by shifting the focus from neurological to cardiac 
outcomes. Whereas past studies predominantly addressed complications such as hemorrhagic transformation 
or functional decline21,22 our models emphasize transparent, interpretable risk insights via SHAP, facilitating 
clinician adoption and seamless integration into electronic health record systems.

From a translational standpoint, ML-driven CCS risk scores could inform targeted surveillance and preventive 
strategies. For example, patients identified as high-risk by XGBoost could undergo early echocardiography, 
continuous electrocardiographic monitoring, or preemptive cardioprotective interventions (e.g., beta-blockers, 
tailored anticoagulation). Those deemed low-risk might avoid unnecessary resource utilization and potential 
treatment-related complications. Decision curve analysis confirmed that all models provided net benefit over 
treat-all or treat-none approaches across clinically relevant threshold probabilities (10–60%), with random forest 
and SVM offering particularly robust benefit in intermediate-risk ranges.

The findings of this study have important clinical implications. Early identification of CCS risk through 
machine learning can improve clinical decision-making by enabling proactive measures to prevent cardiac 
complications, reduce morbidity, and improve outcomes. Future research should focus on integrating machine 
learning models into clinical workflows and evaluating their impact on patient care in real-world settings. 
Additionally, incorporating longitudinal data and external validation cohorts would further strengthen the 
robustness and applicability of the predictive model.

Limitation
This study has several limitations. Its retrospective design and single-center data may limit generalizability, 
requiring prospective, multicenter validation. The exclusion of thrombolysis and thrombectomy patients restricts 
applicability to this subgroup. Potential biases in data collection and the moderate sample size raise concerns 

Fig. 4.  Decision curve analysis for the five machine learning models. SVM: Support Vector Machine; 
XGBoost: Extreme Gradient Boosting.
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about overfitting, despite cross-validation efforts. The use of static variables overlooks dynamic changes that 
might influence CCS risk, and while SHAP analysis highlights feature importance, causal relationships remain 
unconfirmed. Individual diabetes medications were not modeled; instead, we used diabetes status and HbA₁c 
as proxies to preserve model simplicity given inconsistent prescription coding. Finally, challenges in integrating 
machine learning models into clinical workflows, including data standardization and clinician acceptance, 
warrant further investigation.

Conclusion
ML-based models accurately predict early CCS in ischemic stroke patients. XGBoost offers superior 
discrimination, while SVM and random forest demonstrate better calibration. Important predictors highlight 
the roles of coagulation, inflammation, and metabolic control. This study underscores the potential of ML 
models in enhancing clinical decision-making and risk stratification, ultimately improving patient outcomes.

Data availability
The study protocol, de-identified data and analysis code are available from the corresponding author on reason-
able request.
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